The Python Library Reference
Release 2.6.5

Guido van Rossum

Fred L. Drake, Jr., editor

March 19, 2010

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions S
Non-essential Built-in Functions 23
Built-in Constants 25
4.1 Constants added by the sitemodule oL oL 25
Built-in Objects 27
Built-in Types 29
6.1 Truth Value Testing o i e e e e e e e e e e e 29
6.2 Boolean Operations — and, 0r, NOL v v v vttt e e e e e e e e e 29
6.3 CompariSONS e e e e e e e 30
6.4 Numeric Types — int, float, long, complex v v v v v i v vttt 30
6.5 Tterator TYPES . . . o o v v i e e e e e e e e e e e e e e e e e e e 33
6.6 Sequence Types — str,unicode, list, tuple, buffer,xrange 33
6.7 SetTypes — set, frozenset i i v i i it e e e e e e e e 43
6.8 Mapping Types — dict L e 45
6.9 FileObjects L e e 47
6.10 Context Manager Types o o it i e e e e e 50
6.11 Other Built-in Types« o 0 o e e e e e e e e e e e e e e e e 51
6.12 Special Attributes e e e e e e e e e e e e e e e 53
Built-in Exceptions 55
7.1 Exception hierarchy e 59
String Services 61
8.1 string— Common String OPErations v v v v v v v v e e e e e e e e e e e e 61
8.2 re — Regular expression Operationso e e e e e e e e e e e e e 70
8.3 struct — Interpret strings as packed binary data o oL 84
84 difflib — Helpers for computingdeltas L. 87
8.5 StringIO—Readand writestringsasfiles 96
8.6 cStringIO—Fasterversionof StringIO i 97
8.7 textwrap—Textwrappingandfilling 98
8.8 codecs — Codec registry and base classes L e 100
8.9 unicodedata—Unicode Database 113
8.10 stringprep — Internet String Preparation L oL 115
8.11 fpformat — Floating point CONVersions v v v v vt ettt 116
Data Types 117
9.1 datetime —Basicdateandtimetypes e 117
9.2 calendar — General calendar-related functions 138

9.3 collections — High-performance container datatypes 141
9.4 heapg—Heap queue algorithm e 150
9.5 Dbisect — Array bisection algorithm o L oo 152
9.6 array — Efficient arrays of numeric values oL o oL 154
9.7 sets — Unordered collections of unique elements 156
9.8 sched—Eventscheduler 159
9.9 mutex — Mutual exclusion SUPPOIt L. e e e e e e e e 161
9.10 queue — A synchronized queueclass e 161
9.11 weakref — Weakreferences e 163
9.12 UserDict — Class wrapper for dictionary objects 167
9.13 UserList — Class wrapper for listobjects 168
9.14 UserString— Class wrapper for string objects 168
9.15 types—Names forbuilt-intypes e e e 169
9.16 new — Creation of runtime internal objects o o 171
9.17 copy — Shallow and deep copy operations 172
9.18 pprint —Datapretty prinfer e e e e e e e e 173
9.19 repr — Alternate repr () implementation o 175
10 Numeric and Mathematical Modules 179
10.1 numbers — Numeric abstract baseclasses oo, 179
10.2 math — Mathematical functions L 182
10.3 cmath — Mathematical functions for complex numbers 185
104 decimal — Decimal fixed point and floating point arithmetic 187
10.5 fractions —Rationalnumbers e 209
10.6 random — Generate pseudo-random numberso 211
10.7 itertools — Functions creating iterators for efficient looping 214
10.8 functools — Higher order functions and operations on callable objects 225
10.9 operator — Standard operators as functions oL 227
11 File and Directory Access 235
11.1 os.path — Common pathname manipulations 235
11.2 fileinput — Iterate over lines from multiple input streams 238
11.3 stat —Interpreting stat () results L oo 240
114 statvEfs — Constants used with os.statvEs () v v v v v v v i i e e e e e 243
11.5 filecmp — File and Directory CompariSonso v v v v v v v v v o 243
11.6 tempfile — Generate temporary files and directories 245
11.7 glob — Unix style pathname pattern eXpansion v v v v v v v v v v v v v 248
11.8 fnmatch — Unix filename pattern matching 248
119 linecache —Randomaccesstotextlines 249
11.10 shutil — High-level file operations 249
11.11 dircache — Cached directory listings o v i i i v i et e i e e 252
11.12 macpath — Mac OS 9 path manipulation functions 253
12 Data Persistence 255
12.1 pickle — Python object serialization i 255
122 cPickle —Afasterpickle i e e e e e 264
12.3 copy_reg— Register pickle support functionso 265
12.4 shelve — Pythonobject persistence oo 265
12.5 marshal — Internal Python object serialization 267
12.6 anydbm — Generic access to DBM-style databases 269
12.7 whichdb — Guess which DBM module created adatabase 270
12.8 dbm — Simple “database” interfaceo o 270
12.9 gdbm— GNU’s reinterpretationof dbm 000000 271
12.10 dbhash — DBM-style interface to the BSD database library 272
12.11 bsddb — Interface to Berkeley DB library 273
12.12 dumbdbm — Portable DBM implementation 275
12.13 sgqlite3 — DB-API 2.0 interface for SQLite databases 276

13 Data Compression and Archiving 293

13.1 zlib — Compression compatible withgzip 293

13.2 gzip—Supportforgzipfiles e 295
13.3 Dbz2 — Compression compatible withbzip2 296
134 zipfile— WorkwithZIParchives 298
13.5 tarfile —Read and write tar archivefiles 303
14 File Formats 311
14.1 csv—CSV File Reading and Writing 311
142 ConfigParser — Configuration file parser, 317
14.3 robotparser — Parser forrobots.txt 322
14.4 netrc —netrc file processing L e e e e e e e e 323
145 xdrlib —Encode and decode XDRdata 324
14.6 plistlib — Generate and parse Mac OS X .plistfiles. 326
15 Cryptographic Services 329
15.1 hashlib — Secure hashes and message digests i 329
15.2 hmac — Keyed-Hashing for Message Authentication 330
15.3 md5 — MD5 message digest algorithm oL 331
154 sha — SHA-1 message digest algorithm, 332
16 Generic Operating System Services 333
16.1 os — Miscellaneous operating system interfaceso 333
16.2 io— Core tools for working with streams L . 353
16.3 time — Time access and CONVEISIONS« v v v v v v vt b i e e e e e e e e 360
16.4 optparse — More powerful command line option parser 365
16.5 getopt — Parser for command lineoptions oL 388
16.6 logging— Logging facility forPython L. 390
16.7 getpass — Portable passwordinputo 424
16.8 curses — Terminal handling for character-cell displays 424
16.9 curses.textpad — Text input widget for curses programs 438
16.10 curses.wrapper — Terminal handler for curses programs 439
16.11 curses.ascii — Utilities for ASCIl characters 440
16.12 curses.panel — A panel stack extension forcurses 442
16.13 plat form — Access to underlying platform’s identifyingdata 443
16.14 errno — Standard errno system symbols L. L o 446
16.15 ctypes — A foreign function library for Python, 451
17 Optional Operating System Services 481
17.1 select — Waiting for /O completion e 481
17.2 threading — Higher-level threading interface 485
17.3 thread — Multiple threads of control 493
17.4 dummy_threading — Drop-in replacement for the threadingmodule 495
17.5 dummy_thread — Drop-in replacement for the threadmodule 495
17.6 multiprocessing— Process-based “threading” interface 496
177 mmap — Memory-mapped file support o 541
17.8 readline —GNUreadlineinterface 544
17.9 rlcompleter — Completion function for GNU readline 547
18 Interprocess Communication and Networking 549
18.1 subprocess — Subprocess managemento 549
18.2 socket — Low-level networking interface Lo, 555
18.3 ss1 — SSL wrapper for socketobjects L 565
18.4 signal — Set handlers for asynchronousevents, 572
18.5 popen2 — Subprocesses with accessible /O streams 575
18.6 asyncore — Asynchronous sockethandler 000, 577
18.7 asynchat — Asynchronous socket command/response handler 580
19 Internet Data Handling 585

19.1 email — Anemail and MIME handling package 585

20

21

19.2 json —JSONencoderand decoder i i i i i 613

19.3 mailcap—Mailcapfilehandling e 618
19.4 mailbox — Manipulate mailboxes in various formats 619
19.5 mhlib—Accessto MHmailboxes 636
19.6 mimetools — Tools for parsing MIME messages 638
19.7 mimetypes — Map filenames to MIME types 639
19.8 MimeWriter — Generic MIME filewriter 641
19.9 mimify — MIME processing of mail messages 642
19.10 multifile — Support for files containing distinct parts 643
19.11 r£c822 — Parse RFC 2822 mail headers 645
19.12 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 648
19.13 binhex — Encode and decode binhex4 files 650
19.14 binascii — Convert between binary and ASCIT 651
19.15 quopri — Encode and decode MIME quoted-printabledata 652
19.16 uu — Encode and decode uuencode files L oL oo 653
Structured Markup Processing Tools 655
20.1 HTMLParser — Simple HTML and XHTML parser 655
20.2 sgmllib—Simple SGML parser e 657
20.3 htmllib — A parser for HTML documents 659
20.4 htmlentitydefs — Definitions of HTML general entities 661
20.5 xml.parsers.expat — Fast XML parsingusing Expat 661
20.6 xml.dom— The Document Object Model API 669
20.7 xml.dom.minidom — Lightweight DOM implementation 679
20.8 xml.dom.pulldom— Support for building partial DOM trees 683
20.9 xml.sax — Support for SAX2 parsers« . v v it e e e e e e e 683
20.10 xml.sax.handler — Base classes for SAX handlers 685
20.11 xml.sax.saxutils — SAX Utilities o e 689
20.12 xml.sax.xmlreader — Interface for XML parsers 690
20.13 xml.etree.ElementTree — The ElementTree XML APl 693
Internet Protocols and Support 701
21.1 webbrowser — Convenient Web-browser controller 701
21.2 cgi — Common Gateway Interface supporto 703
21.3 cgitb — Traceback manager for CGIscripts 709
21.4 wsgiref — WSGI Utilities and Reference Implementation 710
21.5 urllib — Open arbitrary resourcesby URL 718
21.6 urllib2 — extensible library foropening URLs 723
217 httplib —HTTP protocolclient 733
21.8 ftplib—FTPprotocolclient i e 737
21.9 poplib—POP3 protocolclient e 740
21.10 imaplib —IMAP4 protocol client e 742
21.11 nntplib —NNTP protocolclient e 747
21.12 smtplib — SMTP protocolclient L 751
21.13 smtpd —SMTP Server e e 755
21.14 telnetlib—Telnetclient e 755
21.15 uuid — UUID objects according to RFC 4122 i 758
21.16 urlparse — Parse URLs into components v v v v v v v v v v v v oo v e o 760
21.17 SocketServer — A framework for network servers L oL 764
21.18 BaseHTTPServer — Basic HTTPserver, 770
21.19 SimpleHTTPServer — Simple HTTP request handler 773
21.20 CGIHTTPServer — CGl-capable HTTPrequesthandler 774
21.21 cookielib — Cookie handling for HTTPclients 775
21.22 Cookie — HTTP state management v iv v v vt 783
21.23 xmlrpclib — XML-RPCclientaccess« . v i vt v ittt 786
21.24 SimpleXMLRPCServer — Basic XML-RPCserver 793
21.25 DocXMLRPCServer — Self-documenting XML-RPCserver 796

22 Multimedia Services
22.1 audioop — Manipulate raw audio data
22.2 imageop — Manipulate raw image data

223 aifc—Read and write AIFF and AIFCfiles

22.4 sunau — Read and write Sun AU files .
22.5 wave — Read and write WAV files . . .
22.6 chunk — Read IFF chunked data
22.7 colorsys — Conversions between color

SYSEMS « & v v e e e e e

22.8 imghdr — Determine the type of animage

22.9 sndhdr — Determine type of sound file

22.10 ossaudiodev — Access to OSS-compatible audio devices

23 Internationalization
23.1 gettext — Multilingual internationaliza
23.2 locale — Internationalization services

24 Program Frameworks

ON SEIVICES . . v v v v v e e e e e e e

24.1 cmd — Support for line-oriented command interpreterso

242 shlex — Simple lexical analysis

25 Graphical User Interfaces with Tk
25.1 Tkinter — Python interface to Tcl/Tk
25.2 Tix — Extension widgets for Tk
25.3 ScrolledText — Scrolled Text Widget
25.4 turtle — Turtle graphics for Tk . . .
255 IDLE L
25.6 Other Graphical User Interface Packages

26 Development Tools

26.1 pydoc — Documentation generator and online helpsystem
26.2 doctest — Testinteractive Pythonexamples

26.3 unittest — Unit testing framework .

26.4 2to3 - Automated Python 2 to 3 code translation
26.5 test — Regression tests package forPython. o oL
26.6 test.test_support — Utility functions fortests

27 Debugging and Profiling
27.1 bdb — Debugger framework
27.2 pdb — The Python Debugger
27.3 Debugger Commands
274 The Python Profilers

27.5 hotshot — High performance logging profiler

27.6 timeit — Measure execution time of sm

all code snippets

2777 trace — Trace or track Python statement execution

28 Python Runtime Services

28.1 sys — System-specific parameters and functions 0 oL

282 _ _builtin__ — Built-in objects . . .

28.3 future_builtins —Python3builtins oo
284 __main___ — Top-level scriptenvironment

28.5 warnings — Warning control

28.6 contextlib — Utilities for with-statementcontexts

28.7 abc — Abstract Base Classes
28.8 atexit — Exithandlers

28.9 traceback — Print or retrieve a stack traceback L L.
28.10 _ future_ — Future statement definitions e e

28.11 gc — Garbage Collector interface
28.12 inspect — Inspect live objects
28.13 site — Site-specific configuration hook

799
799
802
803
805
807
809
810
811
811
812

817
817
825

833
833
835

839
839
848
853
853
881
884

887
887
888
909
919
923
925

929
929
933
934
937
944
945
948

951
951
960
960
961
961
965
967
969
970
974
975
977
982

29

30

31

32

33

34

35

36

28.14 user — User-specific configurationhook oL
28.15 fpectl — Floating point exception control o

Custom Python Interpreters
29.1 code —Interpreter baseclasses ol
29.2 codeop —Compile Pythoncode e

Restricted Execution
30.1 rexec — Restricted execution framework L Lo o
30.2 Bastion — Restricting access to ObJECtS v . o i u e e e e e e e e e e

Importing Modules

31.1 imp— Accessthe importinternals e
31.2 imputil —Importutilities e e e e e
31.3 zipimport — Import modules from Zip archives L.
31.4 pkgutil — Package extension utility
31.5 modulefinder —Find modulesused by ascript
31.6 runpy — Locating and executing Pythonmodules

Python Language Services

32.1 parser — Access Pythonparsetrees e
32.2 Abstract Syntax Trees o v v i i e e e e e e e e e e e e e e e e
32.3 symtable — Access to the compiler’s symboltables
32.4 symbol — Constants used with Python parse trees
32.5 token — Constants used with Python parsetrees
32.6 keyword — Testing for Python keywords L
327 tokenize — Tokenizer for Pythonsource
32.8 tabnanny — Detection of ambiguous indentationo
32.9 pyclbr — Python class browser support oL o
32.10 py_compile — Compile Python source files
32.11 compileall — Byte-compile Python libraries
32.12 dis — Disassembler for Python bytecode
32.13 pickletools — Tools for pickle developers
32.14 distutils — Building and installing Pythonmodules

Python compiler package

33.1 Thebasicinterface L e
332 Limitations e e e e e e e e e e e e
33.3 Python Abstract Syntax
33.4 Using Visitors to Walk ASTS o e
33.5 Bytecode Generationo e e e e e e e e e e e

Miscellaneous Services
34.1 formatter — Generic output formatting oo

MS Windows Specific Services

35.1 msilib — Read and write Microsoft Installer files
35.2 msvcrt — Useful routines from the MS VC++runtime
353 _winreg— Windows regiStry aCCeSS . . . v v v v v v v e e e e e e e e e e e e e e e e e
35.4 winsound — Sound-playing interface for Windows L.

Unix Specific Services

36.1 posix — The most common POSIX systemcalls
36.2 pwd—The password database e e e e
36.3 spwd — The shadow password database
364 grp—Thegroupdatabase e e
36.5 crypt — Function to check Unix passwords oL
36.6 dl — Call C functions in shared objects
36.7 termios —POSIXstylettycontrol e

987
987
989

991
991
994

vi

37

38

39

40

41

36.10 fcntl —The fentl () and ioctl () systemealls L.
36.11 pipes — Interface to shell pipelines
36.12 posixfile — File-like objects with locking support
36.13 resource — Resource usage informationo 0oL
36.14 nis — Interface to Sun’s NIS (Yellow Pages)
36.15 syslog— Unix syslog library routines vt
36.16 commands — Utilities for running commands oL

Mac OS X specific services

37.1 ic — Accesstothe Mac OS X Internet Config
37.2 MacOS — Access to Mac OS interpreter features oL
37.3 macostools — Convenience routines for file manipulation
374 findertools — The finder‘s Apple Eventsinterface
37.5 EasyDialogs — Basic Macintosh dialogs
37.6 FrameWork — Interactive application framework,
3777 autoGIL — Global Interpreter Lock handling in eventloops
37.8 Mac OS Toolbox Modules o e e e e e
379 ColorPicker — Colorselectiondialog

MacPython OSA Modules

38.1 gensuitemodule — Generate OSA stub packages
38.2 aetools —OSAclient SUPPOIt o i e
38.3 aepack — Conversion between Python variables and AppleEvent data containers
384 aetypes— AppleEventobjects e e
38.5 MiniAEFrame — Open Scripting Architecture server support

SGI IRIX Specific Services

39.1 al —Audiofunctionsonthe SGI L o
39.2 AL — Constants used withthe al module,
393 cd—CD-ROM accesson SGIsystems L oo
39.4 £1 — FORMS library for graphical userinterfaces
39.5 FL —Constantsused withthe f1module
39.6 flp — Functions for loading stored FORMS designs
39.7 fm— Font Manager interfaceo Lo e
39.8 gl — Graphics Library interface e e
39.9 DEVICE — Constants used withthe gl module
39.10 GL — Constants used withthe gl module
39.11 imgfile — Support for SGlimglibfiles
39.12 jpeg—Read and write JPEGfiles

SunOS Specific Services
40.1 sunaudiodev — Access to Sun audiohardware,
40.2 SUNAUDIODEV — Constants used with sunaudiodev

Undocumented Modules

41.1 Miscellaneous useful utilities e e e e e e e e
41.2 Platform specificmodules L
413 Multimedia L L e e e e e e e e e
41.4 Undocumented Mac OS modules e
41.5 Obsolete e e e e
41.6 SGl-specific Extension modules e e

Glossary

About these documents
B.1 Contributors to the Python Documentation

vii

C History and License

C.1 Historyofthesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Module Index

Index

1133
1133
1134
1136

1145

1147

1151

viii

The Python Library Reference, Release 2.6.5

Release 2.6
Date March 19, 2010

While The Python Language Reference (in The Python Language Reference) describes the exact syntax and se-
mantics of the Python language, this library reference manual describes the standard library that is distributed with
Python. It also describes some of the optional components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of
contents listed below. The library contains built-in modules (written in C) that provide access to system func-
tionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as modules written
in Python that provide standardized solutions for many problems that occur in everyday programming. Some of
these modules are explicitly designed to encourage and enhance the portability of Python programs by abstracting
away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include
many additional components. For Unix-like operating systems Python is normally provided as a collection of
packages, so it may be necessary to use the packaging tools provided with the operating system to obtain some or
all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual
programs and modules to packages and entire application development frameworks), available from the Python
Package Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 2.6.5

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of an import statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of
the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see module random) and read a section or
two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter Built-in
Functions, as the remainder of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 2.6.5

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

New in version 2.5.

basestring ()
This abstract type is the superclass for st r and unicode. It cannot be called or instantiated, but it can be
used to test whether an object is an instance of str or unicode. isinstance (obj, basestring)
is equivalent to isinstance (obj, (str, unicode)). New in version 2.3.

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python
int object, it has to define an __index__ () method that returns an integer. New in version 2.6.

bool (/x])

Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot
be subclassed further. Its only instances are False and True. New in version 2.2.1.Changed in version
2.3: If no argument is given, this function returns False.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); class instances are callable if they have a __call__ () method.

The Python Library Reference, Release 2.6.5

chr (i)
Return a string of one character whose ASCII code is the integer i. For example, chr (97) returns the string
"a’. This is the inverse of ord (). The argument must be in the range [0..255], inclusive; ValueError
will be raised if i is outside that range. See also unichzr ().

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C. f ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see stat icmethod () in
this section.

For more information on class methods, consult the documentation on the standard type hierarchy in The
standard type hierarchy (in The Python Language Reference). New in version 2.2.Changed in version 2.4:
Function decorator syntax added.

cmp (X, y)
Compare the two objects x and y and return an integer according to the outcome. The return value is negative
if x < y,zeroif x == vy and strictly positive if x > y.

compile (source, filename, mode, [flags, [dont_inherit]])
Compile the source into a code or AST object. Code objects can be executed by an exec statement or
evaluated by a call to eval (). source can either be a string or an AST object. Refer to the ast module
documentation for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if
it wasn’t read from a file (<string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ' exec’ if source consists of a
sequence of statements, ’ eval’ if it consists of a single expression, or / single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None
will be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the
compilation of source. If neither is present (or both are zero) the code is compiled with those future state-
ments that are in effect in the code that is calling compile. If the flags argument is given and dont_inherit
is not (or is zero) then the future statements specified by the flags argument are used in addition to those
that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the future
statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements.
The bitfield required to specify a given feature can be found as the compiler_flag attribute on the
_Featureinstance inthe __ future__ module.

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source con-
tains null bytes.

Note: When compiling a string with multi-line statements, line endings must be represented by a single
newline character (’ \n’), and the input must be terminated by at least one newline character. If line endings
are represented by / \r\n’, use str.replace () to change them into \n’. Changed in version 2.3:
The flags and dont_inherit arguments were added.Changed in version 2.6: Support for compiling AST
objects.

6 Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.6.5

complex ([real, [imag]])

Create a complex number with the value real + imag*j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and the function serves as a
numeric conversion function like int (), long () and float (). If both arguments are omitted, returns
03.

The complex type is described in Numeric Types — int, float, long, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, ’foobar’) isequivalenttodel x.foobar.

dict ([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in
Mapping Types — dict.

For other containers see the built in 1ist, set, and tuple classes, and the col lect ions module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return
a list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of
attributes. This allows objects that implement a custom __getattr__ () or __getattribute__ ()
function to customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and re-
cursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # doctest: +SKIP
["__builtins_ ', ’__doc_ ', ’'_name__ ', ’struct’]
>>> dir(struct) # doctest: +NORMALIZE WHITESPACE

["Struct’, ’'__builtins_ ', ’'__doc__ ', ' file_ ', '__ _name__ ',

' __package__'’, ’'_clearcache’, ’'calcsize’, 'error’, ’'pack’, ’pack_into’,
"unpack’, ’"unpack_from’]
>>> class Foo(object) :
def _ dir_ (self):

return ["kan", "ga",

"rOO"]
>>> f = Foo()

>>> dir (f)

["ga’, "kan’, "roo’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of

The Python Library Reference, Release 2.6.5

names, and its detailed behavior may change across releases. For example, metaclass attributes are not in
the result list when the argument is a class.

divmod (q, b)

Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the result is the same as (a // b, a % b). For floating point
numbers the result is (g, a % b), where ¢ is usually math.floor (a / b) but may be 1 less than
that. Inanycase g * b + a % bisveryclosetoa,if a % b isnon-zero it has the same sign as b, and
0 <= abs(a % b) < abs (b). Changed in version 2.3: Using divmod () with complex numbers is
deprecated.

enumerate (sequence, [start=0])
Return an enumerate object. sequence must be a sequence, an iferator, or some other object which sup-
ports iteration. The next () method of the iterator returned by enumerate () returns a tuple containing
a count (from start which defaults to 0) and the corresponding value obtained from iterating over iter-
able. enumerate () is useful for obtaining an indexed series: (0, seq[0]), (1, seqlll), (2,
seq[2]), ... For example:

>>> for i, season in enumerate ([’ Spring’, ’'Summer’, 'Fall’, ’'Winter’]):
print i, season

Spring

Summer

Fall

Winter

w N = O -

New in version 2.3.New in version 2.6: The start parameter.

eval (expression, [globals, [locals]])
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object. Changed in version 2.4: formerly locals was required to be a
dictionary. The expression argument is parsed and evaluated as a Python expression (technically speaking,
a condition list) using the globals and locals dictionaries as global and local namespace. If the globals
dictionary is present and lacks ‘__builtins__’, the current globals are copied into globals before expression
is parsed. This means that expression normally has full access to the standard ___builtin__ module
and restricted environments are propagated. If the locals dictionary is omitted it defaults to the globals
dictionary. If both dictionaries are omitted, the expression is executed in the environment where eval () is
called. The return value is the result of the evaluated expression. Syntax errors are reported as exceptions.

Example:

>>> x = 1

>>> print eval ('x+1")
2

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with * exec’ as the
kind argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements from
a file is supported by the execfile () function. The globals () and locals () functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use by eval () or
execfile().

execfile (filename, [globals, [locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new module. !

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence
of Python statements (similarly to a module) using the globals and locals dictionaries as global and local

11t is used relatively rarely so does not warrant being made into a statement.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.5

namespace. If provided, locals can be any mapping object. Changed in version 2.4: formerly locals was
required to be a dictionary. If the locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment where execfile () is called. The
return value is None.

Note: The default locals act as described for function 1ocals () below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of
the code on locals after function execfile () returns. execfile () cannot be used reliably to modify
a function’s locals.

file (filename, [mode, [bufsize]])
Constructor function for the £i1le type, described further in section File Objects. The constructor’s argu-
ments are the same as those of the open () built-in function described below.

When opening a file, it’s preferable to use open () instead of invoking this constructor directly. £ile is
more suited to type testing (for example, writing isinstance (£, file)). New in version 2.2.

filter (function, iterable)
Construct a list from those elements of iterable for which function returns true. iterable may be either a
sequence, a container which supports iteration, or an iterator. If iterable is a string or a tuple, the result also
has that type; otherwise it is always a list. If function is None, the identity function is assumed, that is, all
elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to [item for item in iterable
if function(item)] if function is not None and [item for item in iterable if
item] if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

float ([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. The argument may also be [+-]nan or
[+l-]inf. Otherwise, the argument may be a plain or long integer or a floating point number, and a floating
point number with the same value (within Python’s floating point precision) is returned. If no argument is
given, returns 0. O.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative infinity. The case and
a leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN and infinity
as nan, inf or -inf.

The float type is described in Numeric Types — int, float, long, complex.

format (value, [format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that
is used by most built-in types: Format Specification Mini-Language.

Note: format (value, format_spec) merely calls value.__ _format__ (format_spec).
New in version 2.6.

frozenset ([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in
Set Types — set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collections module.
New in version 2.4.

getattr (object, name, [default])
Return the value of the named attributed of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, ' foobar’)
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

The Python Library Reference, Release 2.6.5

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the ob-
ject’s attributes, False if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module. New in version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.

Note: To obtain a hexadecimal string representation for a float, use the f1oat .hex () method. Changed
in version 2.4: Formerly only returned an unsigned literal.

id (object)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and

constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id () value.

CPython implementation detail: This is the address of the object.

input (/prompt])
Equivalent to eval (raw_input (prompt)).

Warning: This function is not safe from user errors! It expects a valid Python expression as input; if
the input is not syntactically valid, a SyntaxError will be raised. Other exceptions may be raised if
there is an error during evaluation. (On the other hand, sometimes this is exactly what you need when
writing a quick script for expert use.)

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

Consider using the raw_input () function for general input from users.

int ([x, [base]])

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace. The base parameter
gives the base for the conversion (which is 10 by default) and may be any integer in the range [2, 36], or
zero. If base is zero, the proper radix is determined based on the contents of string; the interpretation is the
same as for integer literals. (See Numeric literals (in The Python Language Reference).) If base is specified
and x is not a string, TypeError is raised. Otherwise, the argument may be a plain or long integer or
a floating point number. Conversion of floating point numbers to integers truncates (towards zero). If the
argument is outside the integer range a long object will be returned instead. If no arguments are given,
returns O.

The integer type is described in Numeric Types — int, float, long, complex.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect)

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.5

subclass thereof. Also return true if classinfo is a type object (new-style class) and object is an object of
that type or of a (direct or indirect) subclass thereof. If object is not a class instance or an object of the
given type, the function always returns false. If classinfo is neither a class object nor a type object, it may
be a tuple of class or type objects, or may recursively contain other such tuples (other sequence types are
not accepted). If classinfo is not a class, type, or tuple of classes, types, and such tuples, a TypeError
exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass (class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other
case, a TypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o, [sentinel])

Return an iferator object. The first argument is interpreted very differently depending on the presence of
the second argument. Without a second argument, o must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the _ _getitem__ ()

method with integer arguments starting at 0). If it does not support either of those protocols, TypeError
is raised. If the second argument, sentinel, is given, then o must be a callable object. The iterator created in
this case will call o with no arguments for each call to its next () method; if the value returned is equal to
sentinel, St opIlteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter () is to read lines of a file until a certain line is reached.
The following example reads a file until "STOP" is reached:

with open ("mydata.txt") as fp:
for line in iter (fp.readline, "STOP"):
process_line(line)

New in version 2.2.

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([iterable])
Return a list whose items are the same and in the same order as iferable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made
and returned, similar to iterable[:]. Forinstance, 1ist (' abc’) returns ["a’, ’'b’, ’'c’] and
list((1, 2, 3)) returns [1, 2, 3].Ifnoargument is given, returns a new empty list, [].

1list is a mutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, buffer
xrange. For other containers see the built in dict, set, and tuple classes, and the collections
module.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local
and free variables used by the interpreter.

long ([x, [base]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed
number of arbitrary size, possibly embedded in whitespace. The base argument is interpreted in the same
way as for int (), and may only be given when x is a string. Otherwise, the argument may be a plain or
long integer or a floating point number, and a long integer with the same value is returned. Conversion of
floating point numbers to integers truncates (towards zero). If no arguments are given, returns OL.

The long type is described in Numeric Types — int, float, long, complex.

map (function, iterable, ...)
Apply function to every item of iterable and return a list of the results. If additional iterable arguments are
passed, function must take that many arguments and is applied to the items from all iterables in parallel.

11

The Python Library Reference, Release 2.6.5

If one iterable is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple arguments, map () returns a list consisting of tuples
containing the corresponding items from all iterables (a kind of transpose operation). The iterable arguments
may be a sequence or any iterable object; the result is always a list.

max (iterable, [args...], [key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the largest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort ().
The key argument, if supplied, must be in keyword form (for example, max (a, b, ¢, key=func)).
Changed in version 2.5: Added support for the optional key argument.

min (iterable, [args...], [key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the smallest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort ().
The key argument, if supplied, must be in keyword form (for example, min (a, b, c, key=func)).
Changed in version 2.5: Added support for the optional key argument.

next (iterator, [default])
Retrieve the next item from the iterator by calling its next () method. If default is given, it is returned if
the iterator is exhausted, otherwise St opIteration is raised. New in version 2.6.

object ()
Return a new featureless object. object is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.Changed in version 2.3: This function
does not accept any arguments. Formerly, it accepted arguments but ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed
in version 2.4: Formerly only returned an unsigned literal.

open (filename, [mode, [bufsize]])
Open a file, returning an object of the £ile type described in section File Objects. If the file cannot be
opened, TOError is raised. When opening a file, it’s preferable to use open () instead of invoking the
f1ile constructor directly.

The first two arguments are the same as for stdio‘s fopen () : filename is the file name to be opened, and
mode is a string indicating how the file is to be opened.

The most commonly-used values of mode are ' r’ for reading, ' w’ for writing (truncating the file if it
already exists), and ’ a’ for appending (which on some Unix systems means that all writes append to the
end of the file regardless of the current seek position). If mode is omitted, it defaults to ' r’. The default
is to use text mode, which may convert ' \n’ characters to a platform-specific representation on writing
and back on reading. Thus, when opening a binary file, you should append " b’ to the mode value to open
the file in binary mode, which will improve portability. (Appending " b’ is useful even on systems that
don’t treat binary and text files differently, where it serves as documentation.) See below for more possible
values of mode. The optional bufsize argument specifies the file’s desired buffer size: 0 means unbuffered,
1 means line buffered, any other positive value means use a buffer of (approximately) that size. A negative
bufsize means to use the system default, which is usually line buffered for tty devices and fully buffered for
other files. If omitted, the system default is used. 2

Modes ' r+’, "w+’ and ’ a+’ open the file for updating (note that ’ w+’ truncates the file). Append ' b’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files; on
systems that don’t have this distinction, adding the * b’ has no effect.

In addition to the standard fopen () values mode may be ' U’ or ' rU’. Python is usually built with
universal newline support; supplying ’ U’ opens the file as a text file, but lines may be terminated by any
of the following: the Unix end-of-line convention ’ \n’, the Macintosh convention ’ \r’, or the Windows

2 Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the buffer size is not
done using a method that calls setvbuf (), because that may dump core when called after any I/O has been performed, and there’s no
reliable way to determine whether this is the case.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.5

convention " \r\n’. All of these external representations are seen as ’ \n’ by the Python program. If
Python is built without universal newline support a mode with ’ U’ is the same as normal text mode. Note
that file objects so opened also have an attribute called newlines which has a value of None (if no
newlines have yet been seen), ' \n’, " \r’, ’ \r\n’, or a tuple containing all the newline types seen.

Python enforces that the mode, after stripping ’ U’ , begins with " v, "w’ or " a’.

Python provides many file handling modules including fileinput, os, os.path, tempfile, and
shutil. Changed in version 2.5: Restriction on first letter of mode string introduced.

ord (c)
Given a string of length one, return an integer representing the Unicode code point of the character when
the argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord (”a’) returns the integer 97, ord (u’ \u2020’) returns 8224. This is the inverse of chr () for
8-bit strings and of unichr () for unicode objects. If a unicode argument is given and Python was built
with UCS2 Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise
the string length is two, and a TypeError will be raised.

pow (x, ¥, [2])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow (x, y) % z). The two-argument form pow (x, vy) is equivalent to using the power operator:
X**Yy.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int and long int operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are converted to float and a float result
is delivered. For example, 10«2 returns 100, but 1 0 «—2 returns 0. 01. (This last feature was added in
Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must be omitted.
If z is present, x and y must be of integer types, and y must be non-negative. (This restriction was added
in Python 2.2. In Python 2.1 and before, floating 3-argument pow () returned platform-dependent results
depending on floating-point rounding accidents.)

print ([object, ...], [sep=""], [end="\n"], [file=sys.stdout])
Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means to use
the default values. If no object is given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used.

Note: This function is not normally available as a built-in since the name print is recognized as the
print statement. To disable the statement and use the print () function, use this future statement at the
top of your module:

from _ future import print_function

New in version 2.6.

property ([fget, [fset, [fdel, [doc]]]])
Return a property attribute for new-style classes (classes that derive from object).

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def _ init_ (self):
self._x = None

def getx(self):
return self._x

13

The Python Library Reference, Release 2.6.5

def setx(self, wvalue):
self._x = value
def delx(self):
del self._x
X = property(getx, setx, delx, "I'm the ’'x’" property.")

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () asadecorator:

class Parrot (object) :
def @ init_ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C(object):
def _ init_ (self):
self._x = None

@property

def x(self):
""HI/m the /X/ property. mmrn
return self._x

@x.setter
def x(self, wvalue):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name
as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor
arguments. New in version 2.2.Changed in version 2.5: Use fget‘s docstring if no doc given.Changed in
version 2.6: The getter, setter, and deleter attributes were added.

range ([start], stop, [step])

This is a versatile function to create lists containing arithmetic progressions. It is most often used in for
loops. The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. The full form returns a list of plain integers [start, start +
step, start + 2 * step, ...]. If step is positive, the last element is the largest start + 1
x step less than stop; if step is negative, the last element is the smallest start + i * step greater
than stop. step must not be zero (or else ValueError is raised). Example:

>>> range (10)

(¢, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(l, 11)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.5

>>> range (0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

(o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range (0)

>>> range(l, 0)

raw_input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When
EOF is read, EOFError is raised. Example:

>>> s = raw_input (' --> ')

—-—> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing and
history features.

reduce (function, iterable, [initializer])
Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce
the iterable to a single value. For example, reduce (lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates ((((1+2)+3)+4) +5). The left argument, x, is the accumulated value and the right argument,
v, is the update value from the iterable. If the optional initializer is present, it is placed before the items of
the iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given
and iterable contains only one item, the first item is returned.

reload (module)
Reload a previously imported module. The argument must be a module object, so it must have been suc-
cessfully imported before. This is useful if you have edited the module source file using an external editor
and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as the module argument).

When reload (module) is executed:

*Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of
objects which are bound to names in the module’s dictionary. The init function of extension modules
is not called a second time.

*As with all other objects in Python the old objects are only reclaimed after their reference counts drop
to zero.

*The names in the module namespace are updated to point to any new or changed objects.

*Other references to the old objects (such as names external to the module) are not rebound to refer to
the new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys.modules. To reload the
module you must first import it again (this will bind the name to the partially initialized module object)
before you can reload () it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This

15

The Python Library Reference, Release 2.6.5

feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys,__main__and __builtin__. In many cases, however, extension modules are not designed to be
initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload () for the
other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed to eval (), otherwise the representation is a string enclosed in angle brackets that contains
the name of the type of the object together with additional information often including the name and address
of the object. A class can control what this function returns for its instances by defining a __repr__ ()
method.

reversed (seq)
Return a reverse iterator. seq must be an object which has a ___reversed__ () method or supports
the sequence protocol (the ___len__ () method and the _ _getitem__ () method with integer argu-
ments starting at 0). New in version 2.4.Changed in version 2.6: Added the possibility to write a custom
__reversed__ () method.

round (x, [n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to
zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minus #; if two multiples are equally close, rounding is done away from 0O (so. for example, round (0. 5)
is 1.0 and round (-0.5) is —1.0).

set ([iterable])
Return a new set, optionally with elements are taken from iterable. The set type is described in Set Types —
set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collections module.
New in version 2.4.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, pro-
vided the object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar
= 123.

slice ([start], stop, [step])
Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop,
i]. See itertools.islice () for an alternate version that returns an iterator.

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.5

sorted (iterable, [cmp, [key, [reverse]]])
Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the 1ist.sort ()
method (described in section Mutable Sequence Types).

cmp specifies a custom comparison function of two arguments (iterable elements) which should return a
negative, zero or positive number depending on whether the first argument is considered smaller than, equal
to, or larger than the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower ()).The
default value is None.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch each
element only once. To convert an old-style cmp function to a key function, see the CmpToKey recipe in the
ASPN cookbook. New in version 2.4.

staticmethod (function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod formis a function decorator — see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod () in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in The
standard type hierarchy (in The Python Language Reference). New in version 2.2.Changed in version 2.4:
Function decorator syntax added.

str ([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference with repr (object) is that str (object) does not always attempt to return a
string that is acceptable to eval () ; its goal is to return a printable string. If no argument is given, returns
the empty string, ”.

For more information on strings see Sequence Types — str, unicode, list, tuple, buffer, xrange which de-
scribes sequence functionality (strings are sequences), and also the string-specific methods described in the
String Methods section. To output formatted strings use template strings or the $ operator described in the
String Formatting Operations section. In addition see the String Services section. See also unicode ().

sum (iterable, [start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The
iterable‘s items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
a sequence of strings is by calling ” . join (sequence) . Note that sum (range (n), m) is equivalent
to reduce (operator.add, range(n), m) To add floating point values with extended precision,
see math. fsum (). New in version 2.3.

super (type, [object-or-type])
Return a proxy object that delegates method calls to a parent or sibling class of rype. This is useful for

17

http://code.activestate.com/recipes/576653/
http://code.activestate.com/recipes/576653/

The Python Library Reference, Release 2.6.5

accessing inherited methods that have been overridden in a class. The search order is same as that used by
getattr () except that the type itself is skipped.

The __mro___ attribute of the fype lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type?2,
type) must be true (this is useful for classmethods).

Note: super () only works for new-style classes.

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to
refer to parent classes without naming them explicitly, thus making the code more maintainable. This use
closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that only
support single inheritance. This makes it possible to implement “diamond diagrams” where multiple base
classes implement the same method. Good design dictates that this method have the same calling signature
in every case (because the order of calls is determined at runtime, because that order adapts to changes in
the class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super (C, self) .method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that super () is not limited to use inside methods. The two argument form specifies the argu-
ments exactly and makes the appropriate references. New in version 2.2.

tuple ([iterable])

Return a tuple whose items are the same and in the same order as iferable‘s items. iterable may be a se-
quence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned
unchanged. For instance, tuple (' abc’) returns (‘a’, ’b’, ’'c’) and tuple([1, 2, 3]) re-
turns (1, 2, 3).If no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, buffer,
xrange. For other containers see the built in dict, 1ist, and set classes, and the collections
module.

type (object)

Return the type of an object. The return value is a type object. The isinstance () built-in function is
recommended for testing the type of an object.

With three arguments, t ype () functions as a constructor as detailed below.

type (name, bases, dict)

Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the __name___ attribute; the bases tuple itemizes the base classes and becomes
the _ bases___ attribute; and the dict dictionary is the namespace containing definitions for class body
and becomes the __dict___ attribute. For example, the following two statements create identical t ype
objects:

>>> class X (object):
a =1

>>> X = type(’'X’, (object,), dict(a=1l))

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.5

New in version 2.2.

unichr (i)
Return the Unicode string of one character whose Unicode code is the integer i. For example, unichr (97)
returns the string u’ a’. This is the inverse of ord () for Unicode strings. The valid range for the argu-
ment depends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF].
ValueError is raised otherwise. For ASCII and 8-bit strings see chr (). New in version 2.0.

unicode ([object, [encoding, [errors]]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode () will decode the object which can either be an 8-bit string
or a character buffer using the codec for encoding. The encoding parameter is a string giving the name of
an encoding; if the encoding is not known, LookupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encoding. If errors is
"strict’ (the default), a ValueError is raised on errors, while a value of ignore’ causes errors to
be silently ignored, and a value of replace’ causes the official Unicode replacement character, U+FFFD,
to be used to replace input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode () will mimic the behaviour of str () except that it returns
Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a __unicode__ () method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encoding in ’ strict’ mode.

For more information on Unicode strings see Sequence Types — str, unicode, list, tuple, buffer, xrange which
describes sequence functionality (Unicode strings are sequences), and also the string-specific methods de-
scribed in the String Methods section. To output formatted strings use template strings or the % operator
described in the String Formatting Operations section. In addition see the String Services section. See also
str (). New in version 2.0.Changed in version 2.2: Support for __unicode__ () added.

vars ([object])
Without an argument, act like 1ocals ().

With a module, class or class instance object as argument (or anything else that hasa___dict___ attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined.

xrange ([start], stop, [step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage of xrange () over range () is minimal (since xrange () still has
to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

CPython implementation detail: xrange () is intended to be simple and fast. Implementations may
impose restrictions to achieve this. The C implementation of Python restricts all arguments to na-
tive C longs (“short” Python integers), and also requires that the number of elements fit in a native C
long. If a larger range is needed, an alternate version can be crafted using the itertools module:
islice (count (start, step), (stop-start+step—-1)//step).

zip ([iterable, ...])
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of the argu-
ment sequences or iterables. The returned list is truncated in length to the length of the shortest argument
sequence. When there are multiple arguments which are all of the same length, zip () is similar to map ()
with an initial argument of None. With a single sequence argument, it returns a list of 1-tuples. With no
arguments, it returns an empty list.

3 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

19

The Python Library Reference, Release 2.6.5

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering
a data series into n-length groups using zip (% [iter (s)] *n).

zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>>y = [4, 5, 6]

>>> zipped = zip(x, V)

>>> zipped

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(xzipped)

>>> x == list(x2) and y == list (y2)
True

New in version 2.0.Changed in version 2.4: Formerly, zip () required at least one argument and zip ()
raised a TypeError instead of returning an empty list.

__import__ (name, [globals, [locals, [fromlist, [level]]]])

Note: This is an advanced function that is not needed in everyday Python programming.

This function is invoked by the import statement. It can be replaced (by importing the built ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of __import__ () israre,
except in cases where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should
be imported from the module given by name. The standard implementation does not use its locals argument
at all, and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. The default is —1 which indicates both abso-
lute and relative imports will be attempted. 0 means only perform absolute imports. Positive values for
level indicate the number of parent directories to search relative to the directory of the module calling
__import__ ().

When the name variable is of the form package .module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:
spam = ___import__ (’spam’, globals (), locals(), [1, -1)

The statement import spam.ham results in this call:

spam = __import__ (’spam.ham’, globals (), locals(), []1, -1)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a
name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ (’spam.ham’, globals (), locals(), [’'eggs’, ’'sausage’],
eggs = _temp.eggs

saus = _temp.sausage

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are

retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can call
__import__ () andthenlookitupin sys.modules:

20

Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.5

>>> import sys

>>> name = ’'foo.bar.baz’

>>> _ import__ (name)

<module ’foo’ from ...>

>>> baz = sys.modules|[name]

>>> baz

<module ’foo.bar.baz’ from ...>

Changed in version 2.5: The level parameter was added.Changed in version 2.5: Keyword support for
parameters was added.

21

The Python Library Reference, Release 2.6.5

22 Chapter 2. Built-in Functions

CHAPTER
THREE

NON-ESSENTIAL BUILT-IN
FUNCTIONS

There are several built-in functions that are no longer essential to learn, know or use in modern Python program-
ming. They have been kept here to maintain backwards compatibility with programs written for older versions of
Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without con-
cerns about missing something important.

apply (function, args, [keywords])

The function argument must be a callable object (a user-defined or built-in function or method, or a class
object) and the args argument must be a sequence. The function is called with args as the argument list; the
number of arguments is the length of the tuple. If the optional keywords argument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument
list. Calling apply () is different from just calling function (args), since in that case there is always
exactly one argument. The use of apply () isequivalentto function (xargs, =*xkeywords). Dep-
recated since version 2.3: Use the extended call syntax with xargs and «xkeywords instead.

buffer (object, [offset, [size]])
The object argument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which references the object argument. The buffer object will
be a slice from the beginning of object (or from the specified offset). The slice will extend to the end of
object (or will have a length given by the size argument).

coerce (x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations. If coercion is not possible, raise TypeError.

intern (string)

Enter string in the table of “interned” strings and return the interned string — which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return value of intern () around to benefit from it.

23

The Python Library Reference, Release 2.6.5

24 Chapter 3. Non-essential Built-in Functions

CHAPTER
FOUR

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. New in version 2.3.

True
The true value of the bool type. New in version 2.3.

None
The sole value of types.NoneType. None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function. Changed in version 2.4: Assignments to None are
illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__ (),
and friends), to indicate that the comparison is not implemented with respect to the other type.

1t (),

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug___
This constant is true if Python was not started with an —O option. Assignments to ___debug___ are illegal
and raise a SyntaxError. See also the assert statement.

4.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and
should not be used in programs.
quit
exit
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemExit with the specified exit code.

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

25

The Python Library Reference, Release 2.6.5

26 Chapter 4. Built-in Constants

CHAPTER
FIVE

BUILT-IN OBJECTS

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See Summary
(in The Python Language Reference) for the complete picture on operator priorities.

27

The Python Library Reference, Release 2.6.5

28 Chapter 5. Built-in Objects

CHAPTER
SIX

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python’s built-in types have differed from user-defined types because it was
not possible to use the built-in types as the basis for object-oriented inheritance. This limitation no longer exists.

The principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions. Some
operations are supported by several object types; in particular, practically all objects can be compared, tested for
truth value, and converted to a string (with the repr () function or the slightly different st r () function). The
latter function is implicitly used when an object is written by the print () function.

6.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

* None

* False

* zero of any numeric type, for example, 0, 0L, 0.0, 07.
* any empty sequence, for example, ”, (), [].

e any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class defines a __nonzero__ () or__len__ () method, when
that method returns the integer zero or boo1 value False. !

All other values are considered true — so objects of many types are always true. Operations and built-in functions
that have a Boolean result always return 0 or False for false and 1 or True for true, unless otherwise stated.
(Important exception: the Boolean operations or and and always return one of their operands.)

6.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes

X Or y if x is false, then y, else x (1)

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.

! Additional information on these special methods may be found in the Python Reference Manual (Basic customization (in The Python
Language Reference)).

29

The Python Library Reference, Release 2.6.5

2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == b isinterpreted as not (a == b),
and a == not Db is a syntax error.

6.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x
< y and y <= gz,exceptthaty is evaluated only once (but in both cases z is not evaluated at all when x < y
is found to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal (1)
is object identity
is not negated object identity
Notes:
1. !'= can also be written <>, but this is an obsolete usage kept for backwards compatibility only. New code

should always use !=.

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently. The <, <=, >
and >= operators will raise a TypeError exception when any operand is a complex number. Instances of a class
normally compare as non-equal unless the class defines the ___cmp___ () method. Refer to Basic customization
(in The Python Language Reference)) for information on the use of this method to effect object comparisons.

CPython implementation detail: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by their address. Two more operations
with the same syntactic priority, in and not in, are supported only by sequence types (below).

6.4 Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex numbers.
In addition, Booleans are a subtype of plain integers. Plain integers (also just called infegers) are implemented
using long in C, which gives them at least 32 bits of precision (sys.maxint is always set to the maximum
plain integer value for the current platform, the minimum value is —sys.maxint - 1). Long integers have
unlimited precision. Floating point numbers are implemented using double in C. All bets on their precision are
off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are each implemented using double in C. To extract
these parts from a complex number z, use z . real and z.imag. Numbers are created by numeric literals or as
the result of built-in functions and operators. Unadorned integer literals (including binary, hex, and octal numbers)
yield plain integers unless the value they denote is too large to be represented as a plain integer, in which case they
yield a long integer. Integer literals with an “ I.” or ’ 1’ suffix yield long integers (’ L” is preferred because 11
looks too much like eleven!). Numeric literals containing a decimal point or an exponent sign yield floating point
numbers. Appending ’ j’ or / J’ to a numeric literal yields a complex number with a zero real part. A complex
numeric literal is the sum of a real and an imaginary part. Python fully supports mixed arithmetic: when a binary
arithmetic operator has operands of different numeric types, the operand with the “narrower” type is widened to

30 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

that of the other, where plain integer is narrower than long integer is narrower than floating point is narrower than
complex. Comparisons between numbers of mixed type use the same rule. > The constructors int (), long (),
float (), and complex () can be used to produce numbers of a specific type.

All built-in numeric types support the following operations. See The power operator (in The Python Language
Reference) and later sections for the operators’ priorities.

Operation Result Notes

X + vy sum of x and y

X -y difference of x and y

X *x v product of x and y

x /y quotient of x and y €Y

x //y (floored) quotient of x and y @(5)

X %y remainder of x / y @)

-X X negated

+x x unchanged

abs (x) absolute value or magnitude of x 3)

int (x) x converted to integer 2)

long (x) x converted to long integer)

float (x) x converted to floating point (6)

complex (re,im) | acomplex number with real part re, imaginary part im. im defaults to zero.

c.conjugate () conjugate of the complex number c. (Identity on real numbers)

divmod (%, y) the pair (x // y, x % V) 3)4)

pow (x, V) X to the power y 3)7)

X k*k Y X to the power y @)
Notes:

1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

2. Conversion from floats using int () or long () truncates toward zero like the related function,
math.trunc (). Use the function math.floor () to round downward and math.ceil () to round
upward.

3. See Built-in Functions for a full description.

4. Complex floor division operator, modulo operator, and divmod (). Deprecated since version 2.3: Instead
convert to float using abs () if appropriate.

5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

6. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity. New in version 2.6.

7. Python defines pow (0, 0) and 0 % O tobe 1, as is common for programming languages.

All numbers.Real types (int, long, and £1oat) also include the following operations:

Operation Result Notes
math.trunc (x) | x truncated to Integral

round(x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >= x

6.4.1 Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

6.4. Numeric Types — int, float, long, complex 31

The Python Library Reference, Release 2.6.5

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bit-string operations sorted in ascending priority:

Operation Result Notes
x |y bitwise or of x and y
x Ny bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits (H©2)
X >> n x shifted right by n bits (HA3)
~X the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.

2. A left shift by n bits is equivalent to multiplication by pow (2, n). A long integer is returned if the result
exceeds the range of plain integers.

3. A right shift by n bits is equivalent to division by pow (2, n).

6.4.2 Additional Methods on Float

The float type has some additional methods.

as_integer_ratio ()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs. New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful
when debugging, and in numerical work.

hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent. New in version 2.6.

fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace. New in version 2.6.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.
A hexadecimal string takes the form:
[sign] [’0x’] integer [’.’ fraction] [’'p’ exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits,
and exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at
least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in
section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output
of float.hex () is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings
produced by C’s $a format character or Java’s Double.toHexString are accepted by float . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number
(3 + 10./16 + 7./16%%x2) * 2.0x%10,0r 3740.0:

>>> float.fromhex (' 0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

32 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

>>> float.hex (3740.0)
"0x1.d380000000000p+11"

6.5 lterator Types

New in version 2.2. Python supports a concept of iteration over containers. This is implemented using two distinct
methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more
detail, always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter_ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp_iter slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

__iter ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for and in statements. This method corresponds to the tp_iter slot of the type structure for Python
objects in the Python/C APIL.

next ()
Return the next item from the container. If there are no further items, raise the St opIterat ion exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator’s next () method raises StopIteration, it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

6.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the __iter__ () and next () methods. More information about generators can be
found in the documentation for the yield expression (in The Python Language Reference).

6.6 Sequence Types — str, unicode, list, tuple, buffer,
xXrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

For other containers see the built in dict and set classes, and the collections module. String literals
are written in single or double quotes: ' xyzzy’, "frobozz". See String literals (in The Python Language
Reference) for more about string literals. Unicode strings are much like strings, but are specified in the syntax
using a preceding ’ u’ character: u’ abc’, u"def". In addition to the functionality described here, there are
also string-specific methods described in the String Methods section. Lists are constructed with square brackets,
separating items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within square

6.5. Iterator Types 33

The Python Library Reference, Release 2.6.5

brackets), with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as
a, b, cor (). Asingle item tuple must have a trailing comma, such as (d,).

Buffer objects are not directly supported by Python syntax, but can be created by calling the built-in function
buffer (). They don’t support concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are created
using the xrange () function. They don’t support slicing, concatenation or repetition, and using in, not in,
min () ormax () on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities
as the comparison operations. The + and » operations have the same priority as the corresponding numeric
operations. * Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the table, s and ¢ are sequences of the same type; n, i and j are integers:

Operation Result Notes
X in s True if an item of s is equal to x, else False | (1)

x not in s False if an item of s is equal to x, else True | (1)

s + t the concatenation of s and ¢ (6)

s * n, n * s | nshallow copies of s concatenated 2)
s[i] i‘th item of s, origin 0 3)
s[i:7] slice of s from i to j 3)4)
s[i:j:k] slice of s from i to j with step k 3)5)
len(s) length of s

min(s) smallest item of s

max (s) largest item of s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by com-
paring corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see Comparisons (in The Python
Language Reference) in the language reference.) Notes:

1. When s is a string or Unicode string object the in and not in operations act like a substring test. In
Python versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a string of
any length.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]1] = 3
>>> lists

(er, 1, 11

>>> 1lists[0].append(3)
>>> lists

(31, 31, [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[1]1 * 3 are(pointers to) this single empty list. Modifying any of the elements of 11ists modifies this
single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> lists[1l].append(5)

>>> lists([2].append(7)

>>> lists

(31, 51, (711

3. If i or j is negative, the index is relative to the end of the string: len (s) + iorlen(s) + jis substi-
tuted. But note that —0 is still 0.

3 They must have since the parser can’t tell the type of the operands.

34 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

4. The slice of s from i to j is defined as the sequence of items with index k suchthat 1 <= k < j.Ifiorjis
greater than 1len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s).
If i is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step k is defined as the sequence of items with index x = i1 + nxk such
that 0 <= n < (j-1i)/k. In other words, the indices are i, i+k, i+2+k, 1+3+k and so on, stopping
when j is reached (but never including j). If i or j is greater than len (s),use len (s). If i or j are omitted
or None, they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is
None, it is treated like 1.

6. CPython implementation detail: If s and 7 are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of the forms = s + tors += t. When
applicable, this optimization makes quadratic run-time much less likely. This optimization is both version
and implementation dependent. For performance sensitive code, it is preferable to use the str. join ()
method which assures consistent linear concatenation performance across versions and implementations.
Changed in version 2.4: Formerly, string concatenation never occurred in-place.

6.6.1 String Methods

Below are listed the string methods which both 8-bit strings and Unicode objects support. Note that none of these
methods take keyword arguments.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, unicode,
list, tuple, buffer, xrange section. To output formatted strings use template strings or the % operator described in the
String Formatting Operations section. Also, see the re module for string functions based on regular expressions.

capitalize ()
Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

center (width, [fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is a space).
Changed in version 2.4: Support for the fillchar argument.

count (sub, [start, [end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

decode ([encoding, [errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string encoding.
errors may be given to set a different error handling scheme. The default is " strict’, meaning that
encoding errors raise UnicodeError. Other possible values are ’ ignore’, ' replace’ and any other
name registered via codecs.register_error (), see section Codec Base Classes. New in version
2.2.Changed in version 2.3: Support for other error handling schemes added.

encode ([encoding, [errors]])

Return an encoded version of the string. Default encoding is the current default string encoding. er-
rors may be given to set a different error handling scheme. The default for errors is ' strict’,
meaning that encoding errors raise a UnicodeError. Other possible values are ’ignore’,
"replace’, 'xmlcharrefreplace’, "backslashreplace’ and any other name registered
via codecs.register_error (), see section Codec Base Classes. For a list of possible en-
codings, see section Standard Encodings. New in version 2.0.Changed in version 2.3: Support for
"xmlcharrefreplace’ and ' backslashreplace’ and other error handling schemes added.

endswith (suffix, [start, [end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing
at that position. Changed in version 2.5: Accept tuples as suffix.

expandtabs ([rabsize])
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. The column number is reset to zero after each newline occurring

6.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 35

The Python Library Reference, Release 2.6.5

in the string. If tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other
non-printing characters or escape sequences.

£ind (sub, [start, [end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the range
[start, end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

format (*args, **kwargs)
Perform a string formatting operation. The format_string argument can contain literal text or replacement
fields delimited by braces {}. Each replacement field contains either the numeric index of a positional
argument, or the name of a keyword argument. Returns a copy of format_string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format (1+2)
"The sum of 1 + 2 is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

This method of string formatting is the new standard in Python 3.0, and should be preferred to the % format-
ting described in String Formatting Operations in new code. New in version 2.6.

index (sub, [start, [end]])
Like find (), but raise ValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

36 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

join (iterable)
Return a string which is the concatenation of the strings in the iterable iterable. The separator between
elements is the string providing this method.

1just (width, [fillchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than len (s). Changed in version 2.4: Support
for the fillchar argument.

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

1strip ([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " .lstrip()

" spacious !

>>> 'www.example.com’ .1lstrip (/ cmowz.’)
"example.com’

Changed in version 2.2.2: Support for the chars argument.

partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings. New in version 2.5.

replace (o0ld, new, [count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

rfind (sub, [start, [end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start,end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

rindex (sub, [start, [end]])
Like rfind () butraises ValueError when the substring sub is not found.

rjust (width, [fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than len (s). Changed in version 2.4:
Support for the fillchar argument.

rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself. New in version 2.5.

rsplit ([sep, [maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator.
Except for splitting from the right, rsplit () behaves like split () which is described in detail below.
New in version 2.4.

rstrip ([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a suffix; rather, all combinations of its values are stripped:

6.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 37

The Python Library Reference, Release 2.6.5

>>> spacious ".rstrip()

! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
"mississ’

Changed in version 2.2.2: Support for the chars argument.

split ([sep, [maxsplit]])

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then
there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, ' 1,2’ .split (’,’) returns ["17, ", ’2’1]). The sep argument may consist of multiple
characters (for example, ’ 1<>2<>37 .split (/<>") returns [' 17, ’2’, ’3’1]). Splitting an empty
string with a specified separator returns [”].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the string
has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just
whitespace with a None separator returns [].

For example, ” 1 2 3 ’.split () returns ["1’, "2’, '3’],and’ 1 2 3 ’.split (None,
1) returns (717, "2 3 '].

splitlines ([keepends])

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

startswith (prefix, [start, [end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes
to look for. With optional start, test string beginning at that position. With optional end, stop comparing
string at that position. Changed in version 2.5: Accept tuples as prefix.

strip ([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> 7 spacious ".strip()

" spacious’

>>> 'www.example.com’ .strip(’ cmowz.’)
"example’

Changed in version 2.2.2: Support for the chars argument.

swapcase ()

Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

title()

Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives form
word boundaries, which may not be the desired result:

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

38

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za-z]+
lambda mo: mo.group (0) [0] .upper () +
mo.group (0) [1:].lower (),

)",

s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

For 8-bit strings, this method is locale-dependent.

translate (table, [deletechars])
Return a copy of the string where all characters occurring in the optional argument deletechars are removed,
and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

You can use the maketrans () helper function in the st ring module to create a translation table. For
string objects, set the fable argument to None for translations that only delete characters:

>>> ’"read this short text’ .translate (None, ’'aeiou’)
"rd ths shrt txt’

New in version 2.6: Support for a None table argument. For Unicode objects, the t ranslate () method
does not accept the optional deletechars argument. Instead, it returns a copy of the s where all characters
have been mapped through the given translation table which must be a mapping of Unicode ordinals to
Unicode ordinals, Unicode strings or None. Unmapped characters are left untouched. Characters mapped
to None are deleted. Note, a more flexible approach is to create a custom character mapping codec using
the codecs module (see encodings.cpl251 for an example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

zf£ill (width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than len (s). New in version 2.2.2.

The following methods are present only on unicode objects:

isnumeric()
Return True if there are only numeric characters in S, False otherwise. Numeric characters include
digit characters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR
FRACTION ONE FIFTH.

isdecimal ()
Return True if there are only decimal characters in S, False otherwise. Decimal characters include digit
characters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO.

6.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also known as
the string formatting or interpolation operator. Given format % values (where format is a string or Unicode
object), $ conversion specifications in format are replaced with zero or more elements of values. The effect is
similar to the using sprintf () in the C language. If format is a Unicode object, or if any of the objects being
converted using the $s conversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argument, values may be a single non-tuple object. * Otherwise, values must be a

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

6.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 39

The Python Library Reference, Release 2.6.5

tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The ’ %’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ’ =’ (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as a * .’ (dot) followed by the precision. If specified as * «’ (an asterisk), the
actual width is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the ’ $’ character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print ' has % (#)03d quote types.’ % \
c. {” language’: "Python", "#": 2}
Python has 002 quote types.

In this case no specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
T The value conversion will use the “alternate form” (where defined below).
"o’ The conversion will be zero padded for numeric values.

r=r The converted value is left adjusted (overrides the / 0’ conversion if both are given).
rs (a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

r 4 A sign character (“ +/ or ' -) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is
identical to $d.

The conversion types are:

40 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

Con- Meaning Notes
version
rd’ Signed integer decimal.

rir Signed integer decimal.

"o’ Signed octal value. €))]

ru’ Obsolete type — it is identical to " d’ . @)

rx’ Signed hexadecimal (lowercase). 2)

rxX’ Signed hexadecimal (uppercase).)

re’ Floating point exponential format (lowercase). 3)

"B’ Floating point exponential format (uppercase). 3)

i Floating point decimal format. 3)

"F’ Floating point decimal format. 3)

"g’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

rc’ Single character (accepts integer or single character string).

o String (converts any Python object using repr ()). (5)

's’ String (converts any Python object using st ()). 6)

' e’ No argument is converted, results in a * %’ character in the result.

Notes:

1. The alternate form causes a leading zero (* 0’) to be inserted between left-hand padding and the formatting
of the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ’ 0x’ or ' 0X’ (depending on whether the ’ x’ or ' X’ format was
used) to be inserted between left-hand padding and the formatting of the number if the leading character of
the result is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed

as they would otherwise be.
The precision determines the number of significant digits before and after the decimal point and defaults to
6.
5. The %r conversion was added in Python 2.0.
The precision determines the maximal number of characters used.
6. If the object or format provided is a unicode string, the resulting string will also be unicode.
The precision determines the maximal number of characters used.

7. See PEP 237.

Since Python strings have an explicit length, %s conversions do not assume that ” \ 0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50; % £ conversions for numbers whose absolute value
is over 1e50 are replaced by $g conversions. > All other errors raise exceptions. Additional string operations are
defined in standard modules st ring and re.

6.6.3 XRange Type

The x

range type is an immutable sequence which is commonly used for looping. The advantage of the xrange

type is that an xrange object will always take the same amount of memory, no matter the size of the range it
represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and the 1en () function.

5 These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

6.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 41

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.6.5

6.6.4 Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
quence types: such objects cannot be modified once created. The following operations are defined on mutable

sequence types (where x is an arbitrary object):

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] = t slice of s from i to j is replaced by the contents of the

iterable ¢
del s[i:7] sameas s[i:3] = []
s[i:j:k] =t the elements of s [1: j:k] are replaced by those of | (1)

t
del s[i:j:k] removes the elements of s [1: j:k] from the list
s.append (x) sameas s[len(s) :len(s)] = [x] 2)
s.extend (x) sameas s[len(s):len(s)] = x 3)
s.count (x) return number of i‘s for which s [i] == x
s.index (x[, 1[, 3J11) return smallest k such that s [k] == xandi <= 4

k < 3
s.insert (i, x) sameas s[i:1] = [x] 5)
s.pop([il) sameas x = s[i]; del s[i]; return x (6)
S.remove (X) same as del s[s.index (x)] “4)
s.reverse () reverses the items of s in place @)
s.sort ([cmp[, keyl, sort the items of s in place (7 (8)(9)(10
reversel]l])

Notes:

1.
2.

t must have the same length as the slice it is replacing.

The C implementation of Python has historically accepted multiple parameters and implicitly joined them
into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python
1.4.

. x can be any iterable object.

Raises ValueError when x is not found in s. When a negative index is passed as the second or third
parameter to the index () method, the list length is added, as for slice indices. If it is still negative, it is
truncated to zero, as for slice indices. Changed in version 2.3: Previously, index () didn’t have arguments
for specifying start and stop positions.

. When a negative index is passed as the first parameter to the insert () method, the list length is added,

as for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

The pop () method is only supported by the list and array types. The optional argument i defaults to -1,
so that by default the last item is removed and returned.

The sort () and reverse () methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

The sort () method takes optional arguments for controlling the comparisons.

cmp specifies a custom comparison function of two arguments (list items) which should return a negative,
zero or positive number depending on whether the first argument is considered smaller than, equal to,
or larger than the second argument: cmp=lambda x,y: cmp(x.lower(), The
default value is None.

y.lower ()).

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

42

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch
each element only once. Changed in version 2.3: Support for None as an equivalent to omitting cmp was
added.Changed in version 2.4: Support for key and reverse was added.

9. Starting with Python 2.3, the sort () method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes
(for example, sort by department, then by salary grade).

10. CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python 2.3 and newer makes the list appear empty
for the duration, and raises Va lueError if it can detect that the list has been mutated during a sort.

6.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, dif-
ference, and symmetric difference. (For other containers see the built in dict, 1ist, and tuple classes, and
the collections module.) New in version 2.4. Like other collections, sets support x in set, len (set),
and for x in set. Being an unordered collection, sets do not record element position or order of insertion.
Accordingly, sets do not support indexing, slicing, or other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can
be changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be
used as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable
— its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of
another set.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified,
a new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the cardinality of set s.

X in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set. New in version 2.6.

issubset (other)
set <= other ()
Test whether every element in the set is in other.

set < other ()
Test whether the set is a true subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other ()
Test whether every element in other is in the set.

6.7. Set Types — set, frozenset 43

The Python Library Reference, Release 2.6.5

set > other ()
Test whether the set is a true superset of other, thatis, set >= other and set != other.

union (other; ...)

set | other | ... ()
Return a new set with elements from the set and all others. Changed in version 2.6: Accepts multiple
input iterables.

intersection (other, ...)

set & other & ... ()
Return a new set with elements common to the set and all others. Changed in version 2.6: Accepts
multiple input iterables.

difference (other ...)

set - other - ... ()
Return a new set with elements in the set that are not in the others. Changed in version 2.6: Accepts
multiple input iterables.

symmetric_difference (other)
set * other ()
Return a new set with elements in either the set or other but not both.

copy ()
Return a new set with a shallow copy of s.

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any it-
erable as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set ("abc’) & ’cbs’ in favor of the more readable
set ("abc’) .intersection (' cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only
if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another
set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set (’abc’) == frozenset (’abc’) returns True and so does set ("abc’) in
set ([frozenset ("abc’)]).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any
two disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b,
a==b, or a>b. Accordingly, sets do not implement the __cmp___ () method.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with f rozenset return the type of the first operand. For exam-
ple: frozenset (“ab’) | set (’bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update (other; ...)

set |= other | ... ()
Update the set, adding elements from all others. Changed in version 2.6: Accepts multiple input
iterables.

intersection_update (other, ...)

set &= other & ... ()
Update the set, keeping only elements found in it and all others. Changed in version 2.6: Accepts
multiple input iterables.

difference_update (other ...)

44

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

set —= other | ... ()
Update the set, removing elements found in others. Changed in version 2.6: Accepts multiple input
iterables.

symmetric_difference_update (other)
set ~= other()
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept
any iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a
set. To support searching for an equivalent frozenset, the elem set is temporarily mutated during the search
and then restored. During the search, the elem set should not be read or mutated since it does not have a
meaningful value.

See Also:

Comparison to the built-in set types Differences between the set s module and the built-in set types.

6.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, the dictionary. (For other containers see the built in 1ist, set, and tuple
classes, and the col lections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as
keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry. (Note however,
that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary
keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for ex-
ample: {’ jack’: 4098, ’'sjoerd’: 4127}or {4098: 'Jack’, 4127: ’sjoerd’},orby
the dict constructor.

class dict ([arg])

Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument arg is a
mapping object, return a dictionary mapping the same keys to the same values as does the mapping object.
Otherwise the positional argument must be a sequence, a container that supports iteration, or an iterator
object. The elements of the argument must each also be of one of those kinds, and each must in turn contain
exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a
given key is seen more than once, the last value associated with it is retained in the new dictionary.

6.8. Mapping Types — dict 45

The Python Library Reference, Release 2.6.5

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one": 2, "two": 3}:

edict (one=2, two=3)

edict ({’one’: 2, 'two’: 3})

edict (zip(('one’, ’"two’), (2, 3)))

edict ([["two’, 3], ['one’, 2]11])

The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
New in version 2.2.Changed in version 2.3: Support for building a dictionary from keyword arguments
added. These are the operations that dictionaries support (and therefore, custom mapping types should
support too):

len(d)
Return the number of items in the dictionary d.

d[key]

Return the item of d with key key. Raises a KeyError if key is not in the map. New in version 2.5:
If a subclass of dict defines a method __missing__ (), if the key key is not present, the d [key]
operation calls that method with the key key as argument. The d [key] operation then returns or raises
whatever is returned or raised by the __missing__ (key) call if the key is not present. No other
operations or methods invoke __missing__ (). If __missing__ () is not defined, KeyError
israised. __missing__ () must be a method; it cannot be an instance variable. For an example, see
collections.defaultdict.

d[key] = value
Set d [key] to value.

del d[key]
Remove d [key] from d. Raises a KeyError if key is not in the map.
key in d
Return True if d has a key key, else False. New in version 2.2.
key not in d
Equivalent to not key in d. New in version 2.2.
iter (d)
Return an iterator over the keys of the dictionary. This is a shortcut for iterkeys ().

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

fromkeys (seq, [value])
Create a new dictionary with keys from seq and values set to value.

fromkeys () is aclass method that returns a new dictionary. value defaults to None. New in version
2.3.

get (key, [default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to
None, so that this method never raises a KeyError.

has_key (key)
Test for the presence of key in the dictionary. has_key () is deprecated in favor of key in d.

items ()
Return a copy of the dictionary’s list of (key, wvalue) pairs.

46

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

CPython implementation detail: Keys and values are listed in an arbitrary order which is non-
random, varies across Python implementations, and depends on the dictionary’s history of insertions
and deletions.

If items (), keys (), values (), iteritems (), iterkeys (), and itervalues () are
called with no intervening modifications to the dictionary, the lists will directly correspond. This
allows the creation of (value, key) pairs using zip (): pairs = zip(d.values(),
d.keys ()). The same relationship holds for the iterkeys () and itervalues () meth-
ods: pairs = zip(d.itervalues (), d.iterkeys()) provides the same value for
pairs. Another way to create the same list is pairs = [(v, k) for (k, v) in
d.iteritems ()].

iteritems ()
Return an iterator over the dictionary’s (key, wvalue) pairs. See the note for dict.items ().

Using iteritems () while adding or deleting entries in the dictionary may raise a RuntimeError
or fail to iterate over all entries. New in version 2.2.

iterkeys ()
Return an iterator over the dictionary’s keys. See the note for dict.items ().

Using iterkeys () while adding or deleting entries in the dictionary may raise a Runt imeError
or fail to iterate over all entries. New in version 2.2.

itervalues ()
Return an iterator over the dictionary’s values. See the note for dict.items ().

Using itervalues () while adding or deleting entries in the dictionary may raise a
RuntimeError or fail to iterate over all entries. New in version 2.2.

keys ()
Return a copy of the dictionary’s list of keys. See the note for dict.items ().

pop (key, [default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised. New in version 2.3.

popitem/()
Remove and return an arbitrary (key, wvalue) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

setdefault (key, [default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as a tuple or other
iterable of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2). Changed in version 2.4: Allowed the argument to
be an iterable of key/value pairs and allowed keyword arguments.

values ()
Return a copy of the dictionary’s list of values. See the note for dict.items ().

6.9 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in open () func-
tion. File objects are also returned by some other built-in functions and methods, such as os.popen () and
os.fdopen () and the makefile () method of socket objects. Temporary files can be created using the

6.9. File Objects 47

The Python Library Reference, Release 2.6.5

tempfile module, and high-level file operations such as copying, moving, and deleting files and directories can
be achieved with the shut i1 module.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes situations
where the operation is not defined for some reason, like seek () on a tty device or writing a file opened for
reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the
file be open will raise a ValueError after the file has been closed. Calling close () more than once is
allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you use the with statement. For
example, the following code will automatically close f when the with block is exited:

from _ future__ import with_statement # This isn’t required in Python 2.

with open("hello.txt") as f:
for line in f:
print line

In older versions of Python, you would have needed to do this to get the same effect:

f = open("hello.txt")
try:
for line in f:
print line
finally:
f.close ()

Note: Not all “file-like” types in Python support use as a context manager for the with statement. If your
code is intended to work with any file-like object, you can use the function contextlib.closing ()
instead of using the object directly.

flush ()
Flush the internal buffer, like stdio‘s ££1ush (). This may be a no-op on some file-like objects.

Note: flush () does not necessarily write the file’s data to disk. Use flush () followed by
os.fsync () to ensure this behavior.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations
from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such
as the fcnt 1 module or os . read () and friends.

Note: File-like objects which do not have a real file descriptor should not provide this method!

isatty ()
Return True if the file is connected to a tty(-like) device, else False.

Note: If a file-like object is not associated with a real file, this method should not be implemented.

next ()

A file object is its own iterator, for example iter (f) returns f (unless f is closed). When a file is used
as an iterator, typically in a for loop (for example, for line in f: print line),the next ()
method is called repeatedly. This method returns the next input line, or raises St opIteration when EOF
is hit when the file is open for reading (behavior is undefined when the file is open for writing). In order
to make a for loop the most efficient way of looping over the lines of a file (a very common operation),
the next () method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer,
combining next () with other file methods (like readline ()) does not work right. However, using
seek () to reposition the file to an absolute position will flush the read-ahead buffer. New in version 2.3.

48 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

read ([size])
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the size
argument is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object.
An empty string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes
sense to continue reading after an EOF is hit.) Note that this method may call the underlying C function
fread () more than once in an effort to acquire as close to size bytes as possible. Also note that when in
non-blocking mode, less data than was requested may be returned, even if no size parameter was given.

Note: This function is simply a wrapper for the underlying fread () C function, and will behave the
same in corner cases, such as whether the EOF value is cached.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete line). © If the size argument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is returned
only when EOF is encountered immediately.

Note: Unlike stdio‘s fgets (), the returned string contains null characters (* \ 0’) if they occurred in
the input.

readlines ([sizehint])
Read until EOF using readline () and return a list containing the lines thus read. If the optional sizehint
argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (pos-
sibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may
choose to ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thing as iter (£). New in version 2.1.Deprecated since version 2.3: Use
for line in file instead.

seek (offset, [whence])
Set the file’s current position, like stdio‘s fseek (). The whence argument is optional and defaults to
os.SEEK_SET or 0 (absolute file positioning); other values are os . SEEK_CUR or 1 (seek relative to the
current position) and os . SEEK_END or 2 (seek relative to the file’s end). There is no return value.

For example, f.seek (2, os.SEEK_CUR) advances the position by two and f.seek (-3,
os.SEEK_END) sets the position to the third to last.

Note that if the file is opened for appending (mode ’ a’ or " a+’), any seek () operations will be undone
at the next write. If the file is only opened for writing in append mode (mode ’ a’), this method is essentially
a no-op, but it remains useful for files opened in append mode with reading enabled (mode ’ a+"). If the
file is opened in text mode (without ’ b’), only offsets returned by tel1l () are legal. Use of other offsets
causes undefined behavior.

Note that not all file objects are seekable. Changed in version 2.6: Passing float values as offset has been
deprecated.

tell ()
Return the file’s current position, like stdio‘s ftell ().

Note: On Windows, tell () can return illegal values (after an fgets ()) when reading files with Unix-
style line-endings. Use binary mode (' rb”) to circumvent this problem.

truncate ([size])
Truncate the file’s size. If the optional size argument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined
new content. Availability: Windows, many Unix variants.

6 The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in
cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a
file ended in a newline or not (yes this happens!).

6.9. File Objects 49

The Python Library Reference, Release 2.6.5

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in
the file until the £1ush () or close () method is called.

writelines (sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a
list of strings. There is no return value. (The name is intended to match readlines ();writelines ()
does not add line separators.)

Files support the iterator protocol. Each iteration returns the same result as file.readline (), and iteration
ends when the readline () method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but
should be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attribute; the close () method
changes the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte
strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the
encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured
the terminal). The attribute is read-only and may not be present on all file-like objects. It may also be None,
in which case the file uses the system default encoding for converting Unicode strings. New in version 2.3.

errors
The Unicode error handler used along with the encoding. New in version 2.6.

mode
The I/O mode for the file. If the file was created using the open () built-in function, this will be the value
of the mode parameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created using open (), the name of the file. Otherwise, some string that indicates the
source of the file object, of the form <. ..>. This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the ——with-universal-newlines option to configure (the default) this
read-only attribute exists, and for files opened in universal newline read mode it keeps track of the types
of newlines encountered while reading the file. The values it can take are ' \r’, "\n’, " \r\n’, None
(unknown, no newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple
newline conventions were encountered. For files not opened in universal newline read mode the value of
this attribute will be None.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the
print statement. Classes that are trying to simulate a file object should also have a writable softspace
attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types implemented in C will have to provide
a writable soft space attribute.

Note: This attribute is not used to control the print statement, but to allow the implementation of print
to keep track of its internal state.

6.10 Context Manager Types

New in version 2.5. Python’s with statement supports the concept of a runtime context defined by a context
manager. This is implemented using two separate methods that allow user-defined classes to define a runtime
context that is entered before the statement body is executed and exited when the statement ends.

50 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

The context management protocol consists of a pair of methods that need to be provided for a context manager
object to define a runtime context:

__enter_ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this
context manager.

An example of a context manager that returns itself is a file object. File objects return themselves from
__enter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext (). These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context
in the body of the with statement without affecting code outside the with statement.

__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be
suppressed. If an exception occurred while executing the body of the with statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and
continue execution with the statement immediately following the with statement. Otherwise the exception
continues propagating after this method has finished executing. Exceptions that occur during execution of
this method will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception.
This allows context management code (such as contextlib.nested) to easily detect whether or not an
__exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated
specially beyond their implementation of the context management protocol. See the context1ib module for
some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to imple-
ment these protocols. If a generator function is decorated with the contextlib.contextmanager decorator,
it will return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather
than the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

6.11 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

6.11.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a
name defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not,
strictly speaking, an operation on a module object; import foo does not require a module object named foo to
exist, rather it requires an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the __dict___
attribute is not possible (you can writem.__dict__["a’] = 1,whichdefinesm.a tobe 1, butyou can’t write
m.__dict__ = {}). Modifying___dict__ directly is not recommended.

6.11. Other Built-in Types 51

The Python Library Reference, Release 2.6.5

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. Ifloaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>.

6.11.2 Classes and Class Instances

See Objects, values and types (in The Python Language Reference) and Class definitions (in The Python Language
Reference) for these.

6.11.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

See Function definitions (in The Python Language Reference) for more information.

6.11.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the object

on which the method operates, and m. im_func is the function implementing the method. Calling m (arg-1,

arg-2, ..., arg-n) iscompletely equivalentto callingm. im_func (m.im_self, arg-1, arg-2,
., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed through an
instance or a class, respectively. When a method is unbound, its im_se1f attribute will be None and if called, an
explicit self object must be passed as the first argument. In this case, self must be an instance of the unbound
method’s class (or a subclass of that class), otherwise a TypeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth . im_func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute results in a TypeError being raised. In
order to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

c = C()
c.method.im_func.whoami = 'my name is c’

See The standard type hierarchy (in The Python Language Reference) for more information.

6.11.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compi le () function and can be extracted from function
objects through their func_code attribute. See also the code module. A code object can be executed or
evaluated by passing it (instead of a source string) to the exec statement or the built-in eval () function.

See The standard type hierarchy (in The Python Language Reference) for more information.

52 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.5

6.11.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type ().
There are no special operations on types. The standard module types defines names for all standard built-in

types.

Types are written like this: <type ’int’>.

6.11.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

It is written as None.

6.11.8 The Ellipsis Object

This object is used by extended slice notation (see Slicings (in The Python Language Reference)). It supports no
special operations. There is exactly one ellipsis object, named E111ipsis (a built-in name).

Itis writtenas E11ipsis.

6.11.9 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers O and 1, respectively. The built-in function bool () can be
used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above). They are written as False and True, respectively.

6.11.10 Internal Objects

See The standard type hierarchy (in The Python Language Reference) for this information. It describes stack
frame objects, traceback objects, and slice objects.

6.12 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by the dir () built-in function.

__dict___
A dictionary or other mapping object used to store an object’s (writable) attributes.

_ _methods_
Deprecated since version 2.2: Use the built-in function dir () to get a list of an object’s attributes. This
attribute is no longer available.

__members_
Deprecated since version 2.2: Use the built-in function dir () to get a list of an object’s attributes. This
attribute is no longer available.

__class___
The class to which a class instance belongs.

_ _bases_
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

6.12. Special Attributes 53

The Python Library Reference, Release 2.6.5

__name___
The name of the class or type.

The following attributes are only supported by new-style classes.

mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolu-
tion.

mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It
is called at class instantiation, and its result is stored in ___mro_ .

_ _subclasses_ ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list
of all those references still alive. Example:

>>> int._ subclasses__ ()
[<type ’"bool’>]

54 Chapter 6. Built-in Types

CHAPTER
SEVEN

BUILT-IN EXCEPTIONS

Exceptions should be class objects. The exceptions are defined in the module except ions. This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as well as the exceptions
module. For class exceptions, in a try statement with an except clause that mentions a particular class,
that clause also handles any exception classes derived from that class (but not exception classes from which it
is derived). Two exception classes that are not related via subclassing are never equivalent, even if they have
the same name. The built-in exceptions listed below can be generated by the interpreter or built-in functions.
Except where mentioned, they have an “associated value” indicating the detailed cause of the error. This may be
a string or a tuple containing several items of information (e.g., an error code and a string explaining the code).
The associated value is the second argument to the raise statement. If the exception class is derived from the
standard root class BaseExcept ion, the associated value is present as the exception instance’s args attribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Exception class and not BaseException. More information on defining
exceptions is available in the Python Tutorial under User-defined Exceptions (in Python Tutorial).

The following exceptions are only used as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that use Exception). If str () or unicode () is called on an instance of this class, the representation
of the argument(s) to the instance are returned or the empty string when there were no arguments. All
arguments are stored in args as a tuple. New in version 2.5.

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should
also be derived from this class. Changed in version 2.5: Changed to inherit from BaseException.

exception StandardError
The base class for all built-in exceptions except Stoplteration, GeneratorExit,
KeyboardInterrupt and SystemExit. StandardError itself is derived from Except ion.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError,FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError, KeyError. This can be raised directly by codecs . lookup ().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s er rno attribute
(it is assumed to be an error number), and the second item is available on the st rerror attribute (it is
usually the associated error message). The tuple itself is also available on the args attribute. New in
version 1.5.2. When an EnvironmentError exception is instantiated with a 3-tuple, the first two items

55

The Python Library Reference, Release 2.6.5

are available as above, while the third item is available on the £1ilename attribute. However, for backwards
compatibility, the args attribute contains only a 2-tuple of the first two constructor arguments.

The £ilename attribute is None when this exception is created with other than 3 arguments. The errno
and strerror attributes are also None when the instance was created with other than 2 or 3 arguments.
In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see Attribute references (in The Python Language Reference)) or as-
signment fails. (When an object does not support attribute references or attribute assignments at all,
TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input () or raw_input ()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: the file.read () and file.readline () methods return an
empty string when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised
when Python is configured with the ——with-fpect 1 option, or the WANT_SIGFPE_HANDLER symbol
is defined in the pyconfig.h file.

exception GeneratorExit
Raise when a generator‘s close () method is called. It directly inherits from BaseException instead
of StandardError since it is technically not an error. New in version 2.5.Changed in version 2.6:
Changed to inherit from BaseException.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in open () function or a method of a
file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes. Changed in version 2.6: Changed socket .error to use this as a base
class.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import
fails to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in function input () or raw_input ()
is waiting for input also raise this exception. The exception inherits from BaseException so as to not
be accidentally caught by code that catches Exception and thus prevent the interpreter from exiting.
Changed in version 2.5: Changed to inherit from BaseException.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecture (C’s malloc () function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

56 Chapter 7. Built-in Exceptions

The Python Library Reference, Release 2.6.5

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exception Not ImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version 1.5.2.

exception OSError
This exception is derived from EnvironmentError. It is raised when a function returns a system-
related error (not for illegal argument types or other incidental errors). The errno attribute is a numeric
error code from errno, and the strerror attribute is the corresponding string, as would be printed by
the C function perror (). See the module errno, which contains names for the error codes defined by
the underlying operating system.

For exceptions that involve a file system path (such as chdir () or unlink ()), the exception instance
will contain a third attribute, £i lename, which is the file name passed to the function. New in version
1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raise MemoryError than give up) and for most operations with plain integers,
which return a long integer instead. Because of the lack of standardization of floating point exception
handling in C, most floating point operations also aren’t checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy () function,
is used to access an attribute of the referent after it has been garbage collected. For more informa-
tion on weak references, see the weakref module. New in version 2.2: Previously known as the
weakref.ReferenceError exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exception StopIteration
Raised by an iterator‘s next () method to signal that there are no further values. This is derived from
Exception rather than StandardError, since this is not considered an error in its normal application.
New in version 2.2.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an exec
statement, in a call to the built-in function eval () or input (), or when reading the initial script or
standard input (also interactively).

Instances of this class have attributes £ilename, 1ineno, offset and text for easier access to the
details. str () of the exception instance returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version; it is also printed at the start of an interactive Python session),
the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exception SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status
(passed to C’s exit () function); if it is None, the exit status is zero; if it has another type (such as a
string), the object’s value is printed and the exit status is one.

57

The Python Library Reference, Release 2.6.5

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly from BaseException and not StandardError, since it
is not technically an error.

Acallto sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to fork ()).

The exception inherits from BaseException instead of StandardError or Exception so thatitis
not accidentally caught by code that catches Except ion. This allows the exception to properly propagate
up and cause the interpreter to exit. Changed in version 2.5: Changed to inherit from BaseException.

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError. New
in version 2.0.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError. New
in version 2.3.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception VMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an
errno value. The winerror and strerror values are created from the return values of the
GetLastError () and FormatMessage () functions from the Windows Platform API. The errno
value maps the winerror value to corresponding errno . h values. This is a subclass of OSError. New
in version 2.0.Changed in version 2.5: Previous versions put the GetLastError () codes into errno.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

58 Chapter 7. Built-in Exceptions

The Python Library Reference, Release 2.6.5

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports. New in version 2.5.

exception UnicodeWarning
Base class for warnings related to Unicode. New in version 2.5.

7.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-— SystemExit
+—— KeyboardInterrupt
+-— GeneratorExit
+-—— Exception
+-— StopIteration
+-—- StandardError
+-—— BufferError
+-— ArithmeticError
\ +-— FloatingPointError

| +-— OverflowError

\ +—— ZeroDivisionError

+-— AssertionError

+-— AttributeError

+-— EnvironmentError

\ +—— IOError

\ +—— OSError

\ +—— WindowsError (Windows)

| +-— VMSError (VMS)
+—— EOFError

+-— ImportError
\ +—— IndexError

| +-— KeyError
+—— MemoryError
+—— NameError

\ +—— UnboundLocalError
+-— ReferenceError

+-—— RuntimeError

| +—— NotImplementedError
+-— SyntaxError

\ +—— IndentationError

\ +-— TabError

+—— SystemError

+-— TypeError
+—— ValueError

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| +—— LookupError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| +-— UnicodeError

7.1. Exception hierarchy 59

The Python Library Reference, Release 2.6.5

+—— UnicodeDecodeError
+—-— UnicodeEncodeError
+-— UnicodeTranslateError

+-— Warning

+——

DeprecationWarning
PendingDeprecationWarning
RuntimeWarning
SyntaxWarning

UserWarning

FutureWarning
ImportWarning
UnicodeWarning
BytesWarning

60

Chapter 7. Built-in Exceptions

CHAPTER
EIGHT

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods described in the Sequence Types —
str, unicode, list, tuple, buffer, xrange section, and also the string-specific methods described in the String Methods
section. To output formatted strings use template strings or the % operator described in the String Formatting
Operations section. Also, see the re module for string functions based on regular expressions.

8.1 string — Common string operations

The string module contains a number of useful constants and classes, as well as some deprecated legacy
functions that are also available as methods on strings. In addition, Python’s built-in string classes support the
sequence type methods described in the Sequence Types — str, unicode, list, tuple, buffer, xrange section, and
also the string-specific methods described in the String Methods section. To output formatted strings use template
strings or the % operator described in the String Formatting Operations section. Also, see the re module for string
functions based on regular expressions.

8.1.1 String constants

The constants defined in this module are:

ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

ascii_lowercase
The lowercase letters ’ abcdefghijklmnopgrstuvwxyz’. This value is not locale-dependent and
will not change.

ascii_uppercase
The uppercase letters * ABCDEFGHI JKLMNOPQRSTUVWXYZ' . This value is not locale-dependent and will
not change.

digits
The string * 0123456789".

hexdigits
The string ' 0123456789abcdefABCDEF” .

letters
The concatenation of the strings 1owercase and uppercase described below. The specific value is
locale-dependent, and will be updated when 1ocale.setlocale () is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the
string ' abcdefghijklmnopgrstuvwxyz’. The specific value is locale-dependent, and will be up-
dated when locale.setlocale () is called.

61

The Python Library Reference, Release 2.6.5

octdigits
The string ' 01234567

punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

printable
String of characters which are considered printable. This is a combination of digits, letters,
punctuation, and whitespace.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string
" ABCDEFGHIJKLMNOPQRSTUVWXYZ’ . The specific value is locale-dependent, and will be updated when
locale.setlocale () is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the char-
acters space, tab, linefeed, return, formfeed, and vertical tab.

8.1.2 String Formatting

Starting in Python 2.6, the built-in str and unicode classes provide the ability to do complex variable substitu-
tions and value formatting via the str. format () method described in PEP 3101. The Formatter class in
the st ring module allows you to create and customize your own string formatting behaviors using the same
implementation as the built-in format () method.

class Formatter ()
The Formatter class has the following public methods:

format (format_string, *args, *kwargs)
format () is the primary API method. It takes a format template string, and an arbitrary set of
positional and keyword argument. format () is just a wrapper that calls vformat ().

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where
you want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the
dictionary as individual arguments using the rargs and x+kwds syntax. vformat () does the
work of breaking up the format template string into character data and replacement fields. It calls the
various methods described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec,
conversion). This is used by vformat () to break the string in to either literal text, or replacement
fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively), then
literal_text will be a zero-length string. If there is no replacement field, then the values of field_name,
format_spec and conversion will be None.

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such
as “O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value
used_key has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

62 Chapter 8. String Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.6.5

The args parameter is set to the list of positional arguments to vformat (), and the kwargs parameter
is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘O.name’ would cause get_value () to be called with a key
argument of 0. The name attribute will be looked up after get _value () returns by calling the
built-in getattr () function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The
set of unused args can be calculated from these parameters. check_unused_args () is assumed
to throw an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that
subclasses can override it.

convert_ field (value, conversion)
Converts the value (returned by get_field ()) given a conversion type (as in the tuple returned by
the parse () method.) The default version understands ‘t’ (repr) and ‘s’ (str) conversion types.

8.1.3 Format String Syntax
The str.format () method and the Formatter class share the same syntax for format strings (although in
the case of Formatter, subclasses can define their own format string syntax.)

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained in
braces is considered literal text, which is copied unchanged to the output. If you need to include a brace character
in the literal text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field
field_name

attribute_name = identifier

element_index = integer | index_string
index_string = <any source character except “]"> +
conversion = W | “s”

format_spec = <described in the next section>

In less formal terms, the replacement field starts with a field_name, which can either be a number (for a positional
argument), or an identifier (for keyword arguments). Following this is an optional conversion field, which is
preceded by an exclamation point / !/, and a format_spec, which is preceded by a colon * : ’.

The field_name itself begins with either a number or a keyword. If it’s a number, it refers to a positional argument,
and if it’s a keyword it refers to a named keyword argument. This can be followed by any number of index or
attribute expressions. An expression of the form ’ . name’ selects the named attribute using getattr (), while
an expression of the form ’ [index]’ does an index lookup using __getitem__ ().

Some simple format string examples:

"First, thou shalt count to {0}" # References first positional argument

"My quest is {name}" # References keyword argument ’name’

"Weight in tons {0.weight}" # ’weight’ attribute of first positional arg
#

"Units destroyed: {players[0]}"

8.1. string — Common string operations 63

First element of keyword argument ’‘players’

“{” field_name [”!” conversion] [”:” format_spec] “}”
(identifier | integer) (“.” attribute_name | “[”

element_]

The Python Library Reference, Release 2.6.5

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done
by the ___format__ () method of the value itself. However, in some cases it is desirable to force a type to be
formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling
__ format__ (), the normal formatting logic is bypassed.

Two conversion flags are currently supported: ’ ! s’ which calls str () on the value, and ’ ! r’ which calls
repr ().

Some examples:

"Harold’s a clever {0O!s}" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as
field width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting
mini-language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can
contain only a field name; conversion flags and format specifications are not allowed. The replacement fields
within the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of
a value to be dynamically specified.

For example, suppose you wanted to have a replacement field whose field width is determined by another variable:
"A man with two {0:{1}}".format ("noses", 10)

This would first evaluate the inner replacement field, making the format string effectively:

"A man with two {0:10}"

Then the outer replacement field would be evaluated, producing:

"noses "

Which is substituted into the string, yielding:

"A man with two noses "

(The extra space is because we specified a field width of 10, and because left alignment is the default for strings.)

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax.) They can also be passed directly to the built-in format ()
function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting
options are only supported by the numeric types.

A general convention is that an empty format string (" ") produces the same result as if you had called st r () on
the value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec = [[filllalign] [sign] [#][0] [width] [.precision] [type]
fill = <a character other than ‘}’>

align = \\<II | \\>II ‘ \\:II | WA

Sigl’l := “+” | A\ /4 ‘ 4 w

width = integer

precision = integer

type ::= \\b" | “cll ‘ \\dll | \\eII | \\EII | \\fII | \\FII I \\gll | “GII ‘

The fill character can be any character other than ‘}’ (which signifies the end of the field). The presence of a fill
character is signaled by the next character, which must be one of the alignment options. If the second character of

64 Chapter 8. String Services

Wy
n

W
@)

The Python Library Reference, Release 2.6.5

format_spec is not a valid alignment option, then it is assumed that both the fill character and the alignment option
are absent.

The meaning of the various alignment options is as follows:

Op- | Meaning
tion

r<r Forces the field to be left-aligned within the available space (This is the default.)

"> Forces the field to be right-aligned within the available space.

r=r Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing
fields in the form ‘+000000120’. This alignment option is only valid for numeric types.

rar Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill
it, so that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Option | Meaning

T4 indicates that a sign should be used for both positive as well as negative numbers.

r—s indicates that a sign should be used only for negative numbers (this is the default behavior).

space indicates that a leading space should be used on positive numbers, and a minus sign on negative
numbers.

The ’ #’ option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies
that the output will be prefixed by ’ 0b’, ’ 0o’, or ' 0x’, respectively.

width is a decimal integer defining the minimum field width. If not specified, then the field width will be deter-
mined by the content.

If the width field is preceded by a zero (’ 0) character, this enables zero-padding. This is equivalent to an
alignment type of ’ =’ and a fill character of 0.

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a
floating point value formatted with * £/ and " F’, or before and after the decimal point for a floating point value
formatted with / g’ or ’ G’ . For non-number types the field indicates the maximum field size - in other words,
how many characters will be used from the field content. The precision is not allowed for integer values.

Finally, the rype determines how the data should be presented.

The available string presentation types are:

Type Meaning
rs’ String format. This is the default type for strings and may be omitted.
None | Thesameas’s’.

The available integer presentation types are:

Type | Meaning

"b’ | Binary format. Outputs the number in base 2.

"¢’ | Character. Converts the integer to the corresponding unicode character before printing.

"d’ | Decimal Integer. Outputs the number in base 10.

"o’ | Octal format. Outputs the number in base 8.

"x’ | Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.

"X’ | Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.

"n’ | Number. This is the same as ’ d’, except that it uses the current locale setting to insert the appropriate
number separator characters.

None | The same as " d’.

In addition to the above presentation types, integers can be formatted with the floating point presentation types
listed below (except ’ n’ and None). When doing so, f1oat () is used to convert the integer to a floating point
number before formatting.

The available presentation types for floating point and decimal values are:

8.1. string — Common string operations 65

The Python Library Reference, Release 2.6.5

Type Meaning

"e’ | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the exponent.
"E’ | Exponent notation. Same as ' e’ except it uses an upper case ‘E’ as the separator character.
" £/ | Fixed point. Displays the number as a fixed-point number.

"F’ | Fixed point. Same as ’ £’ .

" g’ | General format. For a given precision p >= 1, this rounds the number to p significant digits and then
formats the result in either fixed-point format or in scientific notation, depending on its magnitude.
The precise rules are as follows: suppose that the result formatted with presentation type ’ e’ and
precision p—1 would have exponent exp. Thenif -4 <= exp < p, the number is formatted with
presentation type ’ £/ and precision p—1-exp. Otherwise, the number is formatted with presentation
type ' e’ and precision p—1. In both cases insignificant trailing zeros are removed from the
significand, and the decimal point is also removed if there are no remaining digits following it.
Postive and negative infinity, positive and negative zero, and nans, are formatted as inf, -inf, 0, -0
and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1.

of infinity and NaN are uppercased, too.
"n’ | Number. This is the same as ’ g’ , except that it uses the current locale setting to insert the appropriate
number separator characters.

"%’ | Percentage. Multiplies the number by 100 and displays in fixed (£/) format, followed by a percent
sign.

None| The same as ’ g’ .

"G’ | General format. Same as ' g’ except switches to ’ E’ if the number gets too large. The representations

8.1.4 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based substitu-
tions, Templates support $-based substitutions, using the following rules:

e $$ is an escape; it is replaced with a single $.

* Sidentifier names a substitution placeholder matching a mapping key of "identifier". By de-
fault, "identifier" mustspell a Python identifier. The first non-identifier character after the $ character
terminates this placeholder specification.

e ${identifier} isequivalent to $identifier. Itis required when valid identifier characters follow
the placeholder but are not part of the placeholder, such as "${noun}ification™".

Any other appearance of $ in the string will result in a ValueError being raised. New in version 2.4. The
string module provides a Template class that implements these rules. The methods of Template are:

class Template (template)
The constructor takes a single argument which is the template string.

substitute (mapping, [**kws])
Performs the template substitution, returning a new string. mapping is any dictionary-like object with
keys that match the placeholders in the template. Alternatively, you can provide keyword arguments,
where the keywords are the placeholders. When both mapping and kws are given and there are dupli-
cates, the placeholders from kws take precedence.

safe_substitute (mapping, [**kws])
Like substitute (), except that if placeholders are missing from mapping and kws, instead of
raising a KeyError exception, the original placeholder will appear in the resulting string intact.
Also, unlike with substitute (), any other appearances of the $ will simply return $ instead of
raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries
to return a usable string instead of raising an exception. In another sense, safe_substitute ()
may be anything other than safe, since it will silently ignore malformed templates containing dangling
delimiters, unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

66 Chapter 8. String Services

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 2.6.5

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('’ $who likes Swhat’)

>>> s.substitute (who='tim’, what=’'kung pao’)

"tim likes kung pao’

>>> d = dict (who="tim’)

>>> Template (' Give $who $100’) .substitute (d)
Traceback (most recent call last):

[...]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template (' $who likes Swhat’) .substitute (d)
Traceback (most recent call last):

[...]

KeyError: ’what’

>>> Template (' $Swho likes $what’) .safe_substitute (d)
"tim likes S$Swhat’

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter char-
acter, or the entire regular expression used to parse template strings. To do this, you can override these class
attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value $.
Note that this should not be a regular expression, as the implementation will call re.escape () on this
string as needed.

* idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces will
be added automatically as appropriate). The default value is the regular expression [_a-z] [_a-z0-9] *.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

e escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

* invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear
last in the regular expression.

8.1.5 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

capwords (s, [sep])
Split the argument into words using str.split (), capitalize each word using str.capitalize (),
and join the capitalized words using str.join (). If the optional second argument sep is absent or
None, runs of whitespace characters are replaced by a single space and leading and trailing whitespace are
removed, otherwise sep is used to split and join the words.

maketrans (from, to)
Return a translation table suitable for passing to t ranslate (), that will map each character in from into
the character at the same position in fo; from and fo must have the same length.

8.1. string — Common string operations 67

The Python Library Reference, Release 2.6.5

Note: Don’t use strings derived from lowercase and uppercase as arguments; in some locales, these
don’t have the same length. For case conversions, always use str.lower () and str.upper ().

8.1.6 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see section String
Methods for more information on those. You should consider these functions as deprecated, although they will
not be removed until Python 3.0. The functions defined in this module are:

atof (s)
Deprecated since version 2.0: Use the f1oat () built-in function. Convert a string to a floating point
number. The string must have the standard syntax for a floating point literal in Python, optionally preceded
by a sign (+ or —). Note that this behaves identical to the built-in function £ 1oat () when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

atoi (s, [base])
Deprecated since version 2.0: Use the int () built-in function. Convert string s to an integer in the given
base. The string must consist of one or more digits, optionally preceded by a sign (+ or —). The base
defaults to 10. If it is O, a default base is chosen depending on the leading characters of the string (after
stripping the sign): Ox or 0X means 16, 0 means 8, anything else means 10. If base is 16, a leading 0x or
0X is always accepted, though not required. This behaves identically to the built-in function int () when
passed a string. (Also note: for a more flexible interpretation of numeric literals, use the built-in function
eval ().)

atol (s, [base])
Deprecated since version 2.0: Use the 1ong () built-in function. Convert string s to a long integer in the
given base. The string must consist of one or more digits, optionally preceded by a sign (+ or —). The base
argument has the same meaning as for atoi (). A trailing 1 or L is not allowed, except if the base is 0.
Note that when invoked without base or with base set to 10, this behaves identical to the built-in function
long () when passed a string.

capitalize (word)
Return a copy of word with only its first character capitalized.

expandtabs (s, [tabsize])
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the
given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t
understand other non-printing characters or escape sequences. The tab size defaults to 8.

£ind (s, sub, [start, [end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained in
s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative values is
the same as for slices.

rfind (s, sub, [start, [end]])
Like f£ind () but find the highest index.

index (s, sub, [start, [end]])
Like find () butraise ValueError when the substring is not found.

rindex (s, sub, [start, [end]])
Like rfind () butraise ValueError when the substring is not found.

count (s, sub, [start, [end]])
Return the number of (non-overlapping) occurrences of substring sub in string s [start : end]. Defaults
for start and end and interpretation of negative values are the same as for slices.

lower (s)
Return a copy of s, but with upper case letters converted to lower case.

68 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

split (s, [sep, [maxsplit]])

Return a list of the words of the string s. If the optional second argument sep is absent or None, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the
second argument sep is present and not None, it specifies a string to be used as the word separator. The
returned list will then have one more item than the number of non-overlapping occurrences of the separator
in the string. The optional third argument maxsplit defaults to 0. If it is nonzero, at most maxsplit number
of splits occur, and the remainder of the string is returned as the final element of the list (thus, the list will
have at most maxsplit+1 elements).

The behavior of split on an empty string depends on the value of sep. If sep is not specified, or specified as
None, the result will be an empty list. If sep is specified as any string, the result will be a list containing
one element which is an empty string.

rsplit (s, [sep, [maxsplit]])
Return a list of the words of the string s, scanning s from the end. To all intents and purposes, the resulting
list of words is the same as returned by split (), except when the optional third argument maxsplit is ex-
plicitly specified and nonzero. When maxsplit is nonzero, at most maxsplit number of splits — the rightmost
ones — occur, and the remainder of the string is returned as the first element of the list (thus, the list will
have at most maxsplit+1 elements). New in version 2.4.

splitfields (s, [sep, [maxsplit]])
This function behaves identically to split (). (In the past, split () was only used with one argument,
while splitfields () was only used with two arguments.)

join (words, [sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep is a single
space character. It is always true that string. join (string.split (s, sep), sep) equalss.

joinfields (words, [sep])
This function behaves identically to join (). (Inthe past, join () was only used with one argument, while
joinfields () was only used with two arguments.) Note that there is no joinfields () method on
string objects; use the join () method instead.

1strip (s, [chars])
Return a copy of the string with leading characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.3: The chars
parameter was added. The chars parameter cannot be passed in earlier 2.2 versions.

rstrip (s, [chars])
Return a copy of the string with trailing characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2.3: The chars parameter
was added. The chars parameter cannot be passed in earlier 2.2 versions.

strip (s, [chars])
Return a copy of the string with leading and trailing characters removed. If chars is omitted or None,
whitespace characters are removed. If given and not None, chars must be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.3:
The chars parameter was added. The chars parameter cannot be passed in earlier 2.2 versions.

swapcase (s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

translate (s, table, [deletechars])
Delete all characters from s that are in deletechars (if present), and then translate the characters using table,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.
If table is None, then only the character deletion step is performed.

upper (s)
Return a copy of s, but with lower case letters converted to upper case.

1just (s, width, [fillchar])
rjust (s, width, [fillchar])

8.1. string — Common string operations 69

The Python Library Reference, Release 2.6.5

center (s, width, [fillchar])
These functions respectively left-justify, right-justify and center a string in a field of given width. They
return a string that is at least width characters wide, created by padding the string s with the character fillchar
(default is a space) until the given width on the right, left or both sides. The string is never truncated.

z£ill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign
are handled correctly.

replace (st old, new, [maxreplace])
Return a copy of string str with all occurrences of substring old replaced by new. If the optional argument
maxreplace is given, the first maxreplace occurrences are replaced.

8.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit strings.

Regular expressions use the backslash character (* \ /) to indicate special forms or to allow special characters to
be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have to write \\\\’ as the
pattern string, because the regular expression must be \\, and each backslash must be expressed as \ \ inside a
regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled
in any special way in a string literal prefixed with ’ r’. So r"\n" is a two-character string containing ’ \’ and
"n’, while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python
code using this raw string notation.

It is important to note that most regular expression operations are available as module-level functions and
RegexObject methods. The functions are shortcuts that don’t require you to compile a regex object first,
but miss some fine-tuning parameters.

See Also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The
second edition of the book no longer covers Python at all, but the first edition covered writing good regular
expression patterns in great detail.

8.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string pg
will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and B;
or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions,
consult the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO (in).

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like " A’, " a’,
or ' 0, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary char-
acters, so last matches the string ’ last’. (In the rest of this section, we’ll write RE’s in this special
style, usually without quotes, and strings to be matched ’ in single quotes’.)

70 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

Some characters, like | 7 or / (', are special. Special characters either stand for classes of ordinary characters,
or affect how the regular expressions around them are interpreted. Regular expression pattern strings may not
contain null bytes, but can specify the null byte using the \number notation, e.g., * \x00" .

The special characters are:

" .7 (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been
specified, this matches any character including a newline.

" A7 (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each
newline.

"$’ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE
mode also matches before a newline. foo matches both ‘foo” and ‘foobar’, while the regular expression
foo$ matches only ‘foo’. More interestingly, searching for foo.$in’ fool\nfoo2\n’ matches ‘foo2’
normally, but ‘fool’ in MULTILINE mode; searching for a single $ in * foo\n’ will find two (empty)
matches: one just before the newline, and one at the end of the string.

"%’ Causes the resulting RE to match O or more repetitions of the preceding RE, as many repetitions as are
possible. ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

"+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed
by any non-zero number of ‘b’s; it will not match just ‘a’.

72/ Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

*?,+?,2? The ' «’, "+’ ,and ' ?’ qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <. x> is matched against * <H1>title</H1>", it will match the
entire string, and not just * <H1>’. Adding ’ ?’ after the qualifier makes it perform the match in non-
greedy or minimal fashion; as few characters as possible will be matched. Using .+? in the previous
expression will match only * <H1>".

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE
not to match. For example, a { 6} will match exactly six ” a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For example, a {3, 5} will match from 3 to 5 ” a’ characters. Omitting m
specifies a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b
will match aaaab or a thousand " a’ characters followed by a b, but not aaab. The comma may not be
omitted or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character string ' aaaaaa’, a{3,5} will match 5 " a’ characters, while a{3, 5} ? will only match 3
characters.

"\’ Either escapes special characters (permitting you to match characters like ” «”, 7 2, and so forth), or signals
a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand, so
it’s highly recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be
indicated by giving two characters and separating them by a ’ —’. Special characters are not active inside
sets. For example, [akm$] will match any of the characters “a’, "k’, 'm’,or ' $’; [a-z] will match
any lowercase letter, and [a-zA-Z0-9] matches any letter or digit. Character classes such as \w or \'S
(defined below) are also acceptable inside a range, although the characters they match depends on whether
LOCALE or UNICODE mode is in force. If you want to includea ’]/ ora ’ -’ inside a set, precede it with
a backslash, or place it as the first character. The pattern []] will match ’], for example.

You can match the characters not within a range by complementing the set. This is indicated by including
a’ "’ as the first character of the set; ’ ~’ elsewhere will simply match the * ~ character. For example,
[~5] will match any character except / 5, and [~ "] will match any character except / ~’ .

8.2. re — Regular expression operations 71

The Python Library Reference, Release 2.6.5

Note that inside [] the special forms and special characters lose their meanings and only the syntaxes de-
scribed here are valid. For example, +, =, (,), and so on are treated as literals inside [], and backreferences
cannot be used inside [].

"|” A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An
arbitrary number of REs can be separated by the ’ |’ in this way. This can be used inside groups (see
below) as well. As the target string is scanned, REs separated by ’ |’ are tried from left to right. When one
pattern completely matches, that branch is accepted. This means that once A matches, B will not be tested
further, even if it would produce a longer overall match. In other words, the ” |’ operator is never greedy.
To match a literal * | 7, use \ |, or enclose it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the \number special sequence, described below. To match the literals * (* or ’) ", use \ (or
\), or enclose them inside a character class: [(] [)].

(?...) Thisis an extension notation (a * ?’ following a ’ (’ is not meaningful otherwise). The first character
after the * 2’/ determines what the meaning and further syntax of the construct is. Extensions usually do
not create a new group; (?P<name>...) is the only exception to this rule. Following are the currently
supported extensions.

(?iLmsux) (One or more letters from the set *i’, 'L’, 'm’, 's’, "u’, 'x’.) The group matches the
empty string; the letters set the corresponding flags: re. I (ignore case), re . L (locale dependent), re .M
(multi-line), re . S (dot matches all), re . U (Unicode dependent), and re . X (verbose), for the entire regular
expression. (The flags are described in Module Contents.) This is useful if you wish to include the flags as
part of the regular expression, instead of passing a flag argument to the re . compi le () function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the group cannot be retrieved after performing a match or refer-
enced later in the pattern.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible within
the rest of the regular expression via the symbolic group name name. Group names must be valid Python
identifiers, and each group name must be defined only once within a regular expression. A symbolic group
is also a numbered group, just as if the group were not named. So the group named id in the example below
can also be referenced as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\wx), the group can be referenced by its name in
arguments to methods of match objects, such asm.group (* 1d’) orm.end (' 1d’), and also by name
in the regular expression itself (using (?P=1d)) and replacement text given to . sub () (using \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead
assertion. For example, Isaac (?=Asimov) willmatch’ Isaac ’ onlyifit’s followed by ' Asimov’.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac
(?!'Asimov) will match ' Isaac ' only if it’s not followed by ’ Asimov’ .

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc)def will find a match in abcdef,
since the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meaning that abc or a | b are allowed, but ax and
a{3, 4} are not. Note that patterns which start with positive lookbehind assertions will never match at the
beginning of the string being searched; you will most likely want to use the search () function rather than
the match () function:

>>> import re
>>> m = re.search(’ (?<=abc)def’, ’"abcdef’)

72 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

>>> m.group (0)
"def’

This example looks for a word following a hyphen:

>>> m = re.search(’ (?<=-)\wt+’, ’spam-egg’)
>>> m.group (0)
4 eggl
(?<!...) Matches if the current position in the string is not preceded by a match for This is called a

negative lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only
match strings of some fixed length. Patterns which start with negative lookbehind assertions may match at
the beginning of the string being searched.

(? (id/name) yes—-pattern|no-pattern) Will try to match with yes-pattern if the group with

given id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can
be omitted. For example, (<)? (\w+@\w+ (?:\.\w+)+) (?(1)>) is a poor email matching pat-
tern, which will match with ' <user@host.com>’ as well as "user@host.com’, but not with
’<user@host.com’. New in version 2.4.

The special sequences consist of \’ and a character from the list below. If the ordinary character is not on the
list, then the resulting RE will match the second character. For example, \ $ matches the character / $” .

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\A
\b

\B

\d

\D

\s

\sS

\w

\W

example, (.+) \1 matches 'the the’ or '55 55’, but not ' the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit of
number is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal value number. Inside the * [’ and ’]’ of a character class, all numeric escapes are treated as
characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of al-

phanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note that \b is defined as the boundary between \w and \ W, so the precise set
of characters deemed to be alphanumeric depends on the values of the UNICODE and LOCALE flags. Inside
a character range, \b represents the backspace character, for compatibility with Python’s string literals.

Matches the empty string, but only when it is not at the beginning or end of a word. This is just the opposite

of \b, so is also subject to the settings of LOCALE and UNICODE.

When the UNICODE flag is not specified, matches any decimal digit; this is equivalent to the set [0—-9]. With

UNICODE, it will match whatever is classified as a digit in the Unicode character properties database.

When the UNICODE flag is not specified, matches any non-digit character; this is equivalent to the set

[~0-9]. With UNICODE, it will match anything other than character marked as digits in the Unicode
character properties database.

When the LOCALE and UNICODE flags are not specified, matches any whitespace character; this is equivalent

tothe set [\t\n\r\f\v]. With LOCALE, it will match this set plus whatever characters are defined as
space for the current locale. If UNICODE is set, this will match the characters [\t\n\r\f\v] plus
whatever is classified as space in the Unicode character properties database.

When the LOCALE and UNICODE flags are not specified, matches any non-whitespace character; this is

equivalent to the set [~ \t\n\r\f\v] With LOCALE, it will match any character not in this set, and
not defined as space in the current locale. If UNICODE is set, this will match anything other than [
\t\n\r\f\v] and characters marked as space in the Unicode character properties database.

When the LOCALE and UNICODE flags are not specified, matches any alphanumeric character and the un-

derscore; this is equivalent to the set [a—zA-Z0-9_]. With LOCALE, it will match the set [0-9_] plus
whatever characters are defined as alphanumeric for the current locale. If UNICODE is set, this will match
the characters [0-9_] plus whatever is classified as alphanumeric in the Unicode character properties
database.

When the LOCALE and UNICODE flags are not specified, matches any non-alphanumeric character; this is

equivalent to the set [*a—-zA-20-9_]. With LOCALE, it will match any character not in the set [0-9_],

8.2. re — Regular expression operations 73

The Python Library Reference, Release 2.6.5

and not defined as alphanumeric for the current locale. If UNICODE is set, this will match anything other
than [0-9_] and characters marked as alphanumeric in the Unicode character properties database.

\z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \x
AN\

Octal escapes are included in a limited form: If the first digit is a O, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three
digits in length.

8.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match checks for a match only at
the beginning of the string, while search checks for a match anywhere in the string (this is what Perl does by
default).

Note that match may differ from search even when using a regular expression beginning with * ~’: * ~* matches
only at the start of the string, or in MULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string regardless of mode, or at the starting
position given by the optional pos argument regardless of whether a newline precedes it.

>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object at ...>

8.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile (pattern, [flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
itsmatch () and search () methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to
result = re.match (pattern, string)

but using re.compile () and saving the resulting regular expression object for reuse is more efficient
when the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.match (), re.search () or
re.compile () are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

74 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not
affected by the current locale.

L

LOCALE
Make \w, \W, \b, \B, \'s and \ S dependent on the current locale.

M

MULTILINE
When specified, the pattern character * ~’ matches at the beginning of the string and at the beginning of
each line (immediately following each newline); and the pattern character / $’ matches at the end of the
string and at the end of each line (immediately preceding each newline). By default, / ~’ matches only at
the beginning of the string, and * $’ only at the end of the string and immediately before the newline (if
any) at the end of the string.

S

DOTALL
Make the ’ .’ special character match any character at all, including a newline; without this flag, . * will
match anything except a newline.

U

UNICODE
Make \w, \W, \b, \B, \d, \D, \'s and \ S dependent on the Unicode character properties database. New
in version 2.0.

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ’ #’
neither in a character class or preceded by an unescaped backslash, all characters from the leftmost such
" #’ through the end of the line are ignored.

That means that the two following regular expression objects that match a decimal number are functionally

equal:
a = re.compile(r"""\d + # the integral part

\. # the decimal point

\d » # some fractional digits""", re.X)
b = re.compile (r"\d+\.\dx")

search (pattern, string, [flags])
Scan through string looking for a location where the regular expression pattern produces a match, and return
a corresponding MatchObject instance. Return None if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

match (pattern, string, [flags])
If zero or more characters at the beginning of string match the regular expression pattern, return a corre-
sponding MatchOb ject instance. Return None if the string does not match the pattern; note that this is
different from a zero-length match.

Note: If you want to locate a match anywhere in string, use search () instead.

split (pattern, string, [maxsplit=0])
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit
splits occur, and the remainder of the string is returned as the final element of the list. (Incompatibility note:
in the original Python 1.5 release, maxsplit was ignored. This has been fixed in later releases.)

>>> re.split (/' \W+’, ’Words, words, words.’)
["Words’, "words’, ’"words’, ']

>>> re.split (’ (\W+)’, ’'Words, words, words.’)
["Words", ', ', "words’, ', ', "words’, ".’, ''"]

8.2. re — Regular expression operations 75

The Python Library Reference, Release 2.6.5

>>> re.split (/' \W+’, ’'Words, words, words.’, 1)
["Words’, ’"words, words.’]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split (/ (\W+)’, ’...words, words...’)
rrr, ..., "words’, ', ', 'words’, '...", "]

That way, separator components are always found at the same relative indices within the result list (e.g., if
there’s one capturing group in the separator, the Oth, the 2nd and so forth).

Note that split will never split a string on an empty pattern match. For example:

>>> re.split ('xx", ’foo’)

["foo']

>>> re.split (" (?m)~$", "foo\n\nbar\n")
[" foo\n\nbar\n’]

findall (pattern, string, [flags])

Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-
right, and matches are returned in the order found. If one or more groups are present in the pattern, return
a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result unless they touch the beginning of another match. New in version 1.5.2.Changed in
version 2.4: Added the optional flags argument.

finditer (pattern, string, [flags])

Return an iferator yielding Mat chOb ject instances over all non-overlapping matches for the RE pattern
in string. The string is scanned left-to-right, and matches are returned in the order found. Empty matches
are included in the result unless they touch the beginning of another match. New in version 2.2.Changed in
version 2.4: Added the optional flags argument.

sub (pattern, repl, string, [count])

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by
the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a
function; if it is a string, any backslash escapes in it are processed. That is, \n is converted to a single
newline character, \ r is converted to a linefeed, and so forth. Unknown escapes such as \ j are left alone.
Backreferences, such as \ 6, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub (r’def\s+ ([a-zA-Z_][a—-zA-7Z_0-9]x)\s*\ (\sx\):’,
r’static PyObjectx\npy_\1 (void)\n{’,

"def myfunc():")

"static PyObject*\npy_myfunc (void)\n{’

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == ’"-’: return ' '/
. else: return -’
>>> re.sub(’'-{1,2}’, dashrepl, ’'pro-———-gram-files’)

"pro-—-gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must
use a RE object, or use embedded modifiers in a pattern; for example, sub (" (?1)b+", "x", "bbbb
BBBB") returns ' x x’.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must
be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the

76

Chapter 8. String Services

The Python Library Reference, Release 2.6.5

pattern are replaced only when not adjacent to a previous match, so sub (' x«’, ’-', ’abc’) returns
"-a-b-c-'.

In addition to character escapes and backreferences as described above, \ g<name> will use the substring
matched by the group named name, as defined by the (?P<name>...) syntax. \g<number> uses the
corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t ambiguous in a replacement
such as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal character * 0’ . The backreference \ g<0> substitutes in the entire substring matched by the
RE.

subn (pattern, repl, string, [count])
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).

escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exception error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or
matching. It is never an error if a string contains no match for a pattern.

8.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string, [pos, [endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding
MatchObject instance. Return None if the string does not match the pattern; note that this is different
from a zero-length match.

Note: If you want to locate a match anywhere in string, use search () instead.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to
0. This is not completely equivalent to slicing the string; the ’ ~/ pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is
endpos characters long, so only the characters from pos to endpos - 1 will be searched for a match. If
endpos is less than pos, no match will be found, otherwise, if rx is a compiled regular expression object,
rx.match(string, 0, 50) isequivalentto rx.match (string[:50], 0).

>>> pattern = re.compile("o")

>>> pattern.match ("dog") # No match as "o" is not at the start of "dog."
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object at ...>

search (string, [pos, [endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a
corresponding Mat chOb ject instance. Return None if no position in the string matches the pattern; note
that this is different from finding a zero-length match at some point in the string.

The optional pos and endpos parameters have the same meaning as for the mat ch () method.

split (string, [maxsplit=0])
Identical to the split () function, using the compiled pattern.

findall (string, [pos, [endpos]])
Identical to the findall () function, using the compiled pattern.

finditer (string, [pos, [endpos]])
Identical to the finditer () function, using the compiled pattern.

8.2. re — Regular expression operations 77

The Python Library Reference, Release 2.6.5

sub (repl, string, [count=0])
Identical to the sub () function, using the compiled pattern.

subn (repl, string, [count=0])
Identical to the subn () function, using the compiled pattern.

flags
The flags argument used when the RE object was compiled, or O if no flags were provided.

groups
The number of capturing groups in the pattern.

groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

8.2.5 Match Objects

Match objects always have a boolean value of True, so that you can test whether e.g. match () resulted in a
match with a simple if statement. They support the following methods and attributes:

expand (femplate)
Return the string obtained by doing backslash substitution on the template string femplate, as done by the
sub () method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences
(\1, \ 2) and named backreferences (\ g<1>, \g<name>) are replaced by the contents of the corresponding
group.

group ([groupl, ...])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the
pattern, an IndexError exception is raised. If a group is contained in a part of the pattern that did not
match, the corresponding result is None. If a group is contained in a part of the pattern that matched
multiple times, the last match is returned.

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist™)
>>> m.group (0) # The entire match

"Isaac Newton’

>>> m.group (1) # The first parenthesized subgroup.
"Isaac’

>>> m.group (2) # The second parenthesized subgroup.
"Newton’

>>> m.group (1, 2) # Multiple arguments give us a tuple.

("Isaac’, ’'"Newton’)

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group (/' first_name’)

"Malcolm’

>>> m.group (’ last_name’)

"Reynolds’

78 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

Named groups can also be referred to by their index:

>>> m.group (1)
"Malcolm’

>>> m.group (2)
"Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(x" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3,

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. The default argument is used for groups that did not participate in the match; it defaults to None.
(Incompatibility note: in the original Python 1.5 release, if the tuple was one element long, a string would
be returned instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

For example:
>>> m = re.match(r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()

(7247, "1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match(r" (\d+)\.? (\d+) 2", "24")

>>> m.groups () # Second group defaults to None.

(24", None)

>>> m.groups (' 0") # Now, the second group defaults to 707.
(/24/, IOI)

groupdict ([default])
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The
default argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{’first_name’: "Malcolm’, ’last_name’: ’'Reynolds’}

start ([group])

end ([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning
the whole matched substring). Return -1 if group exists but did not contribute to the match. For a match
object m, and a group g that did contribute to the match, the substring matched by group g (equivalent to
m.group (g))is

m.string[m.start (g) :m.end (g)]

Note that m. start (group) will equal m.end (group) if group matched a null string. For example,
afterm = re.search('b(c?)’, ’'cba’),m.start (0)isl,m.end(0) is2, m.start (1) and
m.end (1) are both 2, andm.start (2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)

8.2. re — Regular expression operations 79

The Python Library Reference, Release 2.6.5

>>> email[:m.start ()] + email[m.end() :]
"tony@tiger.net’

span ([group])
For MatchObject m, return the 2-tuple (m.start (group), m.end(group)). Note that if group
did not contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

pos
The value of pos which was passed to the search () or match () method of the RegexObject. This
is the index into the string at which the RE engine started looking for a match.

endpos
The value of endpos which was passed to the search () or match () method of the RegexObject.
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a) (b)), and ((ab)) will have lastindex == 1 if applied to the string
"ab’, while the expression (a) (b) will have lastindex == 2, if applied to the same string.

lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whose match () or search () method produced this MatchObject in-
stance.

string

The string passed to match () or search ().

8.2.6 Examples
Checking For a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return ’'<Match: , groups=%r>" % (match.group (), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a S-character string with each

@ 9

character representing a card, “a” for ace, “k” for king, “q” for queen, j for jack, “0” for 10, and “1” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r"[0-9akgj]{5}S")

>>> displaymatch(valid.match ("ak05qg")) # Valid.
"<Match: "ak05qg’, groups=()>"

>>> displaymatch(valid.match ("ak05e")) # Invalid.
>>> displaymatch (valid.match ("ak0")) # Invalid.
>>> displaymatch(valid.match ("727ak")) # Valid.

"<Match: ’727ak’, groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular
expression, one could use backreferences as such:

>>> pair = re.compile(r".+(.).*x\1")

>>> displaymatch (pair.match ("717ak")) # Pair of 7s.
"<Match: "717", groups=("7",)>"

>>> displaymatch (pair.match ("718ak")) # No pairs.

80 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

>>> displaymatch (pair.match ("354aa")) # Pair of aces.
"<Match: ’354aa’, groups=('a’,)>"

To find out what card the pair consists of, one could use the group () method of Mat chOb ject in the following
manner:

>>> pair.match("717ak") .group (1)
I’7I

Error because re.match() returns None, which doesn’t have a group () method:
>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match (r" .« (.).»\1", "718ak").group (1)
AttributeError: ’'NoneType’ object has no attribute ’'group’

>>> pair.match("354aa") .group (1)

4 al

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful,

though also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent
mappings between scanf () format tokens and regular expressions.

scanf () Token Regular Expression

$c

%$5¢ {5}

$d [-+]2\d+

%e, 3E, £, 39 [-+17 \d+ \N.\dx)?2\.\d+) ([eE] [-+]?\d+)?
$i [-+1?2(0[xX] [\dA-Fa-f]1+|0[0=7]*|\d+)

%o 0[0-7] %

%s \S+

$u \d+

$x, $X 0[xX] [\dA-Fa-f]+

To extract the filename and numbers from a string like
/usr/sbin/sendmail - 0 errors, 4 warnings
you would use a scanf () format like

%$s — %d errors, %d warnings

The equivalent regular expression would be

(\S+) — (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the message maximum recursion limit exceeded. For example,

>>> s = 'Begin ’ + 1000%’a very long string ' + ’end’
>>> re.match (’Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "/usr/local/lib/python2.5/re.py", line 132, in match
return _compile (pattern, flags) .match(string)
RuntimeError: maximum recursion limit exceeded

8.2. re — Regular expression operations 81

The Python Library Reference, Release 2.6.5

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of the «? pattern are special-cased to avoid recursion. Thus, the above
regular expression can avoid recursion by being recast as Begin [a-zA-Z0-9_] *?end. As a further benefit,
such regular expressions will run faster than their recursive equivalents.

search() vs. match()

In a nutshell, mnatch () only attempts to match a pattern at the beginning of a string where search () will match
a pattern anywhere in a string. For example:

>>> re.match("o", "dog") # No match as "o" is not the first letter of "dog".
>>> re.search("o", "dog") # Match as search() looks everywhere in the string.
<_sre.SRE_Match object at ...>

Note: The following applies only to regular expression objects like those created with
re.compile ("pattern"), not the primitives re.match (pattern, string) or
re.search (pattern, string).

match () has an optional second parameter that gives an index in the string where the search is to start:
>>> pattern = re.compile("o")

>>> pattern.match ("dog") # No match as "o" is not at the start of "dog."

Equivalent to the above expression as 0 is the default starting index:
>>> pattern.match ("dog", 0)

Match as "o" is the 2nd character of "dog" (index 0 is the first):

>>> pattern.match ("dog", 1)

<_sre.SRE_Match object at ...>

>>> pattern.match ("dog", 2) # No match as "o" is not the 3rd character of "dog."

Making a Phonebook

split () splits astring into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> input = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", input)

>>> entries

["Ross McFluff: 834.345.1254 155 Elm Street’,
"Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
"Frank Burger: 925.541.7625 662 South Dogwood Way’,
"Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the
maxsplit parameter of split () because the address has spaces, our splitting pattern, in it:

82 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

>>> [re.split(":? ", entry, 3) for entry in entries]
[["Ross’, "McFluff’, ’834.345.1254", 7’155 Elm Street’],
["Ronald’, ’'Heathmore’, ’892.345.3428’, ’'436 Finley Avenue’],
["Frank’, ’"Burger’, ’925.541.7625", 7’662 South Dogwood Way’],
["Heather’, ’'Albrecht’, ’'548.326.4584’, "919 Park Place’]]

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. Withamaxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[["Ross’, '"McFluff’, 7834.345.1254", ’"155’, "Elm Street’],
["Ronald’, ’"Heathmore’, ’7892.345.3428’, ’'436', ’'Finley Avenue’],
["Frank’, ’"Burger’, ’925.541.7625'", ’'662’, ’'South Dogwood Way’],
["Heather’, ’'Albrecht’, ’548.326.4584’, 919", ’'Park Place’]]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a
sentence except for the first and last characters:

>>> def repl (m):

inner_word = list (m.group(2))
random.shuffle (inner_word)
return m.group(l) + "".join(inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub (" (\w) (\w+) (\w)", repl, text)
"Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.’
>>> re.sub (" (\w) (\w+) (\w)", repl, text)

"Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.’

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if one
was a writer and wanted to find all of the adverbs in some text, he or she might use findall () in the following
manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly", text)
["carefully’, ’'quickly’]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as
it provides instances of MatchObject instead of strings. Continuing with the previous example, if one was a
writer who wanted to find all of the adverbs and their positions in some text, he or she would use finditer ()
in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly", text):
print ' 502d-502d: %s’ % (m.start (), m.end(), m.group(0))

07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash (* \’) in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code

8.2. re — Regular expression operations 83

The Python Library Reference, Release 2.6.5

are functionally identical:

>>> re.match (r"\W(.)\1\w", " ££f ")

<_sre.SRE_Match object at ...>
>>> re.match ("\\W (.)\\1\\w", " ££ ™)
<_sre.SRE_Match object at ...>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string
notation, this means r"\\". Without raw string notation, one must use "\ \\\ ", making the following lines of
code functionally identical:

>>> re.match (r"\\", r"\\")

<_sre.SRE_Match object at ...>
>>> re.match ("\\\\", r"\\")
<_sre.SRE_Match object at ...>

8.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It uses
format strings (explained below) as compact descriptions of the lay-out of the C structs and the intended conversion
to/from Python values. This can be used in handling binary data stored in files or from network connections, among
other sources.

The module defines the following exception and functions:

exception error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fimt, vi, v2, ...)
Return a string containing the values vl, v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

pack_into (fint, buffer, offset, vi, v2, ...)
Pack the values v1, v2, ... according to the given format, write the packed bytes into the writable
buffer starting at offset. Note that the offset is a required argument. New in version 2.5.

unpack (fint, string)
Unpack the string (presumably packed by pack (fmt, ...)) according to the given format. The result
is a tuple even if it contains exactly one item. The string must contain exactly the amount of data required
by the format (len (string) mustequal calcsize (fmt)).

unpack_ from (fint, buffer, [offset=0])
Unpack the buffer according to the given format. The result is a tuple even if it contains exactly one item.
The buffer must contain at least the amount of data required by the format (Len (buffer[offset:])
must be at least calcsize (fmt)). New in version 2.5.

calcsize (fint)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types:

84 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

Format C Type Python Notes
X pad byte no value
c char string of length 1
b signed char integer
B unsigned char integer
? _Bool bool (1)
h short integer
H unsigned short integer
i int integer
I unsigned int integer or long
1 long integer
L unsigned long long
aq long long long 2)
0 unsigned long long | long 2)
f float float
d double float
s char[] string
P char[] string
P void = long
Notes:

1. The ’ 2’ conversion code corresponds to the _Boo1l type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte. New in version 2.6.

2. The ' g’ and ' Q' conversion codes are available in native mode only if the platform C compiler supports
C long long,or, on Windows, __int64. They are always available in standard modes. New in version
2.2.

A format character may be preceded by an integral repeat count. For example, the format string * 4h’ means
exactly the same as * hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ’ s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for example, * 10s’ means a single 10-byte string, while * 10c’ means 10 characters. For
packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting
string always has exactly the specified number of bytes. As a special case, / 0s’ means a single, empty string
(while * Oc’ means O characters).

The ' p’ format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed
number of bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or
255, whichever is smaller. The bytes of the string follow. If the string passed in to pack () is too long (longer
than the count minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1,
it is padded with null bytes so that exactly count bytes in all are used. Note that for unpack (), the ' p’ format
character consumes count bytes, but that the string returned can never contain more than 255 characters.

Forthe " I’,"L’,’ g’ and ' Q' format characters, the return value is a Python long integer.

For the ' P’ format character, the return value is a Python integer or long integer, depending on the size needed
to hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned as the Python
integer 0. When packing pointer-sized values, Python integer or long integer objects may be used. For example,
the Alpha and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold
the pointer; other platforms use 32-bit pointers and will use a Python integer.

For the ’ 2’ format character, the return value is either True or False. When packing, the truth value of
the argument object is used. Either O or 1 in the native or standard bool representation will be packed, and any
non-zero value will be True when unpacking.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

8.3. struct — Interpret strings as packed binary data 85

The Python Library Reference, Release 2.6.5

Character Byte order Size and alignment
@ native native

= native standard

< little-endian standard

> big-endian standard

! network (= big-endian) | standard

If the first character is not one of these, * @ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun
processors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined
with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes; int and long are 4 bytes; long long (__int64 on Windows) is 8 bytes; float and
double are 32-bit and 64-bit IEEE floating point numbers, respectively. _Bool is 1 byte.

Note the difference between ’ @’ and ’ =’ : both use native byte order, but the size and alignment of the latter is
standardized.

The form " !/ is available for those poor souls who claim they can’t remember whether network byte order is
big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of ’ <’ or
14 >l .

The ’ P’ format character is only available for the native byte ordering (selected as the default or with the ’ @’
byte order character). The byte order character / =’ chooses to use little- or big-endian ordering based on the host
system. The struct module does not interpret this as native ordering, so the / P’ format is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import =«

>>> pack (’hhl’, 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ("hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize("hhl’)

8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. For example, the format * 11h01’ specifies two pad bytes at the end,
assuming longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect;
standard size and alignment does not enforce any alignment.

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:
>>> record = ’raymond \x32\x12\x08\x01\x08’

>>> name, serialnum, school, gradelevel = unpack (’<10sHHb’, record)

>>> from collections import namedtuple

>>> Student = namedtuple (’ Student’, ’'name serialnum school gradelevel’)
>>> Student._make (unpack (' <10sHHb’, s))

Student (name=’ raymond ", serialnum=4658, school=264, gradelevel=8)
See Also:

Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

86 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

8.3.1 Struct Objects

The st ruct module also defines the following type:

class Struct (format)
Return a new Struct object which writes and reads binary data according to the format string format. Cre-
ating a Struct object once and calling its methods is more efficient than calling the st ruct functions with
the same format since the format string only needs to be compiled once. New in version 2.5. Compiled
Struct objects support the following methods and attributes:

pack (v, v2, ...)
Identical to the pack () function, using the compiled format. (len (result) will equal
self.sizel)

pack_into (buffer, offset, vi, v2, ...)
Identical to the pack_into () function, using the compiled format.

unpack (string)
Identical to the unpack () function, using the compiled format. (len (string) must equal
self.size).

unpack_ from (buffer, [offset=0])
Identical to the unpack_from () function, using the compiled format.
(len (buffer[offset:]) mustbe atleast self.size).

format
The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the string) corresponding to format.

8.4 difflib — Helpers for computing deltas

New in version 2.1. This module provides classes and functions for comparing sequences. It can be used for
example, for comparing files, and can produce difference information in various formats, including HTML and
context and unified diffs. For comparing directories and files, see also, the £i1ecmp module.

class SequenceMatcher ()

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late
1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find
the longest contiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then applied recursively to the pieces of the sequences to
the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does
tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

class Differ ()
This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

8.4. difflib — Helpers for computing deltas 87

The Python Library Reference, Release 2.6.5

Code Meaning

ro

r— line unique to sequence 1
T+ 7 line unique to sequence 2
s line common to both sequences

| line not present in either input sequence

Lines beginning with ‘?° attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

class HEm1Diff ()

This

class can be used to create an HTML table (or a complete HTML file containing the table) showing a

side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can
be generated in either full or contextual difference mode.

The constructor for this class is:

__init__ ([tabsize], [wrapcolumn], [linejunk], [charjunk])

Initializes instance of Htm1Di f f.
tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by Html1Diff
to generate the side by side HTML differences). See ndiff () documentation for argument default
values and descriptions.

The following methods are public:

make_file (fromlines, tolines, [fromdesc], [todesc], [context], [numlines])

Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings
(both default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual
differences are to be shown, else the default is False to show the full files. numlines defaults to 5.
When context is True numlines controls the number of context lines which surround the difference
highlights. When context is False numlines controls the number of lines which are shown before a
difference highlight when using the “next” hyperlinks (setting to zero would cause the “next” hyper-
links to place the next difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines, [fromdesc], [todesc], [context], [numlines])

Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of
its use. New in version 2.4.

context_diff (a, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff
format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with %% or ———) are created with a trailing newline. This is
helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be
uniformly newline free.

88

Chapter 8. String Services

The Python Library Reference, Release 2.6.5

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the format returned by time.ctime (). If not specified, the strings default to
blanks.

>>> sl = [’'bacon\n’, ’'eggs\n’, ’"ham\n’, ’‘guido\n’]
>>> s2 = [’python\n’, "eggy\n’, ’"hamster\n’, ’‘guido\n’]
>>> for line in context_diff(sl, s2, fromfile=’'before.py’, tofile="after.py’):
sys.stdout.write (line) # doctest: +NORMALIZE WHITESPACE
x before.py
-—— after.py
*khkhkkhkkkkkhkkkkk Kk kk
kxk 1,4 *kxk
! bacon
! eggs
! ham
guido
-— 1,4 ———-
! python
! eggy
! hamster
guido

See A command-line interface to difflib for a more detailed example. New in version 2.3.

get_close_matches (word, possibilities, [n], [cutoff])
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than
0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches (’appel’, ['ape’, ’'apple’, ’'peach’, ’'puppy’]l)
["apple’, "ape’]

>>> import keyword

>>> get_close_matches (' wheel’, keyword.kwlist)

["while’]

>>> get_close_matches ('apple’, keyword.kwlist)

[]

>>> get_close_matches (’accept’, keyword.kwlist)

["except’]

ndiff (a, b, [linejunk], [charjunk])
Compare a and b (lists of strings); return a Di f fe r-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false
if not. The default is (None), starting with Python 2.3. Before then, the default was the module-level
function IS_TLINE_JUNK (), which filters out lines without visible characters, except for at most one
pound character (” #’). As of Python 2.3, the underlying SequenceMatcher class does a dynamic
analysis of which lines are so frequent as to constitute noise, and this usually works better than the pre-2.3
default.

8.4. difflib — Helpers for computing deltas 89

The Python Library Reference, Release 2.6.5

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level function IS_CHARACTER_JUNK (), which filters out whitespace
characters (a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff (’one\ntwo\nthree\n’ .splitlines (1),
c. "ore\ntree\nemu\n’ .splitlines (1))
>>> print '’ .join(diff),

- one

s A

+ ore

s A

- two

— three

?
+ tree
+ emu

restore (sequence, which)

Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1
or 2 (parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff (’one\ntwo\nthree\n’ .splitlines (1),
L. "ore\ntree\nemu\n’ .splitlines (1))
>>> diff = list(diff) # materialize the generated delta into a 1list
>>> print '’ .join(restore(diff, 1)),

one

two

three

>>> print '’ .join(restore(diff, 2)),

ore

tree

emu

unified_diff (q, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm])

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @Q) are created with a trailing newline. This
is helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the format returned by time.ctime (). If not specified, the strings default to
blanks.

>>> gl = [’'bacon\n’, ’"eggs\n’, ’"ham\n’, ’‘guido\n’]
>>> 52 = [’python\n’, "eggy\n’, ’"hamster\n’, ’‘guido\n’]

>>> for line in unified_diff(sl, s2, fromfile='before.py’, tofile="after.py’):

90

Chapter 8. String Services

The Python Library Reference, Release 2.6.5

. sys.stdout.write (line) # doctest: +NORMALIZE WHITESPACE
-—— before.py
+++ after.py

@@ -1,4 +1,4 Q@
—bacon

-eggs

—ham

+python

teggy

thamster

guido

See A command-line interface to difflib for a more detailed example. New in version 2.3.

IS_LINE_JUNK (line)
Return true for ignorable lines. The line /ine is ignorable if line is blank or contains a single ’ #’ , otherwise
it is not ignorable. Used as a default for parameter linejunk in ndiff () before Python 2.3.

IS_CHARACTER_ JUNK (ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See Also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

8.4.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class SequenceMatcher ([isjunk, [a, [b]]])
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk
is equivalent to passing lambda x: 0;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements
of both sequences must be hashable.

SequenceMat cher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMat cher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set_seqg2 () to set the commonly used sequence
once and call set_seql () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)
Find longest matching block in a [alo:ahi] and b [blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, 7j, k) such that
ali:i+k] is equal to b[J:J+k], where alo <= i <= i+k <= ahi and blo <= j <=
j+k <= bhi. Forall (i’, 3j’, k') meeting those conditions, the additional conditions k >=

8.4. difflib — Helpers for computing deltas 91

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

The Python Library Reference, Release 2.6.5

k’,1i <= i’,andif i == 1i’, j <= j’ are also met. In other words, of all maximal matching
blocks, return one that starts earliest in a, and of all those maximal matching blocks that start earliest
in a, return the one that starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents * abcd’ from
matching the / abcd’ at the tail end of the second sequence directly. Instead only the abcd’ can
match, and matches the leftmost abcd’ in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0). Changed in version 2.6: This method returns a
named tuple Match (a, b, size).

get_matching blocks ()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n),and
means thata[i:1i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with
n == 0.If (i, j, n)and (i’, 3j’, n’) are adjacent triples in the list, and the second is not
the last triple in the list, then i+n != i’ or j+n != Jj’; in other words, adjacent triples always
describe non-adjacent equal blocks. Changed in version 2.5: The guarantee that adjacent triples always
describe non-adjacent blocks was implemented.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, 12,
j1, Jj2). Thefirsttuple has i1 == jl == O, and remaining tuples have i/ equal to the i2 from
the preceding tuple, and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning
"replace’ | a[il:i2] should be replacedby b[j1:32].
"delete’ al[il:12] should be deleted. Note that j1 == 72 in this case.
’insert’ b[j1:732] shouldbeinsertedat a[il:11]. Notethat i1 == 12 in this case.
"equal’ al[il:i2] == b[jl:32] (the sub-sequences are equal).
For example:
>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)
>>> for tag, il, 12, jl, j2 in s.get_opcodes():
print (" alsd:%d] (%s) bl[sd:sd] (%s)" %

(tag, 11, i2, aflil:i2], J1, 3j2, b[jl:321]1))
delete a[0:1] (g) b[0:0] ()

equal a[l:3] (ab) b[0:2] (ab)
replace a[3:4] (x) bl[2:3] (y)

92 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

equal a[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (f)

get_grouped_opcodes ([n])
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get _opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes (). New in version 2.3.

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in
common.

This is expensive to compute if get_matching_blocks () or get_opcodes () hasn’t already
been called, in which case you may want to try quick_ratio () or real_quick_ratio () first
to get an upper bound.

quick_ratio()
Return an upper bound on ratio () relatively quickly.

This isn’t defined beyond that it is an upper bound on ratio (), and is faster to compute.

real_quick_ratio ()
Return an upper bound on ratio () very quickly.

This isn’t defined beyond that it is an upper bound on ratio (), and is faster to compute than either
ratio () orquick_ratio().

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, although quick_ratio () and real quick_ratio () are always at least as large
asratio():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

8.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio ()
value over 0.6 means the sequences are close matches:

>>> print round(s.ratio (), 3)
0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching blocks():
Ce. print "a|] and bl] match for elements" % block
al[0] and b[0] match for 8 elements

8.4. difflib — Helpers for computing deltas 93

The Python Library Reference, Release 2.6.5

al[8] and b[l7] match for 21 elements
al29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes|():

c. print " alsd:2d] b[2d:3d]" % opcode
equal a[0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:29] b[17:38]

See Also:

e The get_close_matches () function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

 Simple version control recipe for a small application built with SequenceMatcher.

8.4.3 Differ Objects

Note that D1 f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing
a longer diff.

The Di f fer class has this constructor:

class Differ ([linejunk, [charjunk]])
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is viathe writelines () method of a file-like
object.

8.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = '’’’ 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. 777 splitlines (1)

>>> len (textl)

4

>>> textl[0][-1]

I \nl

94 Chapter 8. String Services

http://code.activestate.com/recipes/576729/

The Python Library Reference, Release 2.6.5

>>> text2 =’’’ 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
777 splitlines (1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a Di f fer object we may pass functions to filter out line and character “junk.” See

the Differ () constructor for details.

Finally, we compare the two:

>>> result = list(d.compare (textl, text2))
result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n’,

- 2. Explicit is better than implicit.\n’,
i 3. Simple is better than complex.\n’,

"+ 3 Simple is better than complex.\n’,

"2 ++\n’,

" — 4. Complex is better than complicated.\n’,
ro ~ ———= A\l'l'r
"+ 4. Complicated is better than complex.\n’,
r? ++++ ~“\n’,

"+ 5. Flat 1is better than nested.\n’]
As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines (result)
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
- 3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
Pl A ____ A
+ 4. Complicated is better than complex.
? +4+4+4+ ~ ~
+ 5. Flat is better than nested.

8.4.5 A command-line interface to difflib

This example shows how to use difflib to create a dif f-like utility. It is also contained in the Python source

distribution, as Tools/scripts/diff.py.

"mm Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mmn

import sys, os, time, difflib, optparse

8.4. difflib — Helpers for computing deltas

The Python Library Reference, Release 2.6.5

def main():
Configure the option parser
usage = "usage: S$prog [options] fromfile tofile"
parser = optparse.OptionParser (usage)
parser.add_option("-c", action="store_true", default=False,

help=’'Produce a context format diff (default)’)
parser.add_option("-u", action="store_true", default=False,

help='Produce a unified format diff’)
hlp = ’'Produce HTML side by side diff (can use -c and -1 in conjunction)’
parser.add_option("-m", action="store_true", default=False, help=hlp)
parser.add_option("-n", action="store_true", default=False,

help=’'Produce a ndiff format diff’)
parser.add_option("-1", "--lines", type="int", default=3,

help=’Set number of context lines (default 3)’)
(options, args) = parser.parse_args ()

if len(args) == 0:
parser.print_help ()
sys.exit (1)
if len(args) != 2:
parser.error ("need to specify both a fromfile and tofile")

n = options.lines
fromfile, tofile = args # as specified in the usage string

we’re passing these as arguments to the diff function

fromdate = time.ctime (os.stat (fromfile) .st_mtime)
todate = time.ctime (os.stat (tofile) .st_mtime)
fromlines = open(fromfile, ’'U’).readlines|()
tolines = open(tofile, 'U’).readlines()

if options.u:
diff = difflib.unified _diff (fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file(fromlines, tolines, fromfile,
tofile, context=options.c,
numlines=n)
else:
diff = difflib.context_diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)

we’re using writelines because diff is a generator
sys.stdout.writelines (diff)

if name == '_main_ '":
main ()

8.5 stringIO — Read and write strings as files

This module implements a file-like class, St ringIO, that reads and writes a string buffer (also known as memory
files). See the description of file objects for operations (section File Objects). (For standard strings, see st r and
unicode.)

96 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

class StringIO ([buffer])
When a St ringIO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, the St ringIO will start empty. In both cases, the initial file position
starts at zero.

The St ringIO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as 7-bit ASCII (that use the 8th bit) will cause a
UnicodeError to be raised when getvalue () is called.

The following methods of St ringIO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before the St ringIO object’s close () method is
called. See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause
this method to raise UnicodeError.

close ()
Free the memory buffer. Attempting to do further operations with a closed St ringIO object will raise a
ValueError.

Example usage:

import StringIO

output = StringIO.StringIO ()
output.write ('First line.\n’)
print >>output, ’'Second line.’

Retrieve file contents —— this will be
'First line.\nSecond line.\n’
contents = output.getvalue ()

Close object and discard memory buffer —-—
.getvalue() will now raise an exception.
output.close ()

8.6 cStringIO — Faster version of StringIO

The module cStringIO provides an interface similar to that of the StringIO module. Heavy use of
StringIO.StringIO objects can be made more efficient by using the function St ringIO () from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your
own version using subclassing. It’s not possible to set attributes on it. Use the original St ringIO module in
those cases.

Unlike the memory files implemented by the St ringIO module, those provided by this module are not able to
accept Unicode strings that cannot be encoded as plain ASCII strings.

Calling StringIO () with a Unicode string parameter populates the object with the buffer representation of the
Unicode string, instead of encoding the string.

Another difference from the St ringIO module is that calling StringIO () with a string parameter creates
a read-only object. Unlike an object created without a string parameter, it does not have write methods. These
objects are not generally visible. They turn up in tracebacks as St ringI and StringO.

The following data objects are provided as well:

InputType
The type object of the objects created by calling St ringIO () with a string parameter.

OutputType
The type object of the objects returned by calling St ringIO () with no parameters.

8.6. cStringIO — Faster version of StringIO 97

The Python Library Reference, Release 2.6.5

There is a C API to the module as well; refer to the module source for more information.
Example usage:

import cStringIO

output = cStringIO.StringIO()
output.write ('First line.\n’)
print >>output, ’'Second line.’

Retrieve file contents —— this will be
’First line.\nSecond line.\n’
contents = output.getvalue ()

Close object and discard memory buffer —-—
.getvalue() will now raise an exception.
output.close()

8.7 textwrap — Text wrapping and filling

New in version 2.3. The textwrap module provides two convenience functions, wrap () and £111 (), as well
as TextWrapper, the class that does all the work, and a utility function dedent (). If you're just wrapping
or filling one or two text strings, the convenience functions should be good enough; otherwise, you should use an
instance of TextWrapper for efficiency.

wrap (text, [width, [...]])
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
width defaults to 70.

£il1l (text, [width, [...]])
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 ()
is shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £111 () accepts exactly the same keyword arguments as wrap () .

Both wrap () and £111 () work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long
words be broken if necessary, unless TextWrapper.break_long_words is set to false.

An additional utility function, dedent (), is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

dedent (fext)
Remove any common leading whitespace from every line in fext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello™" are considered to have no common leading whitespace. (This behaviour is new in Python 2.5;
older versions of this module incorrectly expanded tabs before searching for common leading whitespace.)

For example:

98 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

def test():
end first line with \ to avoid the empty line!
s = III\
hello
world
print repr (s) # prints 7 hello\n world\n /
print repr(dedent(s)) # prints “hello\n world\n’

class TextWrapper (...)
The TextWrapper constructor accepts a number of optional keyword arguments. Each argument corre-
sponds to one instance attribute, so for example

wrapper = TextWrapper (initial_indent="x ")
is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "x "

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in
the input text longer than width, TextWrapper guarantees that no output line will be longer than
width characters.

expand_tabs
(default: True) If true, then all tab characters in fext will be expanded to spaces using the
expandtabs () method of text.

replace_whitespace
(default: True) If true, each whitespace character (as defined by st ring.whitespace) remaining
after tab expansion will be replaced by a single space.

Note: If expand_tabs is false and replace_whitespace is true, each tab character will be
replaced by a single space, which is not the same as tab expansion.

drop_whitespace
(default: True) If true, whitespace that, after wrapping, happens to end up at the beginning or end of
a line is dropped (leading whitespace in the first line is always preserved, though). New in version 2.6:
Whitespace was always dropped in earlier versions.

initial indent
(default:) String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line.

subsequent_indent
(default:) String that will be prepended to all lines of wrapped output except the first. Counts
towards the length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sen-
tences are always separated by exactly two spaces. This is generally desired for text in a monospaced
font. However, the sentence detection algorithm is imperfect: it assumes that a sentence ending con-
sists of a lowercase letter followed by one of ¥ .7, " !/ or ' ?’, possibly followed by one of "’
or "’ ", followed by a space. One problem with this is algorithm is that it is unable to detect the
difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

8.7. textwrap — Text wrapping and filling 99

The Python Library Reference, Release 2.6.5

and “Spot.” in
[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lower-
case letter,” and a convention of using two spaces after a period to separate sentences on the same line,
it is specific to English-language texts.

break_long words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer
than width. (Long words will be put on a line by themselves, in order to minimize the amount by
which width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in
compound words, as it is customary in English. If false, only whitespaces will be considered as
potentially good places for line breaks, but you need to set break_long_words to false if you
want truly insecable words. Default behaviour in previous versions was to always allow breaking
hyphenated words. New in version 2.6.

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in text (a string) so every line is at most width characters long. All
wrapping options are taken from instance attributes of the TextWrapper instance. Returns a list of
output lines, without final newlines.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

8.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search_function)

Register a codec search function. Search functions are expected to take one argument, the encoding name
in all lower case letters, and return a CodecInfo object having the following attributes:

ename The name of the encoding;
eencode The stateless encoding function;
edecode The stateless decoding function;
eincrementalencoder An incremental encoder class or factory function;
eincrementaldecoder An incremental decoder class or factory function;
estreamwriter A stream writer class or factory function;
estreamreader A stream reader class or factory function.

The various functions or classes take the following arguments:

encode and decode: These must be functions or methods which have the same interface as the
encode ()/decode () methods of Codec instances (see Codec Interface). The functions/methods are
expected to work in a stateless mode.

100

Chapter 8. String Services

The Python Library Reference, Release 2.6.5

incrementalencoder and incrementaldecoder: These have to be factory functions providing the following
interface:

factory(errors='strict’)

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder and IncrementalDecoder, respectively. Incremental codecs can maintain
state.

streamreader and streamwriter: These have to be factory functions providing the following interface:
factory(stream, errors=’'strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter and St reamReader, respectively. Stream codecs can maintain state.

Possible values for errors are
e’ strict’: raise an exception in case of an encoding error

e’ replace’: replace malformed data with a suitable replacement marker, such as ’ 2’ or
"\ufffd’

*’ ignore’: ignore malformed data and continue without further notice

e’ xmlcharrefreplace’: replace with the appropriate XML character reference (for encoding
only)

*’backslashreplace’: replace with backslashed escape sequences (for encoding only)
as well as any other error handling name defined via register_error ().
In case a search function cannot find a given encoding, it should return None.

lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions
is scanned. If no CodecInfo object is found, a LookupError is raised. Otherwise, the CodecInfo
object is stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which use 1ookup ()
for the codec lookup:

getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder. New in version 2.5.

getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder. New in version 2.5.

getreader (encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

8.8. codecs — Codec registry and base classes 101

The Python Library Reference, Release 2.6.5

getwriter (encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

register_ error (name, error_handler)
Register the error handling function error_handler under the name name. error_handler will be called
during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding error_handler will be called with a UnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding the original input at the
specified position. Negative position values will be treated as being relative to the end of the input string. If
the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

strict_errors (exception)
Implements the st rict error handling: each encoding or decoding error raises a UnicodeError.

replace_errors (exception)
Implements the replace error handling: malformed data is replaced with a suitable replacement character
such as ’ ?’ in bytestrings and \uf££d’ in Unicode strings.

ignore_errors (exception)
Implements the ignore error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

xmlcharrefreplace_errors (exception)
Implements the xmlcharrefreplace error handling (for encoding only): the unencodable character is
replaced by an appropriate XML character reference.

backslashreplace_errors (exception)
Implements the backslashreplace error handling (for encoding only): the unencodable character is
replaced by a backslashed escape sequence.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode, [encoding, [errors, [buffering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent encod-
ing/decoding. The default file mode is ’ r’ meaning to open the file in read mode.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects
for most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to avoid
data loss due to encodings using 8-bit values. This means that no automatic conversion of / \n’ is done on
reading and writing.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to ’ strict’ which causes a ValueError
to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

EncodedFile (file, input, [output, [errors]])
Return a wrapped version of file which provides transparent encoding translation.

102 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

Strings written to the wrapped file are interpreted according to the given input encoding and then written to
the original file as strings using the oufput encoding. The intermediate encoding will usually be Unicode
but depends on the specified codecs.

If output is not given, it defaults to input.

errors may be given to define the error handling. It defaults to ’ strict’, which causes ValueError to
be raised in case an encoding error occurs.

iterencode (iterable, encoding, [errors])
Uses an incremental encoder to iteratively encode the input provided by iterable. This function is a gener-
ator. errors (as well as any other keyword argument) is passed through to the incremental encoder. New in
version 2.5.

iterdecode (iterable, encoding, [errors])
Uses an incremental decoder to iteratively decode the input provided by iterable. This function is a gener-
ator. errors (as well as any other keyword argument) is passed through to the incremental decoder. New in
version 2.5.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

BOM

BOM_BE

BOM_LE

BOM_UTF8

BOM_UTF16

BOM_UTF16_BE

BOM _UTF16_LE

BOM_UTF32

BOM_UTF32_BE

BOM _UTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF 16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte or-
der, BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for BOM_UTF16_BE.
The others represent the BOM in UTF-8 and UTF-32 encodings.

8.8.1 Codec Base Classes

The codecs module defines a set of base classes which define the interface and can also be used to easily write
your own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode () and decode () methods may implement different
error handling schemes by providing the errors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning

"strict’ Raise UnicodeError (or a subclass); this is the default.

"ignore’ Ignore the character and continue with the next.

"replace’ Replace with a suitable replacement character; Python will use the official U+FFFD
REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ‘?” on
encoding.

" xmlcharrefr&Replace With the appropriate XML character reference (only for encoding).

"backslashre®eplaeé with backslashed escape sequences (only for encoding).

The set of allowed values can be extended via register_error ().

8.8. codecs — Codec registry and base classes 103

The Python Library Reference, Release 2.6.5

Codec Objects
The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

encode (input, [errors])
Encodes the object input and returns a tuple (output object, length consumed). While codecs are not re-
stricted to use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string
using a particular character set encoding (e.g., cp1252 or iso-8859-1).

errors defines the error handling to apply. It defaults to * st rict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

decode (input, [errors])
Decodes the object input and returns a tuple (output object, length consumed). In a Unicode context,
decoding converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides the bf getreadbuf buffer slot. Python strings, buffer objects
and memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaults to ’ st rict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode () /decode () method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode () /decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

New in version 2.5. The IncrementalEncoder class is used for encoding an input in multiple steps. It defines
the following methods which every incremental encoder must define in order to be compatible with the Python
codec registry.

class IncrementalEncoder ([errors])
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors
keyword argument. These parameters are predefined:

e’ strict’ Raise ValueError (or a subclass); this is the default.

*’ ignore’ Ignore the character and continue with the next.

e’ replace’ Replace with a suitable replacement character

e’ xmlcharrefreplace’ Replace with the appropriate XML character reference

*’backslashreplace’ Replace with backslashed escape sequences.

104 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalEncoder object.

The set of allowed values for the errors argument can be extended with register_error ().

encode (object, [final])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state.

IncrementalDecoder Objects
The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following
methods which every incremental decoder must define in order to be compatible with the Python codec registry.

class IncrementalDecoder ([errors])
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors
keyword argument. These parameters are predefined:

¢’ strict’ Raise ValueError (or a subclass); this is the default.
e’ ignore’ Ignore the character and continue with the next.
*’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalDecoder object.

The set of allowed values for the errors argument can be extended with register_error ().

decode (object, [final])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true
the decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g.
because of incomplete byte sequences at the end of the input) it must initiate error handling just like
in the stateless case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encoding submodules very easily. See encodings.ut f_8 for an example of how this is done.

StreamWriter Objects
The StreamWriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class StreamWriter (stream, [errors])
Constructor for a St reamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing binary data.

8.8. codecs — Codec registry and base classes 105

The Python Library Reference, Release 2.6.5

The St reamWriter may implement different error handling schemes by providing the errors keyword
argument. These parameters are predefined:

e’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

*’ replace’ Replace with a suitable replacement character

' xmlcharrefreplace’ Replace with the appropriate XML character reference
*’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamWriter
object.

The set of allowed values for the errors argument can be extended with register_error ().

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamWr it er must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects
The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class StreamReader (stream, [errors])
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The St reamReader may implement different error handling schemes by providing the errors keyword
argument. These parameters are defined:

e’ strict’ Raise ValueError (or a subclass); this is the default.
e’ ignore’ Ignore the character and continue with the next.
*’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamReader
object.

The set of allowed values for the errors argument can be extended with register_error ().

read ([size, [chars, [firstline]]])
Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the stream. read () will never return more than
chars characters, but it might return less, if there are not enough characters available.

106 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

size indicates the approximate maximum number of bytes to read from the stream for decoding pur-
poses. The decoder can modify this setting as appropriate. The default value -1 indicates to read and
decode as much as possible. size is intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on
later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state
markers are available on the stream, these should be read too. Changed in version 2.4: chars argument
added.Changed in version 2.4.2: firstline argument added.

readline ([size, [keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s readline () method.

If keepends is false line-endings will be stripped from the lines returned. Changed in version 2.4:
keepends argument added.

readlines ([sizehint, [keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if
keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReaderWriter Objects

The St reamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the
instance.

class StreamReaderWriter (stream, Reader, Writer, errors)
Creates a St reamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the St reamReader and St reamiWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of St reamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects
The St reamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the
instance.

8.8. codecs — Codec registry and base classes 107

The Python Library Reference, Release 2.6.5

class StreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work
on the frontend (the input to read () and output of write ()) while Reader and Writer work on the
backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader, Writer must be factory functions or classes
providing objects of the St reamReader and St reamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend translation.
The intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use
Unicode as the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and St reamWriter classes.
They inherit all other methods and attributes from the underlying stream.

8.8.2 Encodings and Unicode

Unicode strings are stored internally as sequences of codepoints (to be precise as Py_UNICODE arrays). Depend-
ing on the way Python is compiled (either via ——enable-unicode=ucs2 or ——enable-unicode=ucs4,
with the former being the default) Py_ UNICODE is either a 16-bit or 32-bit data type. Once a Unicode object
is used outside of CPU and memory, CPU endianness and how these arrays are stored as bytes become an is-
sue. Transforming a unicode object into a sequence of bytes is called encoding and recreating the unicode object
from the sequence of bytes is known as decoding. There are many different methods for how this transformation
can be done (these methods are also called encodings). The simplest method is to map the codepoints 0-255 to
the bytes 0x0-Oxff. This means that a unicode object that contains codepoints above U+00FF can’t be en-
coded with this method (which is called ' latin-1’ or ' is0o—-8859-1'). unicode.encode () will raise
a UnicodeEncodeError that looks like this: UnicodeEncodeError: ’latin-1’ codec can’t
encode character u’\ul234’ in position 3: ordinal not in range (256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all unicode
code points and how these codepoints are mapped to the bytes 0x0-0xf£. To see how this is done simply open
e.g. encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string
constant with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints defined in unicode. A simple
and straightforward way that can store each Unicode code point, is to store each codepoint as two consecutive
bytes. There are two possibilities: Store the bytes in big endian or in little endian order. These two encodings
are called UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if e.g. you use UTF-16-BE on a
little endian machine you will always have to swap bytes on encoding and decoding. UTF-16 avoids this problem:
Bytes will always be in natural endianness. When these bytes are read by a CPU with a different endianness, then
bytes have to be swapped though. To be able to detect the endianness of a UTF-16 byte sequence, there’s the so
called BOM (the “Byte Order Mark™). This is the Unicode character U+FEFF. This character will be prepended
to every UTF-16 byte sequence. The byte swapped version of this character (OxFFFE) is an illegal character
that may not appear in a Unicode text. So when the first character in an UTF-16 byte sequence appears to be a
U+FFFE the bytes have to be swapped on decoding. Unfortunately upto Unicode 4.0 the character U+FEFF had
a second purpose as a ZERO WIDTH NO-BREAK SPACE: A character that has no width and doesn’t allow a
word to be split. It can e.g. be used to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a
ZERO WIDTH NO-BREAK SPACE has been deprecated (with U+2060 (WORD JOINER) assuming this role).
Nevertheless Unicode software still must be able to handle U+FEFF in both roles: As a BOM it’s a device to
determine the storage layout of the encoded bytes, and vanishes once the byte sequence has been decoded into
a Unicode string; as a ZERO WIDTH NO-BREAK SPACE it’s a normal character that will be decoded like any
other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: Marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to

108 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

six 1 bits followed by a O bit. Unicode characters are encoded like this (with x being payload bits, which when

concatenated give the Unicode character):

Range Encoding

U-00000000...U-0000007F | OXxXXXXXX

U-00000080...U-000007FF | 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxX 10XXXXXX

U-00010000 ... U-001FFFFF | 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

U-00200000 ... U-03FFFFFF | 111110xx 10xxxxxx 10xxxxxx 10xxxxxX 10XXXXXX
U-04000000 ... U=7FFFFFFF | 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10XxXxXXX 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded Unicode string
(even if it’s the first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a Uni-
code string. Each charmap encoding can decode any random byte sequence. However that’s not possible with
UTEF-8, as UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the
reliability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python
2.5 calls "ut £-8-sig") for its Notepad program: Before any of the Unicode characters is written to the file, a
UTF-8 encoded BOM (which looks like this as a byte sequence: Oxef, Oxbb, 0xbf) is written. As it’s rather
improbable that any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in 1s0-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte
sequence, but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write
Oxef, Oxbb, 0xbf as the first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they
appear as the first three bytes in the file.

8.8.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.
Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid
aliases; therefore, e.g. “ut £-8 is a valid alias for the “ ut £_8"’ codec.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

¢ an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

* an IBM EBCDIC code page
e an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbigd Traditional
bigShkscs big5-hkscs, hkscs Traditional
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1BM437 English

8.8. codecs — Codec registry and base classes 109

The Python Library Reference, Release 2.6.5

Table 8.1 — continued from previous page

cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Eu
cp737 Greek
cp775 IBMT775 Baltic langt
cp850 850, IBMS850 Western Eu
cp852 852, IBM&52 Central and
cp855 855, IBMS855 Bulgarian, |
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM&61 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, No:
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional
cpl1006 Urdu
cpl1026 ibm1026 Turkish
cpl140 ibm1140 Western Eu
cpl250 windows-1250 Central and
cpl251 windows-1251 Bulgarian, |
cpl252 windows-1252 Western Eu
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic langt
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001 Korean
gb2312 chinese, csiso58gb231280, euc- cn, euccn, eucgb2312-cn, gb2312-1980, gb2312-80, iso- ir-58 | Simplified (
gbk 936, cp936, ms936 Unified Chi
gb18030 gb18030-2000 Unified Chi
hz hzgb, hz-gb, hz-gb-2312 Simplified (
1802022_jp ¢sis02022jp, 1s02022jp, is0-2022-jp Japanese
1502022 _jp_1 1802022jp-1, is0-2022-jp-1 Japanese
i802022_jp_2 1502022jp-2, is0-2022-jp-2 Japanese, K
1502022_jp_2004 | is02022jp-2004, is0-2022-jp-2004 Japanese
1502022_jp_3 1502022jp-3, is0-2022-jp-3 Japanese
1802022_jp_ext 1802022jp-ext, is0-2022-jp-ext Japanese
1502022 _kr ¢s1802022kr, 1802022k, is0-2022-kr Korean
latin_1 150-8859-1, i1s08859-1, 8859, cp819, latin, latinl, L1 West Europ
1508859 2 180-8859-2, latin2, L2 Central and
1s08859_3 180-8859-3, latin3, L3 Esperanto, !
1s08859_4 1s0-8859-4, latin4, L4 Baltic langt
is08859_5 180-8859-5, cyrillic Bulgarian, |
1s08859_6 180-8859-6, arabic Arabic
1508859 7 1s0-8859-7, greek, greek8 Greek
1s08859_8 180-8859-8, hebrew Hebrew
110 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

Table 8.1 — continued from previous page

is08859_9
is08859_10
1s08859_13
1s08859_14
1s08859_15
johab
koi8_r
koi8_u
mac_cyrillic
mac_greek
mac_iceland
mac_latin2
mac_roman
mac_turkish
ptcpl54
shift_jis
shift_jis_2004
shift_jisx0213
utf 32

utf 32 be
utf 32 le
utf_16
utf_16_be
utf_16_le
utf 7

utf 8
utf_8_sig

180-8859-9, latin5, L5
180-8859-10, latin6, L6
1s0-8859-13
1s0-8859-14, 1atin8, L8
150-8859-15

cpl361, ms1361

maccyrillic

macgreek

maciceland

maclatin2, maccentraleurope
macroman

macturkish

csptepl54, pt154, cpl54, cyrillic-asian
csshiftjis, shiftjis, sjis, s_jis
shiftjis2004, sjis_2004, sjis2004
shiftjisx0213, sjisx0213, s_jisx0213
U32, utf32

UTF-32BE

UTF-32LE

U16, utf16

UTF-16BE

UTF-16LE

U7, unicode-1-1-utf-7

U8, UTF, utf8

Turkish
Nordic lang
Baltic langt
Celtic langt
Western Eu;
Korean
Russian
Ukrainian
Bulgarian, |
Greek
Icelandic
Central and
Western Eu:
Turkish
Kazakh
Japanese
Japanese
Japanese

all language
all language
all language
all language
all language
all language
all language
all language
all language

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don’t convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery
that any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the
“decoding” direction is listed as operand type in the table.

8.8. codecs — Codec registry and base classes

111

The Python Library Reference, Release 2.6.5

Codec Aliases Operand Purpose
type
base64_coddsase64, base-64 byte Convert operand to MIME base64
string
bz2_codec| bz2 byte Compress the operand using bz2
string
hex_codec| hex byte Convert operand to hexadecimal representation, with two digits
string per byte
idna Uni- Implements RFC 3490, see also encodings.idna
code
string
mbcs dbcs Uni- Windows only: Encode operand according to the ANSI codepage
code (CP_ACP)
string
palmos Uni- Encoding of PalmOS 3.5
code
string
puny- Uni- Implements RFC 3492
code code
string
quo- quopri, byte Convert operand to MIME quoted printable
pri_codec | quoted-printable, string
quotedprintable
raw_unicogle_escape Uni- Produce a string that is suitable as raw Unicode literal in Python
code source code
string
rot_13 rotl3 Uni- Returns the Caesar-cypher encryption of the operand
code
string
string_escadpe byte Produce a string that is suitable as string literal in Python source
string code
unde- any Raise an exception for all conversions. Can be used as the system
fined encoding if no automatic coercion between byte and Unicode
strings is desired.
uni- Uni- Produce a string that is suitable as Unicode literal in Python
code_escape code source code
string
uni- Uni- Return the internal representation of the operand
code_internal code
string
uu_codec | uu byte Convert the operand using uuencode
string
zlib_codec| zip, zlib byte Compress the operand using gzip
string

New in version 2.3: The idna and punycode encodings.

8.8.4 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3. This module implements RFC 3490 (Internationalized Domain Names in Applications) and
RFC 3492 (Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the
punycode encoding and st ringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name
containing non-ASCII characters (such as www.Alliancefrancaise.nu) is converted into an ASCII-
compatible encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the do-
main name is then used in all places where arbitrary characters are not allowed by the protocol, such as DNS
queries, HTTP Host fields, and so on. This conversion is carried out in the application; if possible invisible to

112 Chapter 8. String Services

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 2.6.5

the user: The application should transparently convert Unicode domain labels to IDNA on the wire, and convert
back ACE labels to Unicode before presenting them to the user.

Python supports this conversion in several ways: The idna codec allows to convert between Unicode and the
ACE. Furthermore, the socket module transparently converts Unicode host names to ACE, so that applications
need not be concerned about converting host names themselves when they pass them to the socket module. On top
of that, modules that have host names as function parameters, such as httplib and ftplib, accept Unicode
host names (httplib then also transparently sends an IDNA hostname in the Host field if it sends that field at
all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

nameprep (label)
Return the nameprepped version of label. The implementation currently assumes query strings, So
AllowUnassigned is true.

ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

8.8.5 encodings.utf_8_sig— UTF-8 codec with BOM signature

New in version 2.5. This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM
will be prepended to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write
to the byte stream). For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

8.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based on the UnicodeData.txt file version 5.1.0 which is publicly
available from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 5.1.0 (see
http://www.unicode.org/Public/5.1.0/ucd/UCD.html). It defines the following functions:

lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found, KeyError is raised.

name (unichr, [default])
Returns the name assigned to the Unicode character unichr as a string. If no name is defined, default is
returned, or, if not given, ValueError is raised.

decimal (unichr, [default])
Returns the decimal value assigned to the Unicode character unichr as integer. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

digit (unichr, [default])
Returns the digit value assigned to the Unicode character unichr as integer. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

numeric (unichr, [default])
Returns the numeric value assigned to the Unicode character unichr as float. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

8.9. unicodedata — Unicode Database 113

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
ftp://ftp.unicode.org/
http://www.unicode.org/Public/5.1.0/ucd/UCD.html

The Python Library Reference, Release 2.6.5

category (unichr)
Returns the general category assigned to the Unicode character unichr as string.

bidirectional (unichr)
Returns the bidirectional category assigned to the Unicode character unichr as string. If no such value is
defined, an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode character unichr as integer. Returns 0 if no
combining class is defined.

east_ asian width (unichr)
Returns the east asian width assigned to the Unicode character unichr as string. New in version 2.4.

mirrored (unichr)
Returns the mirrored property assigned to the Unicode character unichr as integer. Returns 1 if the character
has been identified as a “mirrored” character in bidirectional text, O otherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode character unichr as string. An empty
string is returned in case no such mapping is defined.

normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
can also be expressed as the sequence U+0327 (COMBINING CEDILLA) U+0043 (LATIN CAPITAL
LETTER C).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence.
In Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTER I). However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility
characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining
characters and the other doesn’t, they may not compare equal. New in version 2.3.

In addition, the module exposes the following constant:

unidata_version
The version of the Unicode database used in this module. New in version 2.3.

ued_3 2 0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA). New in
version 2.5.

Examples:

>>> import unicodedata

>>> unicodedata.lookup (' LEFT CURLY BRACKET')
u’ {’

>>> unicodedata.name (u’ /")

" SOLIDUS’

>>> unicodedata.decimal (u’9’)

114 Chapter 8. String Services

The Python Library Reference, Release 2.6.5

9
>>> unicodedata.decimal (u’a’)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: not a decimal
>>> unicodedata.category (u’A’) # 'L’etter, ’‘u’ppercase
ILuI
>>> unicodedata.bidirectional (u’ \u0660’) # ’'A’rabic, ’N’umber
IANI

8.10 stringprep — Internet String Preparation

New in version 2.3. When identifying things (such as host names) in the internet, it is often necessary to com-
pare such identifications for “equality”’. Exactly how this comparison is executed may depend on the application
domain, e.g. whether it should be case-insensitive or not. It may be also necessary to restrict the possible identifi-
cations, to allow only identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of the st ringprep procedure are part of the profile. One example of a stringprep
profile is nameprep, which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated using the mkstringprep. py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns true
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

map_table_b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normaliza-
tion).

in_table_ c1l1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

in_table cll cl2 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

in_table c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

8.10. stringprep — Internet String Preparation 115

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 2.6.5

in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

in_table_ c¢5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

in_table_ c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

in_table c¢9 (code)
Determine whether code is in tableC.9 (Tagging characters).

in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

in_table_ d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

8.11 fpformat — Floating point conversions

Deprecated since version 2.6: The fpformat module has been removed in Python 3.0. The fpformat module
defines functions for dealing with floating point numbers representations in 100% pure Python.

Note: This module is unnecessary: everything here can be done using the % string interpolation operator described
in the String Formatting Operations section.

The fpformat module defines the following functions and an exception:

fix (x, digs)
Format x as [-] ddd.ddd with digs digits after the point and at least one digit before. If digs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.
Return value is a string.

sci (x, digs)
Format x as [-]d.dddE [+-]ddd with digs digits after the point and exactly one digit before. If digs
<= 0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one. digs is an integer.
Return value is a string.

exception Not ANumber
Exception raised when a string passed to £ix () or sci () as the x parameter does not look like a number.
This is a subclass of ValueError when the standard exceptions are strings. The exception value is the
improperly formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
r1.27

116 Chapter 8. String Services

CHAPTER
NINE

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-
type arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, 1ist, set (which along with frozenset,
replaces the deprecated set s module), and tuple. The str class can be used to handle binary data and 8-bit
text, and the unicode class to handle Unicode text.

The following modules are documented in this chapter:

9.1 datetime — Basic date and time types

New in version 2.3. The datet ime module supplies classes for manipulating dates and times in both simple
and complex ways. While date and time arithmetic is supported, the focus of the implementation is on efficient
member extraction for output formatting and manipulation. For related functionality, see also the t ime and
calendar modules.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object
has any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment.
Whether a naive datet ime object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it’s up to the program whether a particular number represents
metres, miles, or mass. Naive datet ime objects are easy to understand and to work with, at the cost of ignoring
some aspects of reality.

For applications requiring more, datet ime and t ime objects have an optional time zone information member,
tzinfo, that can contain an instance of a subclass of the abstract t zinfo class. These t z1info objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect.
Note that no concrete t zinfo classes are supplied by the dat et ime module. Supporting timezones at whatever
level of detail is required is up to the application. The rules for time adjustment across the world are more political
than rational, and there is no standard suitable for every application.

The datet ime module exports the following constants:

MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEAR is 1.

MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEAR is 9999.

See Also:
Module calendar General calendar related functions.

Module time Time access and conversions.

117

The Python Library Reference, Release 2.6.5

9.1.1 Available Types

class date ()
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class time ()
Anidealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds
(there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond, and
tzinfo.

class datetime ()
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond,and tzinfo.

class timedelta ()
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class tzinfo ()
An abstract base class for time zone information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment (for example, to account for time zone and/or
daylight saving time).

Objects of these types are immutable.
Objects of the date type are always naive.

An object d of type time or datetime may be naive or aware. d is aware if d.tzinfo is not None and
d.tzinfo.utcoffset (d) does notreturn None. If d.tzinfo is None, orif d.tzinfo is not None but
d.tzinfo.utcoffset (d) returns None, d is naive.

The distinction between naive and aware doesn’t apply to t imedelta objects.
Subclass relationships:

object
timedelta
tzinfo
time
date
datetime

9.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class timedelta (/days, [seconds, [microseconds, [milliseconds, [minutes, [hours, [weeks]]]]]]])
All arguments are optional and default to 0. Arguments may be ints, longs, or floats, and may be positive or
negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:
*A millisecond is converted to 1000 microseconds.
*A minute is converted to 60 seconds.
*An hour is converted to 3600 seconds.
*A week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with
*0 <= microseconds < 1000000

°0 <= seconds < 3600x24 (the number of seconds in one day)

118 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

*—999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float,
the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.
Note that normalization of negative values may be surprising at first. For example,
>>> from datetime import timedelta
>>> d = timedelta (microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)
Class attributes are:
min
The most negative t imedelta object, timedelta (-999999999).

max
The most positive timedelta object, timedelta (days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999).

resolution
The smallest possible difference between non-equal timedelta objects,
timedelta (microseconds=1).

Note that, because of normalization, timedelta.max > —timedelta.min. —-timedelta.max is not
representable as a t imedelta object.

Instance attributes (read-only):

Attribute Value
days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive
Supported operations:
Operation Result
tl = t2 + t3 Sum of #2 and 3. Afterwards #/-t2 == t3 and t]-t3 == 2 are true. (1)
tl = t2 - t3 Difference of 2 and ¢3. Afterwards t1 == 2 - ¢3 and 12 ==t + ¢3 are true.
(D
tl = t2 1 or tl = i | Delta multiplied by an integer or long. Afterwards ¢/ // i == 12 is true,
* t2 provided i != 0.
In general, t1 *i==1¢I * (i-1) + tI is true. (1)
tl =t2 // 1 The floor is computed and the remainder (if any) is thrown away. (3)
+t1l Returns a t imede 1t a object with the same value. (2)
-t1 equivalent to t imedelta(-tl.days, -tl.seconds, -t1.microseconds), and
to t1* -1. (1)(4)
abs (t) equivalent to +f when t .days >= 0,andto-f whent.days < 0.(2)
Notes:

1. This is exact, but may overflow.

2. This is exact, and cannot overflow.

3. Division by O raises ZeroDivisionError.

4. -timedelta.max is not representable as a t imede1ta object.

In addition to the operations listed above t imedelta objects support certain additions and subtractions with
date and datetime objects (see below).

9.1. datetime — Basic date and time types 119

The Python Library Reference, Release 2.6.5

Comparisons of t imedelta objects are supported with the t imedelta object representing the smaller dura-
tion considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a t imedelta object is compared to an object of a different type,
TypeError is raised unless the comparison is == or ! =. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts,
a timedelta object is considered to be true if and only if it isn’t equal to t imedelta (0).

Example usage:

>>> from datetime import timedelta
>>> year = timedelta (days=365)
>>> another_year = timedelta (weeks=40, days=84, hours=23,
minutes=50, seconds=600) # adds up to 365 days

>>> year == another_year
True
>>> ten_years = 10 * year

>>> ten_years, ten_years.days // 365
(datetime.timedelta (3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, nine_years.days // 365
(datetime.timedelta (3285), 9)

>>> three_years = nine_years // 3;

>>> three_years, three_years.days // 365
(datetime.timedelta (1095), 3)

>>> abs(three_years - ten_years) == * three_years + year
True

9.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called
day number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book Calendrical Calculations, where it’s the base calendar for all computations. See the book for
algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

class date (year, month, day)
All arguments are required. Arguments may be ints or longs, in the following ranges:

*MINYEAR <= year <= MAXYEAR
¢l <= month <= 12
¢l <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

today ()
Return the current local date. This is equivalent to date . fromtimestamp (time.time ()).

fromtimestamp (timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by time.time ().
This may raise ValueError, if the timestamp is out of the range of values supported by the platform
C localtime () function. It’s common for this to be restricted to years from 1970 through 2038. Note
that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are
ignored by fromtimestamp ().

fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d,
date.fromordinal (d.toordinal ()) ==

120 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

Class attributes:

min

The earliest representable date, date (MINYEAR, 1, 1).

max

The latest representable date, date (MAXYEAR, 12, 31).

resolution

The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

year

Between MINYEAR and MAXYEAR inclusive.

month
Between 1 and 12 inclusive.

day

Between 1 and the number of days in the given month of the given year.

Supported operations:

datel < date2

Operation Result

date2 = datel + timedelta | date2is timedelta.days daysremoved from datel. (1)

date2 = datel - timedelta | Computes date2 such that date2 + timedelta == datel. (2)
timedelta = datel - date2 | (3)

datel is considered less than date2 when datel precedes date?2 in time. (4)

Notes:

1. date? is moved forward in time if timedelta.days > 0, or backward if timedelta.days
< 0. Afterward date2 - datel == timedelta.days. timedelta.seconds and

timedelta.microseconds are ignored. OverflowError is raised if date2.year would be
smaller than MINYEAR or larger than MAXYEAR.

. This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases
where datel - timedelta does not. timedelta.seconds and timedelta.microseconds are ig-
nored.

. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 +
timedelta == datel after.

. In other words, datel < date?2 if and only if datel.toordinal () < date2.toordinal ().
In order to stop comparison from falling back to the default scheme of comparing object addresses, date
comparison normally raises TypeError if the other comparand isn’t also a date object. However,
NotImplemented is returned instead if the other comparand has a t imetuple () attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a date
object is compared to an object of a different type, TypeError is raised unless the comparison is == or
!'=. The latter cases return False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.

Instance methods:

replace (year, month, day)

Return a date with the same value, except for those members given new values by whichever keyword
arguments are specified. For example, if d == date (2002, 12, 31),thend.replace (day=26)

== date (2002, 12, 26).

timetuple ()

Returna time.struct_time such asreturned by time.localtime (). The hours, minutes and sec-
onds are 0, and the DST flagis-1. d.timetuple () isequivalentto time.struct_time ((d.year,
d.month, d.day, 0, 0, 0, d.weekday(), d.toordinal() - date(d.year, 1,

1) .toordinal () + 1, -1))

9.1. datetime — Basic date and time types 121

The Python Library Reference, Release 2.6.5

toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
objectd, date.fromordinal (d.toordinal ()) ==

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4) .weekday () == 2,a Wednesday. See also i soweekday ().
isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4).isoweekday () == 3,a Wednesday. See also weekday (), isocalendar ().
isocalendar ()

Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely wused variant of the Gregorian calendar. See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday.
The first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This
is called week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003

and ends on Sunday, 4 Jan 2004, so that date (2003, 12, 29) .isocalendar () == (2004, 1,
1) and date (2004, 1, 4) .isocalendar () == (2004, 1, 7).
isoformat ()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For example, date (2002,
12, 4) .isoformat () == "2002-12-04".
str ()

For a date d, str (d) is equivalentto d.isoformat ().

ctime ()
Return a string representing the date, for example date (2002, 12,
4) .ctime () == "Wed Dec 4 00:00:00 2002". d.ctime () is equivalent to
time.ctime (time.mktime (d.timetuple())) on platforms where the native C ctime ()
function (which t ime . ctime () invokes, but which date.ctime () does not invoke) conforms to the
C standard.

strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to
hours, minutes or seconds will see 0 values. See section strftime() Behavior.

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

ce my_birthday = my_birthday.replace (year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs(my_birthday - today)
>>> time_to_birthday.days

202

Example of working with date:

122 Chapter 9. Data Types

http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm

The Python Library Reference, Release 2.6.5

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> t = d.timetuple()

>>> for i in t:

c. print i

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> ic = d.isocalendar ()

>>> for i in ic:

c. print i

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)
>>> d.isoformat ()

72002-03-11"

>>> d.strftime (" /sm/Sy")

711/03/02"

>>> d.strftime ("%A . %B %Y")

"Monday 11. March 2002’

9.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a t ime object.
Like a date object, dat et ime assumes the current Gregorian calendar extended in both directions; like a time
object, datet ime assumes there are exactly 3600%24 seconds in every day.

Constructor:

class datetime (year, month, day, [hour, [minute, [second, [microsecond, [tzinfo]]]]])
The year, month and day arguments are required. #zinfo may be None, or an instance of a t zinfo subclass.
The remaining arguments may be ints or longs, in the following ranges:

*MINYEAR <= year <= MAXYEAR
¢l <= month <= 12
¢l <= day <= number of days in the given month and year
*0 <= hour < 24
*0 <= minute < 60
*0 <= second < 60
*0 <= microsecond < 1000000
If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

today ()
Return the current local datetime, with tzinfo None. This is equivalent to
datetime.fromtimestamp (time.time ()). See also now (), fromtimestamp ().

9.1. datetime — Basic date and time types 123

The Python Library Reference, Release 2.6.5

now ([tz])

Return the current local date and time. If optional argument 7z is None or not specified, this is
like today (), but, if possible, supplies more precision than can be gotten from going through
a time.time () timestamp (for example, this may be possible on platforms supplying the C
gettimeofday () function).

Else #z must be an instance of a «class tzinfo subclass, and the current date
and time are converted to fz‘s time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcnow () .replace (tzinfo=tz)). See also today (), utcnow ().

utcnow ()

Return the current UTC date and time, with t zinfo None. This is like now (), but returns the current
UTC date and time, as a naive datet ime object. See also now ().

fromtimestamp (timestamp, [tz])

Return the local date and time corresponding to the POSIX timestamp, such as is returned by
time.time (). If optional argument #z is None or not specified, the timestamp is converted to the plat-
form’s local date and time, and the returned datet ime object is naive.

Else 1tz must be an instance of a «class tzinfo subclass, and the times-
tamp is converted to #z‘'s time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcfromtimestamp (timestamp) .replace (tzinfo=tz)).

fromtimestamp () may raise ValueError, if the timestamp is out of the range of values supported by
the platform C localtime () or gmtime () functions. It’s common for this to be restricted to years in
1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a times-
tamp, leap seconds are ignored by fromtimestamp (), and then it’s possible to have two timestamps
differing by a second that yield identical dat et ime objects. See also utcfromtimestamp ().

utcfromtimestamp (timestamp)

Return the UTC datet ime corresponding to the POSIX timestamp, with t zinfo None. This may raise
ValueError, if the timestamp is out of the range of values supported by the platform C gmt ime () func-
tion. It’s common for this to be restricted to years in 1970 through 2038. See also fromtimestamp ().

fromordinal (ordinal)

Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueErrorisraisedunless 1 <= ordinal <= datetime.max.toordinal (). The
hour, minute, second and microsecond of the result are all 0, and t zinfo is None.

combine (date, time)

Return a new datetime object whose date members are equal to the given date object’s, and whose
time and tzinfo members are equal to the given time object’s. For any datetime object d, d
== datetime.combine (d.date(), d.timetz()). If dateis a datetime object, its time and
tzinfo members are ignored.

strptime (date_string, format)

Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime (x (time.strptime (date_string, format) [0:6])). ValueError is raised if
the date_string and format can’t be parsed by time.strptime () or if it returns a value which isn’t a
time tuple. New in version 2.5.

Class attributes:

min
The earliest representable datet ime, datetime (MINYEAR, 1, 1, tzinfo=None).

max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

resolution

The smallest possible difference between non-equal datetime objects,
timedelta (microseconds=1).

Instance attributes (read-only):

124

Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

year

Between MINYEAR and MAXYEAR inclusive.

month

day

hour

Between 1 and 12 inclusive.

Between 1 and the number of days in the given month of the given year.

In range (24).

minute

In range (60).

second

In range (60).

microsecond

tzin

In range (1000000).

fo
The object passed as the #zinfo argument to the dat et ime constructor, or None if none was passed.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime?2 Compares datetime to datetime. (4)

1. datetime2 is a duration of timedelta removed from datetimel, moving forward in time if

timedelta.days >0, or backward if t imedelta.days < 0. The result has the same t z1info mem-
ber as the input datetime, and datetime2 - datetimel == timedelta after. OverflowError is raised if
datetime2.year would be smaller than MINYEAR or larger than MAXYEAR. Note that no time zone adjust-
ments are done even if the input is an aware object.

Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result has the
same tzinfo member as the input datetime, and no time zone adjustments are done even if the input is
aware. This isn’t quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow
in cases where datetimel - timedelta does not.

. Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are

aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same t z1info member, the t z1info members are ignored,
and the result is a t imedelta object f such that datetime2 + t == datetimel. No time zone
adjustments are done in this case.

If both are aware and have different t zinfo members, a—b acts as if a and b were first converted

to naive UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset())
- (b.replace(tzinfo=None) - b.utcoffset ()) except that the implementation never over-
flows.

. datetimel is considered less than datetime2 when datetimel precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised. If both comparands are aware,
and have the same t z1info member, the common t zinfo member is ignored and the base datetimes are
compared. If both comparands are aware and have different t zinfo members, the comparands are first
adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses,
datetime comparison normally raises TypeError if the other comparand isn’t also a datetime object.
However, Not Implemented is returned instead if the other comparand has a timetuple () attribute.
This hook gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a

9.1. datetime — Basic date and time types 125

The Python Library Reference, Release 2.6.5

datetime object is compared to an object of a different type, TypeError is raised unless the comparison
is == or ! =. The latter cases return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datet ime objects are considered to
be true.

Instance methods:

date ()
Return date object with same year, month and day.

time ()
Return t ime object with same hour, minute, second and microsecond. t zinfo is None. See also method
timetz ().

timetz ()
Return t ime object with same hour, minute, second, microsecond, and tzinfo members. See also method
time ().

replace ([year, [month, [day, [hour, [minute, [second, [microsecond, [tzinfo]]]]]]]])
Return a datetime with the same members, except for those members given new values by whichever key-
word arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from
an aware datetime with no conversion of date and time members.

astimezone (17)
Return a datetime object with new t zinfo member fz, adjusting the date and time members so the
result is the same UTC time as self, but in #z‘s local time.

tz must be an instance of a t zinfo subclass, and its utcoffset () and dst () methods must not return
None. self must be aware (self.tzinfo mustnotbe None, and self.utcoffset () mustnotreturn
None).

If self.tzinfoistz, self.astimezone (tz) is equal to self: no adjustment of date or time mem-
bers is performed. Else the result is local time in time zone 7z, representing the same UTC time as self: after
astz = dt.astimezone(tz),astz - astz.utcoffset () will usually have the same date and
time members as dt — dt.utcoffset (). The discussion of class t zinfo explains the cases at Day-
light Saving Time transition boundaries where this cannot be achieved (an issue only if #z models both
standard and daylight time).

If you merely want to attach a time zone object #z to a datetime dr without adjustment of date and time
members, use dt . replace (tzinfo=tz). If you merely want to remove the time zone object from an
aware datetime dr without conversion of date and time members, use dt . replace (tzinfo=None).

Note that the default t zinfo.fromutc () method can be overridden in a t zinfo subclass to affect the
result returned by ast imezone (). Ignoring error cases, ast imezone () acts like:

def astimezone (self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()) .replace(tzinfo=tz)
Convert from UTC to tz’s local time.
return tz.fromutc (utc)

utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (self), and raises an
exception if the latter doesn’t return None, or a t imede 1t a object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (self), and raises an exception
if the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

126 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (self), raises an exception if
the latter doesn’t return None or a string object,

timetuple ()
Return a time.struct_time such as returned by time.localtime (). d.timetuple () is
equivalent to time.struct_time((d.year, d.month, d.day, d.hour, d.minute,
d.second, d.weekday(), d.toordinal() - date(d.year, 1, 1).toordinal() +

1, dst)) The tm_isdst flag of the result is set according to the dst () method: tzinfo is None or
dst () returns None, tm_1isdst is set to —1; else if dst () returns a non-zero value, tm_1isdst is set
to 1;else tm_isdst issetto 0.

utctimetuple ()
If datetime instance d is naive, this is the same as d.timetuple () except that tm_isdst is forced
to 0 regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (), and a
time.struct_ time for the normalized time is returned. tm_isdst is forced to 0. Note that the
result’s tm_year member may be MINYEAR-1 or MAXYEAR+I, if d.year was MINYEAR or MAXYEAR
and UTC adjustment spills over a year boundary.

toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date () .weekday (). See also i soweekday ().

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date () .isoweekday (). See also weekday (), isocalendar ().

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date() .isocalendar().

isoformat ([sep])
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, if microsecondis 0, YYYY-MM-DDTHH:MM:SS

Ifutcoffset () does notreturn None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecondisOYYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default T’) is a one-character separator, placed between the date and time
portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo):
def utcoffset (self, dt): return timedelta (minutes=-399)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (’ ')
72002-12-25 00:00:00-06:39"

str_ ()
For a datetime instance d, str (d) is equivalentto d.isoformat (* ’).

ctime ()
Return a string representing the date and time, for example datetime (2002, 12, 4,
20, 30, 40).ctime() == 'Wed Dec 4 20:30:40 2002’. d.ctime () is equivalent to
time.ctime (time.mktime (d.timetuple ())) on platforms where the native C ctime () func-
tion (which t ime . ct ime () invokes, but which datetime.ctime () does not invoke) conforms to the
C standard.

9.1. datetime — Basic date and time types 127

The Python Library Reference, Release 2.6.5

strftime (format)
Return a string representing the date and time, controlled by an explicit format string. See section strftime()
Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t = time (12, 30)

>>> datetime.combine (d, t)

datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now() or datetime.utcnow()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow ()

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime("21/11/06 16:30", "%d/%m/%y %H:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt.timetuple ()

>>> for it in tt:

print it
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1lst January
-1 # dst — method tzinfo.dst () returned None

>>> # Date in ISO format
>>> ic = dt.isocalendar ()
>>> for it in ic:

print it
2006 # ISO year
47 # ISO week
2 # ISO weekday

>>> # Formatting datetime
>>> dt.strftime ("%A, 2%d. S$B %Y $I:%M%p")
"Tuesday, 21. November 2006 04:30PM’

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT1 (tzinfo) :
def init__ (self): # DST starts last Sunday in March
d = datetime (dt.year, 4, 1) # ends last Sunday in October
self.dston = d - timedelta (days=d.weekday () + 1)
d = datetime(dt.year, 11, 1)
self.dstoff = d - timedelta(days=d.weekday () + 1)
def utcoffset (self, dt):
return timedelta (hours=1) + self.dst (dt)
def dst (self, dt):
if self.dston <= dt.replace(tzinfo=None) < self.dstoff:

128 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

return timedelta (hours=1)
else:
return timedelta (0)

def tzname (self,dt):

return "GMT +1"

>>> class GMT2 (tzinfo) :
def @ init_ (self):

def

def

def

>>> gmtl

>>> dtl =

d = datetime (dt.year, 4, 1)

self.dston = d - timedelta (days=d.weekday () + 1)

d = datetime (dt.year, 11, 1)

self.dstoff = d - timedelta (days=d.weekday () + 1)

utcoffset (self, dt):

return timedelta (hours=1) + self.dst (dt)

dst (self, dt):

if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta (hours=2)

else:
return timedelta (0)

tzname (self,dt) :

return "GMT +2"

GMT1 ()
>>> # Daylight Saving Time

da

tetime (2006, 11, 21, 16, 30, tzinfo=gmtl)

>>> dtl.dst ()

datetime.timedelta (0)

>>> dtl.utcoffset ()

datetime.timedelta (0, 3600)

datetime (2006, 6, 14, 13, 0, tzinfo=gmtl)
>>> dt2.dst ()

datetime.timedelta (0, 3600)

>>> dt2.utcoffset ()

datetime.timedelta (0, 7200)

>>> # Convert datetime to another time zone

>>> dt2 =

>>> dt3 =

>>> dt3

dt

2.astimezone (GMT2 ())
doctest: +ELLIPSIS

datetime.datetime (2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)

>>> dt2 # doctest: +ELLIPSIS

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=<GMT1l object at 0x...>)
>>> dt2.utctimetuple () == dt3.utctimetuple ()

True

9.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class time (hour, [minute, [second, [microsecond, [tzinfo]]]])
All arguments are optional. #zinfo may be None, or an instance of a t zinfo subclass. The remaining
arguments may be ints or longs, in the following ranges:

*0
*0
*0
*0

hour < 24
minute < 60
second < 60

microsecond < 1000000.

9.1. datetime — Basic date and time types 129

The Python Library Reference, Release 2.6.5

If an argument outside those ranges is given, ValueError is raised. All default to 0 except #zinfo, which
defaults to None.

Class attributes:
min
The earliest representable t ime, time (0, 0, 0, 0).

max
The latest representable t ime, time (23, 59, 59, 999999).

resolution
The smallest possible difference between non-equal t ime objects, t imedelta (microseconds=1),
although note that arithmetic on t ime objects is not supported.

Instance attributes (read-only):

hour
In range (24).

minute
In range (60).

second
In range (60).

microsecond
In range (1000000).

tzinfo
The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

Supported operations:

e comparison of time to t ime, where a is considered less than b when a precedes b in time. If one com-
parand is naive and the other is aware, TypeError is raised. If both comparands are aware, and have the
same t zinfo member, the common t z1info member is ignored and the base times are compared. If both
comparands are aware and have different t z info members, the comparands are first adjusted by subtract-
ing their UTC offsets (obtained from self.utcoffset ()). In order to stop mixed-type comparisons
from falling back to the default comparison by object address, when a t ime object is compared to an object
of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases return False
or True, respectively.

* hash, use as dict key
* efficient pickling

* in Boolean contexts, a t ime object is considered to be true if and only if, after converting it to minutes and
subtracting ut coffset () (or 0 if that’s None), the result is non-zero.

Instance methods:

replace ([hour, [minute, [second, [microsecond, [tzinfo]]]]])
Return a t ime with the same value, except for those members given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive t ime from an aware
t ime, without conversion of the time members.

isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset () does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0O,
HH:MM:SS+HH:MM

str__ ()
Foratimet str (t) isequivalenttot.isoformat ().

strftime (format)
Return a string representing the time, controlled by an explicit format string. See section strftime() Behavior.

130 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (None), and raises an
exception if the latter doesn’t return None or a t imede 1t a object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (None), and raises an exception
if the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (None), or raises an exception
if the latter doesn’t return None or a string object.

Example:

>>> from datetime import time, tzinfo
>>> class GMT1 (tzinfo):
def utcoffset (self, dt):
return timedelta (hours=1)
def dst (self, dt):
return timedelta (0)
def tzname (self,dt):
return "Europe/Prague"

>>> t = time (12, 10, 30, tzinfo=GMT1())

>>> t # doctest: +ELLIPSIS
datetime.time (12, 10, 30, tzinfo=<GMT1l object at 0x...>)
>>> gmt = GMT1 ()

>>> t.isoformat ()

712:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

" Europe/Prague’

>>> t.strftime ("SH:S$M:%S %Z")

712:10:30 Europe/Prague’

9.1.6 tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be instantiated directly. You need to de-
rive a concrete subclass, and (at least) supply implementations of the standard t z info methods needed by the
datetime methods you use. The datet ime module does not supply any concrete subclasses of tzinfo.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their members as being in local time, and the t zinfo object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time
object passed to them.

Special requirement for pickling: A tzinfo subclass must have an __init__ () method that can be called
with no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that
may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

utcoffset (self, dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should
be negative. Note that this is intended to be the total offset from UTC; for example, if a t zinfo object
represents both time zone and DST adjustments, ut cof fset () should return their sum. If the UTC offset
isn’t known, return None. Else the value returned must be a t imede 1t a object specifying a whole number

9.1. datetime — Basic date and time types 131

The Python Library Reference, Release 2.6.5

of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less
than one day). Most implementations of utcoffset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst (dt) # daylight-aware class

If utcoffset () does notreturn None, dst () should not return None either.

The default implementation of utcoffset () raises Not ImplementedError.

dst (self, dt)

Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information
isn’t known. Return timedelta (0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (see utcoffset () for details). Note that DST offset, if applicable, has already been
added to the UTC offset returned by utcoffset (), so there’s no need to consult dst () unless you're
interested in obtaining DST info separately. For example, datetime.timetuple () callsits tzinfo
member’s dst () method to determine how the tm_isdst flag shouldbe set,and t zinfo. fromutc ()
calls dst () to account for DST changes when crossing time zones.

An instance 7z of a t zinfo subclass that models both standard and daylight times must be consistent in
this sense:

tz.utcoffset (dt) - tz.dst (dt)

must return the same result for every datetime df with dt.tzinfo == tz For sane tzinfo sub-
classes, this expression yields the time zone’s “standard offset”, which should not depend on the date or
the time, but only on geographic location. The implementation of datetime.astimezone () relies on
this, but cannot detect violations; it’s the programmer’s responsibility to ensure it. If a t zinfo subclass
cannot guarantee this, it may be able to override the default implementation of tzinfo.fromutc () to
work correctly with ast imezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst (self):
a fixed-offset class: doesn’t account for DST
return timedelta (0)

or

def dst (self):
Code to set dston and dstoff to the time zone’s DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.

tzname (self, dt)

Return the time zone name corresponding to the datet ime object dt, as a string. Nothing about string
names is defined by the datet ime module, and there’s no requirement that it mean anything in particular.
For example, “GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all valid
replies. Return None if a string name isn’t known. Note that this is a method rather than a fixed string
primarily because some t zinfo subclasses will wish to return different names depending on the specific
value of dt passed, especially if the t zinfo class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

132

Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

These methods are called by a datet ime or t ime object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a t ime object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a df argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the t zinfo protocols. It may be more
useful for utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as
self. t zinfo methods can rely on this, unless user code calls t zinfo methods directly. The intent is that the
t zinfo methods interpret dr as being in local time, and not need worry about objects in other timezones.

There is one more t zinfo method that a subclass may wish to override:

fromutc (self, dt)
This is called from the default datetime.astimezone () implementation. When called from that,
dt.tzinfo is self, and dt‘s date and time members are to be viewed as expressing a UTC time. The
purpose of fromutc () is to adjust the date and time members, returning an equivalent datetime in self ‘s
local time.

Most tzinfo subclasses should be able to inherit the default fromutc () implementation without prob-
lems. It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard
and daylight time, and the latter even if the DST transition times differ in different years. An example of a
time zone the default fromutc () implementation may not handle correctly in all cases is one where the
standard offset (from UTC) depends on the specific date and time passed, which can happen for political
reasons. The default implementations of astimezone () and fromutc () may not produce the result
you want if the result is one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default f romutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error 1if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError 1f dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self’s standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError 1f dtdst 1s None
if dtdst:
return dt + dtdst
else:
return dt

Example t zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta (0)
HOUR timedelta (hours=1)

A UTC class.

class UTC(tzinfo):
mmn "UTC mmn

def utcoffset (self, dt):
return ZERO

def tzname (self, dt):

9.1. datetime — Basic date and time types 133

The Python Library Reference, Release 2.6.5

return "UTC"

def dst (self, dt):
return ZERO

utc = UTC ()
A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset (0, "UTC") is a different way to build a

UTC tzinfo object.

class FixedOffset (tzinfo) :
""'Fixed offset in minutes east from UTC."""

def _ init_ (self, offset, name):
self._ _offset = timedelta (minutes = offset)
self.__ _name = name

def utcoffset (self, dt):
return self._ offset

def tzname (self, dt):
return self._ name

def dst (self, dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET = timedelta(seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta (seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone (tzinfo) :

def utcoffset(self, dt):
if self._isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst (self, dt):
if self._isdst (dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):
return _time.tzname[self._ isdst (dt)]

def _isdst (self, dt):
tt = (dt.year, dt.month, dt.day,

134 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

dt .hour, dt.minute, dt.second,
dt .weekday (), 0, -1)

stamp = _time.mktime (tt)

tt = _time.localtime (stamp)

return tt.tm _isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 — dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-1ink.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)

H Hh R I R W R R h

In the US, since 2007, DST starts at Z2am (standard time) on the second

Sunday in March, which is the first Sunday on or after Mar 8.

DSTSTART_2007 = datetime(l, 3, 8, 2)

and ends at 2am (DST time; lam standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime (1, 11, 1, 1)

From 1987 to 2006, DST used to start at 2am (standard time) on the first

Sunday in April and to end at 2am (DST time; lam standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(l, 4, 1, 2)

DSTEND_1987_2006 = datetime (1, 10, 25, 1)

From 1967 to 1986, DST used to start at 2am (standard time) on the last

Sunday in April (the one on or after April 24) and to end at 2am (DST time;
lam standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.

DSTSTART_1967_1986 = datetime(l, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

class USTimeZone (tzinfo) :

def _ _init__ (self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname
self.stdname = stdname

self.dstname = dstname

def _ repr_ (self):
return self.reprname

def tzname (self, dt):
if self.dst (dt):
return self.dstname
else:

9.1. datetime — Basic date and time types 135

The Python Library Reference, Release 2.6.5

return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst (dt)

def dst (self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc () implementation (called by the default astimezone ()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:
dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:
dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < dt.year < 1987:
dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:
return ZERO

start = first_sunday_on_or_after (dststart.replace (year=dt.year))
end = first_sunday_on_or_after (dstend.replace (year=dt.year))

Can’t compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:
return HOUR
else:
return ZERO

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "CcsT", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "psST", "PDT")

Note that there are unavoidable subtleties twice per year in a t zinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT
begins the minute after 1:59 (EST) on the first Sunday in April, and ends the minute after 1:59 (EDT) on the last
Sunday in October:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM : MM MM :MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM

(@)
=
N

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so ast imezone (Eastern) won’t deliver a result with hour == 2 on
the day DST begins. In order for astimezone () to make this guarantee, the rzinfo.dst () method must
consider times in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the

136 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous. astimezone () mimics the local clock’s behavior by mapping
two adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM
and 6:MM both map to 1:MM when converted to Eastern. In order for ast imezone () to make this guarantee,
the tzinfo.dst () method must consider times in the “repeated hour” to be in standard time. This is easily
arranged, as in the example, by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybrid t zinfo subclasses; there are no ambi-
guities when using UTC, or any other fixed-offset t zinfo subclass (such as a class representing only EST (fixed
offset -5 hours), or only EDT (fixed offset -4 hours)).

9.1.7 strftime () Behavior

date,datetime, and t ime objects all supporta strftime (format) method, to create a string representing
the time under the control of an explicit format string. Broadly speaking, d.strftime (fmt) acts like the t ime
module’s time.strftime (fmt, d.timetuple ()) although not all objects support a timetuple ()
method.

For t ime objects, the format codes for year, month, and day should not be used, as time objects have no such
values. If they’re used anyway, 1900 is substituted for the year, and 0 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, O is substituted for them. New in version 2.6: time and
datetime objects support a $ £ format code which expands to the number of microseconds in the object, zero-
padded on the left to six places. For a naive object, the $z and %$Z format codes are replaced by empty strings.

For an aware object:

%z utcoffset () is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a
2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, if utcoffset () returns timedelta (hours=-3, minutes=-30),
%z is replaced with the string * —0330".

%Z If tzname () returns None, %7 is replaced by an empty string. Otherwise $7Z is replaced by the returned
value, which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime () function, and platform variations are common.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

The exact range of years for which strftime () works also varies across platforms. Regardless of platform,
years before 1900 cannot be used.

9.1. datetime — Basic date and time types 137

The Python Library Reference, Release 2.6.5

Di- Meaning Note
rec-
tive
%a Locale’s abbreviated weekday name.
$A Locale’s full weekday name.
$b Locale’s abbreviated month name.
B Locale’s full month name.
$C Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
$f Microsecond as a decimal number [0,999999], zero-padded on the left (D
%H Hour (24-hour clock) as a decimal number [00,23].
$T Hour (12-hour clock) as a decimal number [01,12].
%] Day of the year as a decimal number [001,366].
$m Month as a decimal number [01,12].
M Minute as a decimal number [00,59].
$p Locale’s equivalent of either AM or PM.)
%S Second as a decimal number [00,61]. 3)
$U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. @
All days in a new year preceding the first Sunday are considered to be in week 0.
Sw Weekday as a decimal number [0(Sunday),6].
SW Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. @
All days in a new year preceding the first Monday are considered to be in week 0.
$xX Locale’s appropriate date representation.
$X Locale’s appropriate time representation.
Sy Year without century as a decimal number [00,99].
Y Year with century as a decimal number.
%z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive).)
%7 Time zone name (empty string if the object is naive).
%% A literal ’ %’ character.
Notes:

1.

9.2

When used with the st rpt ime () function, the $f directive accepts from one to six digits and zero pads
on the right. % £ is an extension to the set of format characters in the C standard (but implemented separately
in datetime objects, and therefore always available).

When used with the strptime () function, the $p directive only affects the output hour field if the $T
directive is used to parse the hour.

. The range really is 0 to 61; according to the Posix standard this accounts for leap seconds and the (very

rare) double leap seconds. The t ime module may produce and does accept leap seconds since it is based
on the Posix standard, but the datet ime module does not accept leap seconds in st rpt ime () input nor
will it produce them in strftime () output.

When used with the st rpt ime () function, $U and %W are only used in calculations when the day of the
week and the year are specified.

For example, if utcoffset () returns timedelta (hours=-3, minutes=-30), %z is replaced
with the string * —0330".

calendar — General calendar-related functions

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the
last (the European convention). Use setfirstweekday () to set the first day of the week to Sunday (6) or
to any other weekday. Parameters that specify dates are given as integers. For related functionality, see also the
datetime and t ime modules.

Most of these functions and classses rely on the datet ime module which uses an idealized calendar, the current
Gregorian calendar indefinitely extended in both directions. This matches the definition of the “proleptic Grego-

138

Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

rian” calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all
computations.

class Calendar ([firstweekday])
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. 0 is Monday
(the default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for for-
matting. This class doesn’t do any formatting itself. This is the job of subclasses. New in version 2.5.
Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of the fi rstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end
of the month that are required to get a complete week.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days
returned will be tuples consisting of a day number and a week day number.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days
returned will simply be day numbers.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year, [width])
Return the data for the specified year ready for formatting. The return value is a list of month rows.
Each month row contains up to width months (defaulting to 3). Each month contains between 4 and 6
weeks and each week contains 1-7 days. Days are datetime.date objects.

yeardays2calendar (year, [width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar (year, [width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are day numbers. Day numbers outside this month are zero.

class TextCalendar ([firstweekday])
This class can be used to generate plain text calendars. New in version 2.5. TextCalendar instances
have the following methods:

formatmonth (theyear, themonth, [w, [1]])
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date
columns, which are centered. If / is given, it specifies the number of lines that each week will use.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday ()
method.

prmonth (theyear, themonth, [w, [1]])
Print a month’s calendar as returned by formatmonth ().

9.2. calendar — General calendar-related functions 139

The Python Library Reference, Release 2.6.5

formatyear (theyear, [w, [I, [c, [m]]]])
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [, and ¢
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday ()
method. The earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, [w, [1, [c, [m]]]])
Print the calendar for an entire year as returned by formatyear ().

class HTMLCalendar ([firstweekday])
This class can be used to generate HTML calendars. New in version 2.5. HTMLCalendar instances have
the following methods:

formatmonth (theyear, themonth, [withyear])
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the
header, otherwise just the month name will be used.

formatyear (theyear, [width])
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months
per row.

formatyearpage (theyear, [width, [css, [encoding]]])
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of
months per row. css is the name for the cascading style sheet to be used. None can be passed if no
style sheet should be used. encoding specifies the encoding to be used for the output (defaulting to the
system default encoding).

class LocaleTextCalendar ([firstweekday, [locale]])
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

class LocaleHTMLCalendar ([firstweekday, [locale]])
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

For simple text calendars this module provides the following functions.

setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For ex-
ample, to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

New in version 2.0.

firstweekday ()
Returns the current setting for the weekday to start each week. New in version 2.0.

isleap (year)
Returns True if year is a leap year, otherwise False.

leapdays (y/, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years. Changed
in version 2.0: This function didn’t work for ranges spanning a century change in Python 1.5.2.

weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

weekheader (n)
Return a header containing abbreviated weekday names. 7 specifies the width in characters for one weekday.

140 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

prmonth (theyear, themonth, [w, [1]])
Prints a month’s calendar as returned by month ().

month (theyear, themonth, [w, [1]])
Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar
class. New in version 2.0.

prcal (year, [w, [1, [c]]])
Prints the calendar for an entire year as returned by calendar ().

calendar (year, [w, [I, [c]]])
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the
TextCalendar class. New in version 2.0.

timegm (fuple)
An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, t ime . gmt ime () and t imegm () are each others’ inverse. New in version 2.0.

The calendar module exports the following data attributes:

day_ name
An array that represents the days of the week in the current locale.

day_abbr
An array that represents the abbreviated days of the week in the current locale.

month_ name
An array that represents the months of the year in the current locale. This follows normal convention of
January being month number 1, so it has a length of 13 and month_name [0] is the empty string.

month abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty
string.

See Also:
Module datetime Object-oriented interface to dates and times with similar functionality to the t ime module.

Module time Low-level time related functions.

9.3 collections — High-performance container datatypes

New in version 2.4. This module implements high-performance container datatypes. Currently, there are two
datatypes, deque and defaultdict, and one datatype factory function, namedtuple (). Changed in ver-
sion 2.5: Added defaultdict.Changed in version 2.6: Added namedtuple (). The specialized containers
provided in this module provide alternatives to Python’s general purpose built-in containers, dict, 1ist, set,
and tuple.

Besides the containers provided here, the optional bsddb module offers the ability to create in-memory or file
based ordered dictionaries with string keys using the bsddb .btopen () method.

In addition to containers, the collections module provides some ABCs (abstract base classes) that can be used to
test whether a class provides a particular interface, for example, is it hashable or a mapping. Changed in version
2.6: Added abstract base classes.

9.3. collections — High-performance container datatypes 141

The Python Library Reference, Release 2.6.5

9.3.1 ABCs - abstract base classes

The collections module offers the following ABCs:

ABC Inherits Abstract Methods Mixin Methods
Container __contains_
Hashable __hash___
Iterable __iter_
Iterator Iterable next __iter_
Sized __len_
Callable _call__
Sequence Sized, __getitem_ __contains__ . __iter_,__reversed_
Iterable, index, and count
Container
Mutable$eprpmnece __setitem___ Inherited Sequence methods and append, reverse,
__delitem__, extend, pop, remove, and __iadd_
and insert
Set Sized, _le ,_ 1t , eq_ ,_ne_,_gt_ ,
Iterable, _ge_,__and__,__or_ _ sub_ ,_ xor__,
Container and isdisjoint
Mutable$eSet add and discard | Inherited Set methods and clear, pop, remove,
dor , dand_, ixor_ _,and__isub___
Mapping| Sized, __getitem_ __contains__, keys, items, values, get,
Iterable, _eq_,and__ne___
Container
MutableNafgdpiong __setitem__ and | Inherited Mapping methods and pop, popitemn,
__delitem_ clear, update, and setdefault
MappingVitiwzed __len__
KeysView MappingView, __contains_ , diter
Set
ItemsViewappingView, __contains_ ,__iter_
Set
ValuesViddappingView __contains__,__iter___

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance (myvar, collections.Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs.
For example, to write a class supporting the full Set API, it only necessary to supply the three underlying abstract
methods: __contains__ (), __iter_ (), and __len__ (). The ABC supplies the remaining methods
suchas __and__ () and isdisjoint ()

class ListBasedSet (collections.Set):
777 Alternate set implementation favoring space over speed
and not requiring the set elements to be hashable. 77’7/
def _ init_ (self, iterable):
self.elements = 1lst = []
for value in iterable:
if value not in 1lst:
lst.append(value)
def @ iter_ (self):
return iter (self.elements)
def _ contains__ (self, wvalue):
return value in self.elements
def _ len_ (self):
return len(self.elements)

142 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

sl = ListBasedSet (' abcdef’)
s2 = ListBasedSet ('defghi’)
overlap = sl & s2 # The __and __ () method is supported automatically

Notes on using Set and MutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new
instances from an iterable. The class constructor is assumed to have a signature in the form
ClassName (iterable). That assumption is factored-out to an internal classmethod -called
_from_iterable () which calls cls (iterable) to produce a new set. If the Set mixin is be-
ing used in a class with a different constructor signature, you will need to override from_iterable ()
with a classmethod that can construct new instances from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__ () and
then the other operations will automatically follow suit.

3. The Set mixin provides a _hash () method to compute a hash value for the set; however, __hash__ ()
is not defined because not all sets are hashable or immutable. To add set hashabilty using mixins, inherit
from both Set () and Hashable (), thendefine__hash___ = Set._hash.

See Also:

* OrderedSet recipe for an example built on MutableSet.

¢ For more about ABCs, see the abc module and PEP 3119.

9.3.2 deque oObjects

class deque ([iterable, [maxlen]])
Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable
is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the
deque with approximately the same O(1) performance in either direction.

Though 1ist objects support similar operations, they are optimized for fast fixed-length operations and
incur O(n) memory movement costs for pop (0) and insert (0, v) operations which change both the
size and position of the underlying data representation. New in version 2.4. If maxlen is not specified or is
None, deques may grow to an arbitrary length. Otherwise, the deque is bounded to the specified maximum
length. Once a bounded length deque is full, when new items are added, a corresponding number of items
are discarded from the opposite end. Bounded length deques provide functionality similar to the tail
filter in Unix. They are also useful for tracking transactions and other pools of data where only the most
recent activity is of interest. Changed in version 2.6: Added maxlen parameter. Deque objects support the
following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length 0.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

9.3. collections — High-performance container datatypes 143

http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119

The Python Library Reference, Release 2.6.5

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove (value)
Removed the first occurrence of value. If not found, raises a ValueError. New in version 2.5.

rotate (n)
Rotate the deque n steps to the right. If n is negative, rotate to the left. Rotating one step to the right is
equivalent to: d.appendleft (d.pop()).

In addition to the above, deques support iteration, pickling, len (d), reversed(d), copy.copy (d),
copy .deepcopy (d), membership testing with the in operator, and subscript references such as d[-1]. In-
dexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Example:

>>> from collections import deque

>>> d = deque ('ghi’) # make a new deque with three items
>>> for elem in d: # iterate over the deque’s elements
.. print elem.upper ()

G

H

I

>>> d.append (’ ") # add a new entry to the right side
>>> d.appendleft (" £") # add a new entry to the left side

>>> d # show the representation of the deque
deque (["f", ’"g’, 'h', 71", "3"1])

>>> d.pop () # return and remove the rightmost item
Ijl

>>> d.popleft () # return and remove the leftmost item
Vf/

>>> list (d) # list the contents of the deque
["g’, "h', i7]

>>> d[0] # peek at leftmost item

lgl

>>> d[-1] # peek at rightmost item

Vil

>>> list (reversed(d)) # list the contents of a deque in reverse
["i’, 'h', 'g’]

>>> 'h’ in d # search the deque

True

>>> d.extend (' Jk1”) # add multiple elements at once

>>> d

deque([’'g’, "h’, "i’, '3, 'k’, "1'])

>>> d.rotate (1) # right rotation

>>> d

deque ([”1", 'g’, 'h", 7i’, 3", "k'1)

>>> d.rotate(-1) # left rotation

>>> d

deque([’g’, "h', 7i’, '3’, 'k’, '1'])

>>> deque (reversed (d)) # make a new deque in reverse order
deque (["1’, 'k’, "3’, "i’, 'h’, 'g’])

>>> d.clear () # empty the deque

>>> d.pop () # cannot pop from an empty deque

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-

144 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

d.pop ()
IndexError: pop from an empty deque

>>> d.extendleft ("abc’) # extendleft () reverses the input order
>>> d
deque([’c’, "b’", "a’'l)

deque Recipes

This section shows various approaches to working with deques.
Bounded length deques provide functionality similar to the tail filter in Unix:

def tail (filename, n=10):
"Return the last n lines of a file’
return deque (open(filename), n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right
and popping to the left:

def moving_average (iterable, n=3):
moving_average ([40, 30, 50, 46, 39, 44]) —--> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving_average

it = iter (iterable)

d = deque(itertools.islice(it, n-1))
d.appendleft (0)

s = sum(d)

for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / float (n)

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement deque slicing, use a similar approach applying rotate () to bring a target element to the left
side of the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the
rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations such as
dup, drop, swap, over, pick, rot,and roll.

9.3.3 defaultdict objects

class defaultdict (/default factory, [...]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for the
dict class and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None.
All remaining arguments are treated the same as if they were passed to the dict constructor, including
keyword arguments. New in version 2.5. defaultdict objects support the following method in addition
to the standard dict operations:

__missing__ (key)
If the default_factory attribute is None, this raises a KeyError exception with the key as
argument.

9.3. collections — High-performance container datatypes 145

The Python Library Reference, Release 2.6.5

If default_factory isnot None, itis called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__ () method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by __getitem__ ().

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the __missing__ () method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

defaultdict Examples

Using 1ist as the default_factory, itis easy to group a sequence of key-value pairs into a dictionary of
lists:

>>> s = [('yellow’, 1), ("blue’, 2), ('yellow’, 3), ('blue’, 4), ('red’, 1)]
>>> d = defaultdict(list)
>>> for k, v in s:

d[k] .append(v)

>>> d.items ()

[("blue’, [2, 41), ('red", [1]1), ("yellow’, [1, 31)]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty 1ist. The 1ist .append () operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the
list for that key) and the 1ist . append () operation adds another value to the list. This technique is simpler and
faster than an equivalent technique using dict .setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []).append(v)

>>> d.items ()
[("blue’, [2, 4]), ("red’, [1]1), ("yellow’, [1, 3])]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset
in other languages):

>>> s = 'mississippi’
>>> d = defaultdict (int)
>>> for k in s:

dlk] += 1

>>> d.items ()

(¢, 4y, ('p"y 2), (!s’, 4), (‘m", 1)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls
int () to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more
flexible way to create constant functions is touse itertools.repeat () which can supply any constant value
(not just zero):

>>> def constant_factory(value):

.. return itertools.repeat (value) .next

>>> d = defaultdict (constant_factory (/' <missing>’))
>>> d.update (name=’John’, action=’'ran’)

146 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

o\
Q.

>>> ! to ’
"John ran to <missing>’
g

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s = [("red’, 1), ('blue’, 2), (‘red’, 3), (’blue’, 4), ('red’, 1), ('blue’,

>>> d defaultdict (set)
>>> for k, v in s:
d(k].add(v)

>>> d.items ()
[("blue’, set([2, 4])), ('red’, set([1l, 3]1))]

9.3.4 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code.
They can be used wherever regular tuples are used, and they add the ability to access fields by name instead of
position index.

namedtuple (typename, field_names, [verbose])
Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that
have fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass
also have a helpful docstring (with typename and field_names) and a helpful __repr__ () method which
lists the tuple contents in a name=value format.

The field_names are a single string with each fieldname separated by whitespace and/or commas, for exam-
ple"x vy’ or’x, vy’. Alternatively, field_names can be a sequence of strings suchas [’ x’, ’'vy’].

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be
a keyword such as class, for, return, global, pass, print, or raise.

If verbose is true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples. New in version 2.6.

Example:

>>> Point = namedtuple (’'Point’, ’'x y’)

>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> pl[0] + pl[l] # indexable like the plain tuple (11, 22)
33

>>> x, Yy = p # unpack like a regular tuple

>>> x, y

(11, 22)

>>> p.x + p.y # fields also accessible by name

33

>>> p # readable __ _repr. with a name=value style

Point (x=11, y=22)

>>> Point = namedtuple (’'Point’, ’'x vy’, verbose=True) # show the class definition

class Point (tuple) :
"Point (x, vy)’

__slots___ = ()
_fields = ('x", 'y")
def _ new__ (_cls, x, y):
return _tuple._ _new__ (_cls, (x, y))

9.3. collections — High-performance container datatypes 147

4)1]

The Python Library Reference, Release 2.6.5

@classmethod
def _make(cls, iterable, new=tuple._ _new__, len=len):
"Make a new Point object from a sequence or iterable’
result = new(cls, iterable)
if len(result) != 2:
raise TypeError ('Expected 2 arguments, got %d’ % len(result))
return result

def _ _repr__ (self):
return ’Point (x=%r, y=%r)’ % self

def _asdict (t):
"Return a new dict which maps field names to their wvalues’
return {’'x’': t[0], 'y": t[l]}

def _replace(_self, =*xkwds):
"Return a new Point object replacing specified fields with new wvalues’
result = _self._make (map(kwds.pop, ('x', 'y’'), _self))
if kwds:
raise ValueError (' Got unexpected field names: %r’ % kwds.keys())
return result

def __ _getnewargs__ (self):
return tuple (self)

X = _property(_itemgetter (0))
y = _property(_itemgetter (1))

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sglite3
modules:

EmployeeRecord = namedtuple (' EmployeeRecord’, ’'name, age, title, department, paygrade’)

import csv
for emp in map (EmployeeRecord._make, csv.reader (open("employees.csv", "rb"))):
print emp.name, emp.title

import sqglite3
conn = sglite3.connect (' /companydata’)
cursor = conn.cursor ()
cursor.execute (' SELECT name, age, title, department, paygrade FROM employees’)
for emp in map (EmployeeRecord._make, cursor.fetchall()):
print emp.name, emp.title

In addition to the methods inherited from tuples, named tuples support three additional methods and one attribute.
To prevent conflicts with field names, the method and attribute names start with an underscore.

_make (iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make (t)
Point (x=11, y=22)

_asdict ()
Return a new dict which maps field names to their corresponding values:

>>> p._asdict ()
{"x": 11, ’'y’': 22}

148 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

_replace (kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point (x=11, y=22)
>>> p._replace (x=33)
Point (x=33, y=22)

>>> for partnum, record in inventory.items() :
inventory[partnum] = record._replace (price=newprices[partnum], timestamp=tir

_fields

Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types
from existing named tuples.

>>> p._fields # view the field names

("x", 'y")

>>> Color = namedtuple(’'Color’, ’"red green blue’)

>>> Pixel = namedtuple(’'Pixel’, Point._fields + Color._fields)

>>> Pixel (11, 22, 128, 255, 0)
Pixel (x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, "x’)
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in Unpacking Argument Lists
(in Python Tutorial)):

>>> d = {'x": 11, 'y': 22}
>>> Point (*+d)
Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is
how to add a calculated field and a fixed-width print format:

>>> class Point (namedtuple (' Point’, "x y’)):
__slots___ = ()
@property
def hypot (self):
return (self.x xx 2 + self.y %% 2) xx 0.5
def = str_ (self):
return ’'Point: x= y= hypot= " % (self.x, self.y, self.h

>>> for p in Point (3, 4), Point (14, 5/7.):
ce print p

Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 vy= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This keeps keep memory requirements low by
preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_fields attribute:

>>> Point3D = namedtuple ('Point3D’, Point._fields + ("z’,))

Default values can be implemented by using _replace () to customize a prototype instance:

>>> Account = namedtuple (’Account’, ’"owner balance transaction_count’)
>>> default_account = Account (' <owner name>’, 0.0, 0)
>>> johns_account = default_account._replace (owner='John’)

9.3. collections — High-performance container datatypes 149

The Python Library Reference, Release 2.6.5

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple
class declaration:

>>> Status = namedtuple ('’ Status’, ’'open pending closed’) ._make (range(3))
>>> Status.open, Status.pending, Status.closed
(0, 1, 2)

>>> class Status:
open, pending, closed = range (3)

See Also:
Named tuple recipe adapted for Python 2.4.

9.4 heapqg — Heap queue algorithm

New in version 2.3. This module provides an implementation of the heap queue algorithm, also known as the
priority queue algorithm.

Heaps are arrays for which heap [k] <= heap[2+k+1] and heap[k] <= heap[2+k+2] forall k, count-
ing elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The
interesting property of a heap is that heap [0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more
suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest
(called a “min heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place
sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest
item, and heap. sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify ().

The following functions are provided:

heappush (heap, item)
Push the value ifem onto the heap, maintaining the heap invariant.

heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised.

heappushpop (heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop (). New in version 2.6.

heapify (x)
Transform list x into a heap, in-place, in linear time.

heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new ifem. The heap size doesn’t
change. If the heap is empty, IndexError is raised. This is more efficient than heappop () followed by
heappush (), and can be more appropriate when using a fixed-size heap. Note that the value returned may
be larger than ifem! That constrains reasonable uses of this routine unless written as part of a conditional
replacement:

if item > heap[0]:
item = heapreplace (heap, item)

Example of use:

150 Chapter 9. Data Types

http://code.activestate.com/recipes/500261/

The Python Library Reference, Release 2.6.5

>>> from heapqg import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> for item in data:

heappush (heap, item)

>>> ordered = []
>>> while heap:
ordered. append (heappop (heap))

>>> print ordered

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> data.sort ()

>>> print data == ordered
True

Using a heap to insert items at the correct place in a priority queue:

>>> heap = []
>>> data = [(1, "J"), (4, '"N"), (3, "H"), (2, "O")]
>>> for item in data:

heappush (heap, item)

>>> while heap:
print heappop (heap) [1]

Z T O g -

The module also offers three general purpose functions based on heaps.

merge (*iterables)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from
multiple log files). Returns an iterator over the sorted values.

Similarto sorted (itertools.chain (xiterables)) butreturns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).
New in version 2.6.

nlargest (n, iterable, [key])
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalentto: sorted (iterable, key=key, reverse=True) [:n] Newin
version 2.4.Changed in version 2.5: Added the optional key argument.

nsmallest (n, iterable, [key])
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalentto: sorted (iterable, key=key) [:n] New in version 2.4.Changed
in version 2.5: Added the optional key argument.

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted () function. Also, when n==1, it is more efficient to use the built-in min () and max () functions.

9.4.1 Theory

(This explanation is due to Francois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for whicha [k] <= a[2xk+1] andal[k] <= a[2+k+2] forall k, counting elements from
0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is that a [0] is always its smallest element.

9.4. heapq — Heap queue algorithm 151

The Python Library Reference, Release 2.6.5

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers
below are k, not a [k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell & is topping 2 xk+1 and 2xk+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the
two topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way
to remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the 0
position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This
is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n)
sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that
the inserted items are not “better” than the last 0’th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the “win” condition means the smallest scheduled time.
When an event schedule other events for execution, they are scheduled into the future, so they can easily go into
the heap. So, a heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer

).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a
merging passes for these runs, which merging is often very cleverly organised '. It is very important that the initial
sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to
hold a tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which
are twice the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly
the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new
run. Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

9.5 bisect — Array bisection algorithm

! The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to
ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge).
Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite
spectacular to watch! From all times, sorting has always been a Great Art! :-)

152 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the more
common approach. The module is called bisect because it uses a basic bisection algorithm to do its work.
The source code may be most useful as a working example of the algorithm (the boundary conditions are already
right!).

The following functions are provided:

bisect_left (list, item, [lo, [hi]])
Locate the proper insertion point for item in list to maintain sorted order. The parameters lo and ki may be
used to specify a subset of the list which should be considered; by default the entire list is used. If ifem is
already present in /ist, the insertion point will be before (to the left of) any existing entries. The return value
is suitable for use as the first parameter to 1ist . insert (). This assumes that /ist is already sorted. New
in version 2.1.

bisect_right (list, item, [lo, [hi]])
Similarto bisect_left (), butreturns an insertion point which comes after (to the right of) any existing
entries of ifem in list. New in version 2.1.

bisect (...)
Alias for bisect_right ().

insort_left (list, item, [lo, [hi]])
Insert item in list in sorted order. This is equivalentto 1ist .insert (bisect.bisect_left (list,
item, lo, hi), item). This assumes that /ist is already sorted. New in version 2.1.

insort_right (list, item, [lo, [hi]])
Similar to insort_left (), but inserting item in list after any existing entries of item. New in version
2.1.

insort (...)
Alias for insort_right ().

9.5.1 Examples

The bisect () function is generally useful for categorizing numeric data. This example uses bisect () to
look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A’,
75..841isa ‘B’, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect (breakpoints, total)]

>>> grade (66)

ICV

>>> map (grade, [33, 99, 77, 44, 12, 881)
[VEI, IAI, VBI, IDI, ’FV, IAI]

Unlike the sorted () function, it does not make sense for the bisect () functions to have key or reversed argu-
ments because that would lead to an inefficent design (successive calls to bisect functions would not “remember”
all of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

>>> data = [('red’, 5), ("blue’, 1), ('yellow’, 8), ("black’, 0)]
>>> data.sort (key=lambda r: r[1])
>>> keys = [r[1l] for r in data] # precomputed 1list of keys

>>> datalbisect_left (keys, 0)]
("black’, 0)
>>> data([bisect_left (keys, 1)]
("blue’, 1)

9.5. bisect — Array bisection algorithm 153

The Python Library Reference, Release 2.6.5

>>> data[bisect_left (keys, 5)]
("red’, 5)

>>> datalbisect_left (keys, 8)]
("yellow’, 8)

9.6 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes
el char character 1

"o’ signed char int 1

"B’ unsigned char | int 1

ru’ Py_UNICODE | Unicode character | 2 (see note)
"h' signed short int 2

"H' unsigned short | int 2

ri’ signed int int 2

"I’ unsigned int long 2

1’ signed long int 4

g unsigned long | long 4

rf£r float float 4

rd’ double float 8

Note: The ’u’ typecode corresponds to Python’s unicode character. On narrow Unicode builds this is 2-bytes,
on wide builds this is 4-bytes.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C imple-
mentation). The actual size can be accessed through the itemsize attribute. The values stored for /L’ and
" I’ items will be represented as Python long integers when retrieved, because Python’s plain integer type cannot
represent the full range of C’s unsigned (long) integers.

The module defines the following type:

class array (typecode, [initializer])
A new array whose items are restricted by fypecode, and initialized from the optional initializer value,
which must be a list, string, or iterable over elements of the appropriate type. Changed in version 2.4:
Formerly, only lists or strings were accepted. If given a list or string, the initializer is passed to the new
array’s fromlist (), fromstring (), or fromunicode () method (see below) to add initial items to
the array. Otherwise, the iterable initializer is passed to the extend () method.

ArrayType
Obsolete alias for array.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
cases, TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer
objects are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (x)
Append a new item with value x to the end of the array.

154 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

buffer_ info ()
Return a tuple (address, length) giving the current memory address and the length in elements
of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info() [1] » array.itemsize. This is occasionally useful when working with
low-level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioct1l ()
operations. The returned numbers are valid as long as the array exists and no length-changing operations
are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method
is maintained for backward compatibility and should be avoided in new code. The buffer interface is docu-
mented in Buffer Objects (in The Python/C API).

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, Runt imeError is raised. It is useful when reading data from a file written on a
machine with a different byte order.

count (x)
Return the number of occurrences of x in the array.

extend (iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array. Changed in version 2.4: Formerly, the argument could
only be another array.

fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else with a read () method won’t do.

fromlist (list)
Append items from the list. This is equivalent to for x in list: a.append(x) except that if
there is a type error, the array is unchanged.

fromstring (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using the fromfile () method).

fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type ’ u’ array; otherwise
aValueError israised. Use array.fromstring (unicodestring.encode (enc)) to append
Unicode data to an array of some other type.

index (x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

insert (i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to
the end of the array.

pop ([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to —1, so
that by default the last item is removed and returned.

read (f, n)
Deprecated since version 1.5.1: Use the fromfile () method. Read n items (as machine values) from
the file object f and append them to the end of the array. If less than » items are available, EOFError is
raised, but the items that were available are still inserted into the array. f must be a real built-in file object;
something else with a read () method won’t do.

remove (Xx)
Remove the first occurrence of x from the array.

9.6. array — Efficient arrays of numeric values 155

The Python Library Reference, Release 2.6.5

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file object f.

tolist ()
Convert the array to an ordinary list with the same items.

tostring()
Convert the array to an array of machine values and return the string representation (the same sequence of
bytes that would be written to a file by the tofile () method.)

tounicode ()
Convert the array to a unicode string. The array must be a type ' u’ array; otherwise a ValueError
is raised. Use array.tostring () .decode (enc) to obtain a unicode string from an array of some
other type.

write (f)
Deprecated since version 1.5.1: Use the tofile () method. Write all items (as machine values) to the file
object f.

When an array object is printed or converted to a string, it is represented as array (typecode,
initializer). The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ' c’,
otherwise it is a list of numbers. The string is guaranteed to be able to be converted back to an array with the
same type and value using eval (), so long as the array () function has been imported using from array
import array. Examples:

array (1)

array(’'c’, "hello world’)
array('u’, u’hello \u2641’)
array ("1, [1, 2, 3, 4, 51)
array('d’, [1.0, 2.0, 3.147)

See Also:
Module st ruct Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

The Numerical Python Manual The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.net/ for further information about Numerical Python. (A PDF version of the
NumPy manual is available at http:/numpy.sourceforge.net/numdoc/numdoc.pdf).

9.7 sets — Unordered collections of unique elements

New in version 2.3.Deprecated since version 2.6: The built-in set/frozenset types replace this module. The
set s module provides classes for constructing and manipulating unordered collections of unique elements. Com-
mon uses include membership testing, removing duplicates from a sequence, and computing standard math oper-
ations on sets such as intersection, union, difference, and symmetric difference.

Like other collections, sets support x in set, len(set),and for x in set. Being an unordered collec-
tion, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing,
or other sequence-like behavior.

Most set applications use the Set class which provides every set method except for __hash__ (). For advanced
applications requiring a hash method, the TmmutableSet classaddsa__hash__ () method but omits methods
which alter the contents of the set. Both Set and ImmutableSet derive from BaseSet, an abstract class useful
for determining whether something is a set: isinstance (obj, BaseSet).

The set classes are implemented using dictionaries. Accordingly, the requirements for set elements are the same
as those for dictionary keys; namely, that the element defines both __eq_ () and __hash__ (). As a result,

156 Chapter 9. Data Types

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm
http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf

The Python Library Reference, Release 2.6.5

sets cannot contain mutable elements such as lists or dictionaries. However, they can contain immutable col-
lections such as tuples or instances of ImmutableSet. For convenience in implementing sets of sets, inner
sets are automatically converted to immutable form, for example, Set ([Set ([’ dog’]) 1) is transformed to
Set ([ImmutableSet (["dog’])1).

class Set ([iterable])
Constructs a new empty Set object. If the optional iterable parameter is supplied, updates the set with
elements obtained from iteration. All of the elements in iferable should be immutable or be transformable
to an immutable using the protocol described in section Protocol for automatic conversion to immutable.

class ImmutableSet ([iterable])
Constructs a new empty ImmutableSet object. If the optional iterable parameter is supplied, updates
the set with elements obtained from iteration. All of the elements in iferable should be immutable or be
transformable to an immutable using the protocol described in section Protocol for automatic conversion to
immutable.

Because ImmutableSet objects provide a___hash__ () method, they can be used as set elements or as
dictionary keys. ImmutableSet objects do not have methods for adding or removing elements, so all of
the elements must be known when the constructor is called.

9.7.1 Set Objects

Instances of Set and ImmutableSet both provide the following operations:

Operation Equivalent | Result
len(s) cardinality of set s
x in s test x for membership in s
x not in s test x for non-membership in s
s.issubset (t) s <= t test whether every element in s is in ¢
s.issuperset (t) s >=t test whether every element in 7 is in s
s.union (t) s |t new set with elements from both s and ¢
s.intersection (t) s & t new set with elements common to s and ¢
s.difference (t) s — t new set with elements in s but not in ¢
s.symmetric_difference (t) s Nt new set with elements in either s or ¢ but not both
s.copy () new set with a shallow copy of s

Note, the non-operator versions of union(), intersection(), difference(), and

symmetric_difference () will accept any iterable as an argument. In contrast, their operator based
counterparts require their arguments to be sets. This precludes error-prone constructions like Set (’ abc’) &
" cbs’ in favor of the more readable Set (/abc’) .intersection (’cbs’). Changed in version 2.3.1:
Formerly all arguments were required to be sets. In addition, both Set and ImmutableSet support set to set
comparisons. Two sets are equal if and only if every element of each set is contained in the other (each is a subset
of the other). A set is less than another set if and only if the first set is a proper subset of the second set (is a
subset, but is not equal). A set is greater than another set if and only if the first set is a proper superset of the
second set (is a superset, but is not equal).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b, or
a>b. Accordingly, sets do not implement the __cmp___ () method.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is unde-
fined for lists of sets.

The following table lists operations available in TmmutableSet but not found in Set:

Operation Result
hash (s) returns a hash value for s

The following table lists operations available in Set but not found in TmmutableSet:

9.7. sets — Unordered collections of unique elements 157

The Python Library Reference, Release 2.6.5

Operation Equiva- Result
lent

s.update (t) sl=t return set s with elements added from ¢
s.intersection_update (t) s &=t return set s keeping only elements also found in #
s.difference_update (t) s-=t return set s after removing elements found in ¢
s.symmetric_difference_updat=(t) return set s with elements from s or 7 but not both
s.add (x) add element x to set s
s.remove (x) rmnovexfnnnsetx1amesKeyErrorifnotpHment
s.discard (x) removes x from set s if present
s.pop () remove and return an arbitrary element from s; raises

KeyError if empty
s.clear () remove all elements from set s

Note, the non-operator versions of update (), intersection_update (),difference_update (), and
symmetric_difference_update () will accept any iterable as an argument. Changed in version 2.3.1:
Formerly all arguments were required to be sets. Also note, the module also includes a union_update ()
method which is an alias for update (). The method is included for backwards compatibility. Programmers
should prefer the update () method because it is supported by the built-in set () and frozenset () types.

9.7.2 Example

>>> from sets import Set

>>> engineers = Set ([’John’, ’Jane’, ’'Jack’, ’"Janice’])

>>> programmers = Set ([’Jack’, ’'Sam’, ’'Susan’, ’Janice’])

>>> managers = Set ([’Jane’, "Jack’, ’Susan’, ’"Zack’])

>>> employees = engineers | programmers | managers # union

>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference
>>> engineers.add(’'Marvin’) # add element

>>> print engineers # doctest: +SKIP
Set (["Jane’, ’'Marvin’, ’Janice’, ’"John’, ’"Jack’])

>>> employees.issuperset (engineers) # superset test

False

>>> employees.update (engineers) # update from another set

>>> employees.issuperset (engineers)

True

>>> for group in [engineers, programmers, managers, employees]: # doctest: +SKIP
group.discard(’ Susan’) # unconditionally remove element

print group

Set

(["Jane’, ’'Marvin’, ’'Janice’, ’"John’, ’"Jack’])
Set (["Janice’, ’"Jack’, ’'Sam’])
Set (["Jane’, ’Zack’, ’"Jack’])
Set (["Jack’, ’'Sam’, ’"Jane’, ’'Marvin’, ’Janice’, ’"John’, ’Zack’])

9.7.3 Protocol for automatic conversion to immutable
Sets can only contain immutable elements. For convenience, mutable Set objects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always add a hashable element, or if it is not hashable, the element is checked to see if it has
an__as_immutable_ () method which returns an immutable equivalent.

Since Set objects have a __as_immutable__ () method returning an instance of TmmutableSet, it is
possible to construct sets of sets.

A similar mechanism is needed by the _ _contains__ () and remove () methods which need to hash an
element to check for membership in a set. Those methods check an element for hashability and, if not, check for a

158 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

__as_temporarily_immutable__ () method which returns the element wrapped by a class that provides
temporary methods for __hash__ (),_eq_ (),and _ne__ ().

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the __as_temporarily_immutable__ () method which returns the Set object
wrapped by a new class _TemporarilyImmutableSet.

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilyImmutableSet. In other words, sets of mutable sets are not thread-safe.

9.7.4 Comparison to the built-in set types

The built-in set and frozenset types were designed based on lessons learned from the sets module. The
key differences are:

* Set and ImmutableSet were renamed to set and frozenset.

¢ There is no equivalent to BaseSet. Instead, use isinstance (x, (set, frozenset)).

* The hash algorithm for the built-ins performs significantly better (fewer collisions) for most datasets.
* The built-in versions have more space efficient pickles.

e The built-in versions do not have a union_update () method. Instead, use the update () method
which is equivalent.

¢ The built-in versions do not have a _repr (sorted=True) method. Instead, use the built-in repr ()
and sorted () functions: repr (sorted(s)).

* The built-in version does not have a protocol for automatic conversion to immutable. Many found this
feature to be confusing and no one in the community reported having found real uses for it.

9.8 sched — Event scheduler

The sched module defines a class which implements a general purpose event scheduler:

class scheduler (timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to actually
deal with the “outside world” — timefunc should be callable without arguments, and return a number (the
“time”, in any units whatsoever). The delayfunc function should be callable with one argument, compatible
with the output of timefunc, and should delay that many time units. delayfunc will also be called with the
argument O after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s = sched.scheduler (time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time ()

>>> def print_some_times() :
print time.time ()
s.enter (5, 1, print_time, ())
s.enter (10, 1, print_time, ())
s.run ()
print time.time ()

>>> print_some_times ()
930343690.257
From print_time 930343695.274

9.8. sched — Event scheduler 159

The Python Library Reference, Release 2.6.5

From print_time 930343700.273
930343700.276

In multi-threaded environments, the scheduler class has limitations with respect to thread-safety, inability to
insert a new task before the one currently pending in a running scheduler, and holding up the main thread until the
event queue is empty. Instead, the preferred approach is to use the threading. Timer class instead.

Example:

>>>
>>>
>>>

>>>

>>>

import time
from threading import Timer
def print_time() :
print "From print_time", time.time ()

def print_some_times () :
print time.time ()
Timer (5, print_time, ()) .start/()
Timer (10, print_time, ()).start()
time.sleep(ll) # sleep while time-delay events execute
print time.time ()

print_some_times ()

930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343701.301

9.8.1 Scheduler Objects

scheduler instances have the following methods and attributes:

enterabs (time, priority, action, argument)

Schedule a new event. The time argument should be a numeric type compatible with the return value of
the timefunc function passed to the constructor. Events scheduled for the same time will be executed in the
order of their priority.

Executing the event means executing act ion (xargument) . argument must be a sequence holding the
parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel ()).

enter (delay, priority, action, argument)

Schedule an event for delay more time units. Other then the relative time, the other arguments, the effect
and the return value are the same as those for enterabs ().

cancel (event)

Remove the event from the queue. If event is not an event currently in the queue, this method will raise a
ValueError.

empty ()

Return true if the event queue is empty.

run ()

Run all scheduled events. This function will wait (using the delayfunc () function passed to the con-
structor) for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a consistent
state and propagate the exception. If an exception is raised by action, the event will not be attempted in
future calls to run ().

If a sequence of events takes longer to run than the time available before the next event, the scheduler will
simply fall behind. No events will be dropped; the calling code is responsible for canceling events which
are no longer pertinent.

160

Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

queue
Read-only attribute returning a list of upcoming events in the order they will be run. Each event is shown as

a named tuple with the following fields: time, priority, action, argument. New in version 2.6.

9.9 mutex — Mutual exclusion support

Deprecated since version The: mutex module has been removed in Python 3.0. The mutex module defines a
class that allows mutual-exclusion via acquiring and releasing locks. It does not require (or imply) threading
or multi-tasking, though it could be useful for those purposes.

The mutex module defines the following class:

class mutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue
is empty. Otherwise, the queue contains zero or more (function, argument) pairs representing
functions (or methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not
empty, the first queue entry is removed and its function (argument) pair called, implying it now has
the lock.

Of course, no multi-threading is implied — hence the funny interface for 1ock (), where a function is called
once the lock is acquired.

9.9.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and return True, otherwise, return False.

lock (function, argument)
Execute function (argument), unless the mutex is locked. In the case it is locked, place the function
and argument on the queue. See unlock () for explanation of when function (argument) isexecuted
in that case.

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

9.10 queue — A synchronized queue class

Note: The Queue module has been renamed to queue in Python 3.0. The 2703 tool will automatically adapt
imports when converting your sources to 3.0.

The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded pro-
gramming when information must be exchanged safely between multiple threads. The Queue class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python; see the
threading module.

Implements three types of queue whose only difference is the order that the entries are retrieved. In a FIFO queue,
the first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first retrieved
(operating like a stack). With a priority queue, the entries are kept sorted (using the heapqg module) and the
lowest valued entry is retrieved first.

The Queue module defines the following classes and exceptions:

9.9. mutex — Mutual exclusion support 161

The Python Library Reference, Release 2.6.5

class Queue (maxsize)
Constructor for a FIFO queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

class LifoQueue (maxsize)
Constructor for a LIFO queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite. New in version 2.6.

class PriorityQueue (maxsize)
Constructor for a priority queue. maxsize is an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned
by sorted(list (entries)) [0]). A typical pattern for entries is a tuple in the form:
(priority_number, data).New in version 2.6.

exception Empty
Exception raised when non-blocking get () (or get_nowait ()) is called on a Queue object which is
empty.

exception Full
Exception raised when non-blocking put () (or put_nowait ()) is called on a Queue object which is
full.

See Also:

collections.deque is an alternative implementation of unbounded queues with fast atomic append () and
popleft () operations that do not require locking.

9.10.1 Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.

gsize ()
Return the approximate size of the queue. Note, qsize() > 0 doesn’t guarantee that a subsequent get() will
not block, nor will gsize() < maxsize guarantee that put() will not block.

empty ()
Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that
a subsequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that a
subsequent call to get() will not block.

full ()
Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a sub-
sequent call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a subsequent
call to put() will not block.

put (item, [block, [timeout]])
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary
until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the
Full exception if no free slot was available within that time. Otherwise (block is false), put an item on the
queue if a free slot is immediately available, else raise the Full exception (timeout is ignored in that case).
New in version 2.3: The timeout parameter.

put_nowait (item)
Equivalent to put (item, False).

get ([block, [timeout]])
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If ftimeout is a positive number, it blocks at most timeout
seconds and raises the Empty exception if no item was available within that time. Otherwise (block is

162 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

false), return an item if one is immediately available, else raise the Empty exception (timeout is ignored in
that case). New in version 2.3: The timeout parameter.

get_nowait ()
Equivalent to get (False).

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon con-
sumer threads.

task_done ()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get ()
used to fetch a task, a subsequent call to task_done () tells the queue that the processing on the task is
complete.

If a join () is currently blocking, it will resume when all items have been processed (meaning that a
task_done () call was received for every item that had been put () into the queue).

Raises a ValueError if called more times than there were items placed in the queue. New in version 2.5.
join ()

Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down

whenever a consumer thread calls task_ done () to indicate that the item was retrieved and all work on it
is complete. When the count of unfinished tasks drops to zero, join () unblocks. New in version 2.5.

Example of how to wait for enqueued tasks to be completed:

def worker () :
while True:
item = g.get ()
do_work (item)
g.task_done ()

g = Queue ()

for i in range (num_worker_threads) :
t = Thread(target=worker)
t.setDaemon (True)
t.start ()

for item in source () :
g.put (item)

g.join () # block until all tasks are done

9.11 weakref — Weak references

New in version 2.1. The weakref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it’s
desired that a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each.
If you used a Python dictionary to map names to images, or images to names, the image objects would re-
main alive just because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and
WeakValueDictionary classes supplied by the weakref module are an alternative, using weak references
to construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for
example, an image object is a value in a WeakValueDictionary, then when the last remaining references to

9.11. weakref — Weak references 163

The Python Library Reference, Release 2.6.5

that image object are the weak references held by weak mappings, garbage collection can reclaim the object, and
its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting
up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. Most programs should find that using one of these weak dictionary types is all
they need — it’s not usually necessary to create your own weak references directly. The low-level machinery used
by the weak dictionary implementations is exposed by the weak re f module for the benefit of advanced uses.

Note: Weak references to an object are cleared before the object’s __del__ () is called, to ensure that the weak
reference callback (if any) finds the object still alive.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), methods (both bound and unbound), sets, frozensets, file objects, generators, type objects,
DBcursor objects from the bsddb module, sockets, arrays, deques, and regular expression pattern objects.
Changed in version 2.4: Added support for files, sockets, arrays, and patterns. Several built-in types such as 1ist
and dict do not directly support weak references but can add support through subclassing:

class Dict (dict) :
pass

obj = Dict (red=1l, green=2, blue=3) # this object is weak referenceable

CPython implementation detail: Other built-in types such as tuple and 1ong do not support weak references
even when subclassed.

Extension types can easily be made to support weak references; see Weak Reference Support (in Extending and
Embedding Python).

class ref (object, [callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, and the returned weakref object is still alive, the callback
will be called when the object is about to be finalized; the weak reference object will be passed as the only
parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the
object was deleted. If hash () is called the first time only after the object was deleted, the call will raise
TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardless of the callback). If either referent has been
deleted, the references are equal only if the reference objects are the same object. Changed in version 2.4:
This is now a subclassable type rather than a factory function; it derives from ob ject.

proxy (object, [callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of either ProxyType or CallableProxyType, depending on whether object is callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to
their fundamentally mutable nature, and prevent their use as dictionary keys. callback is the same as the
parameter of the same name to the ref () function.

getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

164 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

class WeakKeyDictionary (/dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references
directly. The references are not guaranteed to be “live” at the time they are used, so the result of calling the
references needs to be checked before being used. This can be used to avoid creating references that will cause
the garbage collector to keep the keys around longer than needed.

iterkeyrefs ()
Return an iterator that yields the weak references to the keys. New in version 2.5.

keyrefs ()
Return a list of weak references to the keys. New in version 2.5.

class WeakValueDictionary (/dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues
asthe iterkeyrefs () and keyrefs () methods of WeakKeyDictionary objects.

itervaluerefs ()
Return an iterator that yields the weak references to the values. New in version 2.5.

valuerefs ()
Return a list of weak references to the values. New in version 2.5.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exception ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standard Re ferenceError exception.

See Also:

PEP 0205 - Weak References The proposal and rationale for this feature, including links to earlier implementa-
tions and information about similar features in other languages.

9.11. weakref — Weak references 165

http://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 2.6.5

9.11.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
pass

>>> o = Obiject ()

>>> r = weakref.ref (0)
>>> 02 = r()

>>> o0 is 02

True

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2
>>> print r ()
None

Testing that a weak reference object is still live should be done using the expression ref () is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:
referent has been garbage collected
print "Object has been deallocated; can’t frobnicate."
else:
print "Object is still live!"
o.do_something useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of
the WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most
useful to associate additional information with a reference, but could also be used to insert additional processing
on calls to retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect
the value that’s returned when the referent is accessed:

import weakref

class ExtendedRef (weakref.ref):

def _ init__ (self, ob, callback=None, *+*annotations):
super (ExtendedRef, self).__init__ (ob, callback)
self._ counter = 0

for k, v in annotations.iteritems () :
setattr(self, k, v)

def _ call (self):
"""Return a palr containing the referent and the number of
times the reference has been called.

mmn

ob = super (ExtendedRef, self).__call__ ()
if ob is not None:

self.__counter += 1

ob = (ob, self._ counter)

return ob

166 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

9.11.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref
_id20bj_dict = weakref.WeakValueDictionary ()

def remember (obj) :
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

9.12 UserDict — Class wrapper for dictionary objects

The module defines a mixin, DictMixin, defining all dictionary methods for classes that already have a mini-
mum mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such
as the shelve module).

This module also defines a class, UserDict, that acts as a wrapper around dictionary objects. The need for this
class has been largely supplanted by the ability to subclass directly from dict (a feature that became available
starting with Python version 2.2). Prior to the introduction of dict, the UserDict class was used to create
dictionary-like sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

The UserDict module defines the UserDict class and DictMixin:

class UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, data is initialized with its
contents; note that a reference to initialdata will not be kept, allowing it be used for other purposes.

Note: For backward compatibility, instances of UserDict are not iterable.

class IterableUserDict ([initialdata])
Subclass of UserDict that supports direct iteration (e.g. for key in myDict).

In addition to supporting the methods and operations of mappings (see section Mapping Types — dict), UserDict
and TterableUserDict instances provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

class DictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem__ (), setitem__ (), delitem__ (), and keys ().

This mixin should be used as a superclass. Adding each of the above methods adds progressively more
functionality. For instance, defining allbut __delitem__ () will preclude only pop () and popitem ()
from the full interface.

In addition to the four base methods, progressively more efficiency comes with defining
__contains__ (), __iter (),and iteritems().

Since the mixin has no knowledge of the subclass constructor, it does not define __init__ () or copy ().

Starting with Python version 2.6, it is recommended to use collections.MutableMapping instead
of DictMixin.

9.12. UserDict — Class wrapper for dictionary objects 167

The Python Library Reference, Release 2.6.5

9.13 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from the built-in 1ist

type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

The UserList module defines the UserList class:

class UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be any iterable, e.g. a real Python list or a UserList object.

Note: The UserList class has been moved to the collections module in Python 3.0. The 2703 tool
will automatically adapt imports when converting your sources to 3.0.

In addition to supporting the methods and operations of mutable sequences (see section Sequence Types — str;
unicode, list, tuple, buffer, xrange), UserList instances provide the following attribute:

data
A real Python list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case. Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor
be callable with no parameters, and offer a mutable dat a attribute. Earlier versions of Python did not attempt to
create instances of the derived class.

9.14 Userstring — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are
writing code that does not need to work with versions of Python earlier than Python 2.2, please consider sub-
classing directly from the built-in str type instead of using UserString (there is no built-in equivalent to
MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own
string-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is
especially the case for MutableString.

The UserString module defines the following classes:

class UserString ([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via the dat a attribute of User St ring instances. The instance’s
contents are initially set to a copy of sequence. sequence can be either a regular Python string or Unicode
string, an instance of UserString (or a subclass) or an arbitrary sequence which can be converted into a
string using the built-in st r () function.

Note: The UserString class has been moved to the collections module in Python 3.0. The 2703
tool will automatically adapt imports when converting your sources to 3.0.

168 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

class MutableString ([sequence])
This class is derived from the UserString above and redefines strings to be mutable. Mutable strings
can’t be used as dictionary keys, because dictionaries require immutable objects as keys. The main intention
of this class is to serve as an educational example for inheritance and necessity to remove (override) the
__hash__ () method in order to trap attempts to use a mutable object as dictionary key, which would be
otherwise very error prone and hard to track down. Deprecated since version 2.6: The MutableString
class has been removed in Python 3.0.

In addition to supporting the methods and operations of string and Unicode objects (see section String Methods),
UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of the User St ring class.

9.15 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for
the types defined by various extension modules. Also, it does not include some of the types that arise during
processing such as the 1istiterator type. It is safe to use from types import % — the module does
not export any names besides the ones listed here. New names exported by future versions of this module will all
end in Type.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import =
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove (item)

Starting in Python 2.2, built-in factory functions such as int () and str () are also names for the corresponding
types. This is now the preferred way to access the type instead of using the t ypes module. Accordingly, the
example above should be written as follows:

def delete (mylist, item):
if isinstance (item, int):
del mylist[item]
else:
mylist.remove (item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by t ype ()); alias of the built-in t ype.

BooleanType
The type of the bool values True and False; alias of the built-in bool. New in version 2.3.

IntType
The type of integers (e.g. 1); alias of the built-in int.

LongType
The type of long integers (e.g. 11); alias of the built-in 1ong.

FloatType
The type of floating point numbers (e.g. 1. 0); alias of the built-in f1oat.

9.15. types — Names for built-in types 169

The Python Library Reference, Release 2.6.5

ComplexType
The type of complex numbers (e.g. 1. 07j). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e.g. ’ Spam’); alias of the built-in st r.

UnicodeType
The type of Unicode character strings (e.g. u’ Spam’). This is not defined if Python was built without
Unicode support. It’s an alias of the built-in unicode.

TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’));alias of the built-in tuple.

ListType
The type of lists (e.g. [0, 1, 2, 31);alias of the built-in 1ist.

DictType
The type of dictionaries (e.g. {” Bacon’: 1, ‘Ham’: 0});alias of the built-in dict.

DictionaryType
An alternate name for DictType.

FunctionType
LambdaType
The type of user-defined functions and functions created by 1ambda expressions.

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returned by compile ().

ClassType
The type of user-defined old-style classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

BuiltinFunctionType

BuiltinMethodType
The type of built-in functions like 1en () or sys.exit (), and methods of built-in classes. (Here, the
term “built-in” means “written in C”.)

ModuleType
The type of modules.
FileType
The type of open file objects such as sys . stdout; alias of the built-in file.

XRangeType
The type of range objects returned by xrange () ; alias of the built-in xrange.

SliceType

The type of objects returned by s1ice () ; alias of the built-in s1ice.
EllipsisType

The type of E11ipsis.

TracebackType
The type of traceback objects such as found in sys.exc_traceback.

170 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buffer () function.

DictProxyType
The type of dict proxies, such as TypeType.__dict__.

NotImplementedType
The type of Not Implemented

GetSetDescriptorType
The type of objects defined in extension modules with PyGet SetDef, such as FrameType.f_locals
or array.array.typecode. This type is used as descriptor for object attributes; it has the same pur-
pose as the property type, but for classes defined in extension modules. New in version 2.5.

MemberDescriptorType
The type of objects defined in extension modules with PyMemberDef, such as
datetime.timedelta.days. This type is used as descriptor for simple C data members which
use standard conversion functions; it has the same purpose as the property type, but for classes defined
in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType. New in version 2.5.

StringTypes
A sequence containing StringType and UnicodeType used to facilitate easier checking for any string
object. Using this is more portable than using a sequence of the two string types constructed elsewhere
since it only contains UnicodeType if it has been built in the running version of Python. For example:
isinstance (s, types.StringTypes). New in version 2.2.

9.16 new — Creation of runtime internal objects

Deprecated since version 2.6: The new module has been removed in Python 3.0. Use the t ype s module’s classes
instead. The new module allows an interface to the interpreter object creation functions. This is for use primarily
in marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module. It is possible to supply non-sensical arguments which crash the interpreter when the object is used.

The new module defines the following functions:

instance (class, [dict])
This function creates an instance of class with dictionary dict without callingthe __init__ () constructor.
If dict is omitted or None, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None. function must
be callable.

function (code, globals, [name, [argdefs, [closure]]])
Returns a (Python) function with the given code and globals. If name is given, it must be a string or None.
If it is a string, the function will have the given name, otherwise the function name will be taken from
code.co_name. If argdefs is given, it must be a tuple and will be used to determine the default values of
parameters. If closure is given, it must be None or a tuple of cell objects containing objects to bind to the
names in code.co_freevars.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno,

lnotab) .
This function is an interface to the PyCode_New () C function.

9.16. new — Creation of runtime internal objects 171

The Python Library Reference, Release 2.6.5

module (name, [doc])
This function returns a new module object with name name. name must be a string. The optional doc
argument can have any type.

classobj (name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should be a
tuple of classes) and with namespace dict.

9.17 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.
Interface summary:

copy (x)
Return a shallow copy of x.

deepcopy (x)
Return a deep copy of x.

exception error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

* A shallow copy constructs a new compound object and then (to the extent possible) inserts references into
it to the objects found in the original.

* A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects
found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

* Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

* Because deep copy copies everything it may copy too much, e.g., administrative data structures that should
be shared even between copies.

The deepcopy () function avoids these problems by:
* keeping a “memo” dictionary of objects already copied during the current copying pass; and
* letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or
any similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object
unchanged; this is compatible with the way these are treated by the pick1le module.

Shallow copies of dictionaries can be made using dict .copy (), and of lists by assigning a slice of the entire
list, for example, copied_list = original_list[:].Changedin version2.5: Added copying functions.
Classes can use the same interfaces to control copying that they use to control pickling. See the description of
module pickle for information on these methods. The copy module does not use the copy_ reg registration
module. In order for a class to define its own copy implementation, it can define special methods __copy__ ()

and __deepcopy___ (). The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the __deepcopy__ () implementation needs to make a deep copy of a component, it should call
the deepcopy () function with the component as first argument and the memo dictionary as second argument.

See Also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

172 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

9.18 pprint — Data pretty printer

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can
be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other built-in objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width
constraint. Changed in version 2.5: Dictionaries are sorted by key before the display is computed; before 2.5, a
dictionary was sorted only if its display required more than one line, although that wasn’t documented.Changed
in version 2.6: Added support for set and frozenset. The pprint module defines one class:

class PrettyPrinter (...)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using the stream keyword; the only method used on the stream object is the
file protocol’s write () method. If not specified, the PrettyPrinter adopts sys.stdout. Three
additional parameters may be used to control the formatted representation. The keywords are indent, depth,
and width. The amount of indentation added for each recursive level is specified by indent; the default is
one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number
of levels which may be printed is controlled by depth; if the data structure being printed is too deep, the
next contained level is replaced by By default, there is no constraint on the depth of the objects being
formatted. The desired output width is constrained using the width parameter; the default is 80 characters.
If a structure cannot be formatted within the constrained width, a best effort will be made.

>>> import pprint
>>> stuff = [’spam’, ’"eggs’, ’lumberjack’, ’'knights’, ’'ni’]
>>> stuff.insert (0, stuff[:])
>>> pp = pprint.PrettyPrinter (indent=4)
>>> pp.pprint (stuff)
[["spam’, ’eggs’, ’lumberjack’, ’'knights’, 'ni’],
" spam’,
"eggs’,
" lumberjack’,
"knights’,
"ni’]
>>> tup = ('spam’, ('eggs’, (’lumberjack’, (’knights’, ('ni’, (’dead’,
... ('parrot’, (/fresh fruit’,))))))))
>>> pp = pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
("spam’, (’eggs’, (’lumberjack’, ("knights’, ('ni’, ("dead’, (...)))))))

The PrettyPrinter class supports several derivative functions:

pformat (object, [indent, [width, [depth]]])
Return the formatted representation of object as a string. indent, width and depth will be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The parameters indent,
width and depth were added.

pprint (object, [stream, [indent, [width, [depth]]]])
Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement for in-
specting values. indent, width and depth will be passed to the Pret tyPrinter constructor as formatting
parameters.

>>> import pprint

>>> stuff = [’'spam’, "eggs’, ’lumberjack’, ’"knights’, ’'ni’]
>>> stuff.insert (0, stuff)

>>> pprint.pprint (stuff)

9.18. pprint — Data pretty printer 173

The Python Library Reference, Release 2.6.5

[<Recursion on list with id=...>,
" spam’ ,

"eggs’,

" lumberjack’,

"knights’,

'ni’]

Changed in version 2.4: The parameters indent, width and depth were added.

isreadable (object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the value
using eval (). This always returns False for recursive objects.

>>> pprint.isreadable (stuff)
False

isrecursive (object)
Determine if object requires a recursive representation.

One more support function is also defined:

saferepr (object)
Return a string representation of object, protected against recursive data structures. If the representa-
tion of object exposes a recursive entry, the recursive reference will be represented as <Recursion on
typename with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)
"[<Recursion on list with id=...>, ’'spam’, ’eggs’, ’lumberjack’, ’'knights’

9.18.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be
created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value using eval (). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.

isrecursive (object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of the saferepr () implementation.

format (object, context, maxlevels, level)
Returns three values: the formatted version of object as a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which contains the id () of objects that are part of the current
presentation context (direct and indirect containers for object that are affecting the presentation) as the keys;
if an object needs to be presented which is already represented in context, the third return value should
be True. Recursive calls to the format () method should add additional entries for containers to this

174 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

dictionary. The third argument, maxlevels, gives the requested limit to recursion; this will be 0 if there is no
requested limit. This argument should be passed unmodified to recursive calls. The fourth argument, level,
gives the current level; recursive calls should be passed a value less than that of the current call. New in
version 2.3.

9.18.2 pprint Example

This example demonstrates several uses of the pprint () function and its parameters.

>>> import pprint

>>> tup = ('spam’, (’'eggs’, (’/lumberjack’, (’knights’, ('ni’, (’dead’,
.. ("parrot’, ('fresh fruit’,))))))))
>>> stuff = ["a’ = 10, tup, ["a’ * 30, "b’ * 301, ['c" = 20, "d" % 20]]

>>> pprint.pprint (stuff)
["aaaaaaaaaa’,
(" spam’,
("eggs’,
(" lumberjack’,
("knights’, ('ni’, (’'dead’, ('parrot’, ('fresh fruit’,)))))))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[ccccececcececceccececcececcece’, ’dddddddddddddddddddd’ 1]
>>> pprint.pprint (stuff, depth=3)
[aaaaaaaaaa’,
("spam’, ("eggs’, (...))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[ccccececcecececcececccececcceecce’, ’dddddddddddddddddddd’ 1]
>>> pprint.pprint (stuff, width=60)
["aaaaaaaaaa’,
(" spam’,
("eggs’,
(” lumberjack’,
("knights’,
('ni’”, (’'dead’, ("parrot’, (’'fresh fruit’,)))))))),
[/ aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’,
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[ccccecceccececcececccececccececce’, ’dddddddddddddddddddd’ 1]

9.19 repr — Alternate repr () implementation

Note: The repr module has been renamed to reprlib in Python 3.0. The 2703 tool will automatically adapt
imports when converting your sources to 3.0.

The repr module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class Repr ()
Class which provides formatting services useful in implementing functions similar to the built-in repr () ;
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

repr (0bj)

This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

9.19. repr — Alternate repr () implementation 175

The Python Library Reference, Release 2.6.5

9.19.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is 6.

maxdict

maxlist

maxtuple

maxset

maxfrozenset

maxdeque

maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5
for maxarray, and 6 for the others. New in version 2.4: maxset, maxfrozenset, and set.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is 40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The default is 30.

maxother
This limit is used to control the size of object types for which no specific formatting method is available on
the Repr object. It is applied in a similar manner as maxstring. The defaultis 20.

repr (0bj)
The equivalent to the built-in repzr () that uses the formatting imposed by the instance.

reprl (obj, level)
Recursive implementation used by repr (). This uses the type of obj to determine which formatting
method to call, passing it 0obj and level. The type-specific methods should call repr1 () to perform recur-
sive formatting, with 1evel - 1 for the value of level in the recursive call.

repr_ TYPE (0bj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method name, TYPE is replaced by string. join(string.split (type (obj) .__name__,
’ _7)). Dispatch to these methods is handled by repr1 (). Type-specific methods which need to recur-
sively format a value should call self.reprl (subobj, level - 1).

9.19.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.reprl () allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special
support for file objects could be added:

import repr as reprlib
import sys

class MyRepr (reprlib.Repr) :
def repr_file(self, obj, level):
if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’']:
return obj.name
else:
return repr (obj)

176 Chapter 9. Data Types

The Python Library Reference, Release 2.6.5

aRepr = MyRepr ()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

9.19. repr — Alternate repr () implementation 177

The Python Library Reference, Release 2.6.5

178 Chapter 9. Data Types

CHAPTER
TEN

NUMERIC AND MATHEMATICAL
MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmath modules contain various mathe-
matical functions for floating-point and complex numbers. For users more interested in decimal accuracy than in
speed, the decimal module supports exact representations of decimal numbers.

The following modules are documented in this chapter:

10.1 numbers — Numeric abstract base classes

New in version 2.6. The numbe r s module (PEP 3141) defines a hierarchy of numeric abstract base classes which
progressively define more operations. None of the types defined in this module can be instantiated.

class Number ()
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring
what kind, use isinstance (x, Number).

10.1.1 The numeric tower

class Complex ()
Subclasses of this type describe complex numbers and include the operations that work on the built-in

complex type. These are: conversions to complex and bool, real, imag, +, —, *, /, abs (),
conjugate (), ==, and !=. All except — and ! = are abstract.
real

Abstract. Retrieves the Real component of this number.
imag
Abstract. Retrieves the Real component of this number.

conjugate ()
Abstract. Returns the complex conjugate. For example, (1+37) .conjugate () == (1-37).

class Real ()
To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, trunc (), round (), math.floor (), math.ceil (),
divmod (), //, %, <, <=,>,and >=.

Real also provides defaults for complex (), real, imag, and conjugate ().

class Rational ()
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms.
With these, it provides a default for f1oat ().

179

http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 2.6.5

numerator
Abstract.

denominator
Abstract.

class Integral ()
Subtypes Rational and adds a conversion to int. Provides defaults for f1oat (), numerator, and
denominator, and bit-string operations: <<, >>, &, ", |, ~.

10.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may
be subtle if there are two different extensions of the real numbers. For example, fractions.Fraction
implements hash () as follows:

def _ hash_ (self):

if self.denominator == 1:
Get integers right.
return hash (self.numerator)

Expensive check, but definitely correct.

if self == float(self):
return hash (float (self))

else:
Use tuple’s hash to avoid a high collision rate on
simple fractions.
return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the
possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo (Complex) :
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation
whose author knew about the types of both arguments, or convert both to the nearest built in type and do the
operation there. For subtypes of Integral, this means that __add__ () and __radd__ () should be defined
as:

class MyIntegral (Integral):

def _ add_ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (self, other)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (self, other)
else:
return NotImplemented

def _ radd__ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (other, self)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_ adding_stuff (other, self)

180 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

elif isinstance (other, Integral):

return int (other) + int(self)
elif isinstance (other, Real):

return float (other) + float (self)
elif isinstance (other, Complex):

return complex (other) + complex(self)
else:

return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I'll refer to all of the above
code that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance

of A, which is a subtype of Complex (a : A <: Complex),andb : B <: Complex. I'll consider
a + b

1. If A defines an __add___ () which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add__ (), we’d miss the possi-
bility that B defines a more intelligent ___radd__ (), so the boilerplate should return Not Implemented
from __add__ (). (Or A may not implement __add__ () atall.)

3. Then B‘s __radd__ () gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default
implementation should live.

5. If B <: A, Python tries B.__radd___ before A.__add__. This is ok, because it was implemented
with knowledge of A, so it can handle those instances before delegating to Complex.

IfA <: ComplexandB <: Real without sharing any other knowledge, then the appropriate shared oper-
ation is the one involving the built in complex, and both __radd__ () sland there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function
which generates the forward and reverse instances of any given operator. For example, fractions.Fraction
uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance (b, (int, long, Fraction)):
return monomorphic_operator (a, b)

elif isinstance (b, float):
return fallback_operator (float(a), b)

elif isinstance (b, complex):
return fallback_operator (complex(a), b)

else:
return NotImplemented
forward.__name_ = '__ " + fallback_operator._ name__ + ’'__ '
forward.__doc__ = monomorphic_operator.__doc_

def reverse(b, a):
if isinstance(a, Rational):
Includes 1ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real) :
return fallback_operator (float(a), float (b))
elif isinstance(a, numbers.Complex) :
return fallback_operator (complex(a), complex (b))

else:
return NotImplemented
reverse.__name__ = '__r’ + fallback_operator._ _name__ + '__ '/
reverse.__doc__ = monomorphic_operator.__doc_

return forward, reverse

10.1. numbers — Numeric abstract base classes 181

The Python Library Reference, Release 2.6.5

def _add(a, b):
""Ha + b””"
return Fraction (a.numerator * b.denominator +
b.numerator » a.denominator,
a.denominator * b.denominator)

add

—_ —

__radd__ = _operator_fallbacks(_add, operator.add)

#

10.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath
module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats.

10.2.1 Number-theoretic and representation functions

ceil (x)
Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

copysign (x, y)
Return x with the sign of y. copysign copies the sign bit of an IEEE 754 float, copysign (1, -0.0)
returns -1.0. New in version 2.6.

fabs (x)
Return the absolute value of x.

factorial (x)
Return x factorial. Raises ValueError if x is not integral or is negative. New in version 2.6.

floor (x)
Return the floor of x as a float, the largest integer value less than or equal to x. Changed in version 2.6:
Added __floor__ () delegation.

fmod (x, y)

Return fmod (x, vy), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically;
to infinite precision) equal to x — n=y for some integer n such that the result has the same sign as x and
magnitude less than abs (y). Python’s x % vy returns a result with the sign of y instead, and may not
be exactly computable for float arguments. For example, fmod (-1e-100, 1e100) is =1e-100, but
the result of Python’s ~1e-100 % 1e100is 1e100-1e-100, which cannot be represented exactly as
a float, and rounds to the surprising 1e100. For this reason, function fmod () is generally preferred when
working with floats, while Python’s x % v is preferred when working with integers.

frexp (x)
Return the mantissa and exponent of x as the pair (m, e). mis a float and e is an integer such that x ==
m * 2+*xe exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs (m) < 1. This is used to
“pick apart” the internal representation of a float in a portable way.

182 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

f£sum (iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
0.99999999999999989

>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the round-
ing mode is half-even. On some non-Windows builds, the underlying C library uses extended precision
addition and may occasionally double-round an intermediate sum causing it to be off in its least significant
bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation. New in version 2.6.

isinf (x)
Checks if the float x is positive or negative infinite. New in version 2.6.

isnan (x)
Checks if the float x is a NaN (not a number). NaNs are part of the IEEE 754 standards. Operation like but
not limited to inf = O, inf / inf or any operation involving a NaN, e.g. nan = 1, return a NaN.
New in version 2.6.

ldexp (x, i)
Return x % (2x1i). This is essentially the inverse of function frexp ().

modf (x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

trunc (x)
Return the Real value x truncated to an Integral (usually a long integer). Delegates to
x.__trunc__ (). New in version 2.6.

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil (), floor (), and modf () functions, note that all floating-point numbers of sufficiently large
magnitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float x with abs (x) >= 2x%52 necessarily has no fractional bits.

10.2.2 Power and logarithmic functions

exp (x)
Return e x x x.

log (x, [base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as 1log (x) /log (base).
Changed in version 2.3: base argument added.

loglp (x)
Return the natural logarithm of /+x (base e). The result is calculated in a way which is accurate for x near
zero. New in version 2.6.

logl0 (x)
Return the base-10 logarithm of x. This is usually more accurate than 1og (x, 10).

pow (x, y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible.
In particular, pow (1.0, x) and pow (x, 0.0) always return 1.0, even when x is a zero or a NaN.

10.2. math — Mathematical functions 183

http://code.activestate.com/recipes/393090/
http://code.activestate.com/recipes/393090/

The Python Library Reference, Release 2.6.5

If both x and y are finite, x is negative, and y is not an integer then pow (x, y) is undefined, and raises
ValueError. Changed in version 2.6: The outcome of 1 xnan and nan* 0 was undefined.

sqgrt (x)
Return the square root of x.

10.2.3 Trigonometric functions

acos (x)
Return the arc cosine of x, in radians.

asin (x)
Return the arc sine of x, in radians.

atan (x)
Return the arc tangent of x, in radians.

atan2 (y, x)
Return atan (y / x), in radians. The result is between —pi and pi. The vector in the plane from the
origin to point (x, y) makes this angle with the positive X axis. The point of atan?2 () is that the signs
of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan (1)
and atan2 (1, 1) arebothpi/4,butatan2 (-1, -1) is-3*pi/4.

cos (x)
Return the cosine of x radians.

hypot (x, y)
Return the Euclidean norm, sgrt (x+x + y=*y). This is the length of the vector from the origin to point
(%, y).

sin (x)
Return the sine of x radians.

tan (x)
Return the tangent of x radians.

10.2.4 Angular conversion
degrees (x)
Converts angle x from radians to degrees.

radians (x)
Converts angle x from degrees to radians.

10.2.5 Hyperbolic functions

acosh (x)
Return the inverse hyperbolic cosine of x. New in version 2.6.

asinh (x)
Return the inverse hyperbolic sine of x. New in version 2.6.

atanh (x)
Return the inverse hyperbolic tangent of x. New in version 2.6.

cosh (x)
Return the hyperbolic cosine of x.

sinh (x)
Return the hyperbolic sine of x.

tanh (x)
Return the hyperbolic tangent of x.

184 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

10.2.6 Constants

pi
The mathematical constant pi.

The mathematical constant e.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C
math library functions. Behavior in exceptional cases is loosely specified by the C standards, and Python inherits
much of its math-function error-reporting behavior from the platform C implementation. As a result, the specific
exceptions raised in error cases (and even whether some arguments are considered to be exceptional at all) are
not defined in any useful cross-platform or cross-release way. For example, whether math.log (0) returns
—Inf orraises ValueError or OverflowError isn’t defined, and in cases where math.log (0) raises
OverflowError,math.log (0L) may raise ValueError instead.

All functions return a quiet NaN if at least one of the args is NaN. Signaling NaNs raise an exception. The
exception type still depends on the platform and libm implementation. It’s usually ValueError for EDOM and
OverflowError for errno ERANGE. Changed in version 2.6: In earlier versions of Python the outcome of an
operation with NaN as input depended on platform and libm implementation.

See Also:

Module cmath Complex number versions of many of these functions.

10.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accept
any Python object that has either a __complex__ () ora__float__ () method: these methods are used to
convert the object to a complex or floating-point number, respectively, and the function is then applied to the result
of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the
other. On platforms that do not support signed zeros the continuity is as specified below.

10.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely
determined by its real part z . real and its imaginary part z . imag. In other words:

z == z.real + z.imagx1l]

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while
the phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that
joins the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and
back.

phase (x)
Return the phase of x (also known as the argument of x), as a float. phase (x) is equivalent to
math.atan2 (x.imag, x.real). The result lies in the range [-7, 7], and the branch cut for this
operation lies along the negative real axis, continuous from above. On systems with support for signed
zeros (which includes most systems in current use), this means that the sign of the result is the same as the
sign of x . imag, even when x . imag is zero:

>>> phase (complex (-1.0, 0.0))
3.1415926535897931

10.3. cmath — Mathematical functions for complex numbers 185

The Python Library Reference, Release 2.6.5

>>> phase (complex(-1.0, -0.0))
-3.1415926535897931

New in version 2.6.

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs () function.
There is no separate cmath module function for this operation.

polar (x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x
and phi is the phase of x. polar (x) is equivalentto (abs (x), phase (x)). New in version 2.6.

rect (7 phi)
Return the complex number x with polar coordinates r and phi. Equivalentto r * (math.cos (phi) +
math.sin (phi) *17). New in version 2.6.

10.3.2 Power and logarithmic functions

exp (x)
Return the exponential value e * » x.

log (x, [base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of
x. There is one branch cut, from 0 along the negative real axis to -oo, continuous from above. Changed in
version 2.4: base argument added.

logl0 (x)
Return the base-10 logarithm of x. This has the same branch cut as 1og ().

sqgrt (x)
Return the square root of x. This has the same branch cut as 1og ().

10.3.3 Trigonometric functions

acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to oo,
continuous from below. The other extends left from -1 along the real axis to -co, continuous from above.

asin (x)
Return the arc sine of x. This has the same branch cuts as acos ().

atan (x)
Return the arc tangent of x. There are two branch cuts: One extends from 1 j along the imaginary axis to
o0 Jj, continuous from the right. The other extends from —1 j along the imaginary axis to —oo j, continuous
from the left. Changed in version 2.6: direction of continuity of upper cut reversed

cos (x)
Return the cosine of x.

sin (x)
Return the sine of x.

tan (x)
Return the tangent of x.

10.3.4 Hyperbolic functions

acosh (x)
Return the hyperbolic arc cosine of x. There is one branch cut, extending left from 1 along the real axis to
-00, continuous from above.

186 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

asinh (x)
Return the hyperbolic arc sine of x. There are two branch cuts: One extends from 1 j along the imaginary
axis to ooj, continuous from the right. The other extends from -1 j along the imaginary axis to —co0j,
continuous from the left. Changed in version 2.6: branch cuts moved to match those recommended by the
C99 standard

atanh (x)
Return the hyperbolic arc tangent of x. There are two branch cuts: One extends from 1 along the real axis to
o0, continuous from below. The other extends from —1 along the real axis to —oo, continuous from above.
Changed in version 2.6: direction of continuity of right cut reversed

cosh (x)
Return the hyperbolic cosine of x.

sinh (x)
Return the hyperbolic sine of x.

tanh (x)
Return the hyperbolic tangent of x.

10.3.5 Classification functions

isinf (x)
Return True if the real or the imaginary part of x is positive or negative infinity. New in version 2.6.

isnan (x)
Return True if the real or imaginary part of x is not a number (NaN). New in version 2.6.

10.3.6 Constants

pi
The mathematical constant 7, as a float.

The mathematical constant e, as a float.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having
two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they
are. They would rather have math.sqgrt (-1) raise an exception than return a complex number. Also note that
the functions defined in cmath always return a complex number, even if the answer can be expressed as a real
number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlighten-
ment. For information of the proper choice of branch cuts for numerical purposes, a good reference should be the
following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A.,
and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

10.4 decimal — Decimal fixed point and floating point arithmetic

New in version 2.4. The decimal module provides support for decimal floating point arithmetic. It offers several
advantages over the £ 1 oat datatype:

10.4. decimal — Decimal fixed point and floating point arithmetic 187

The Python Library Reference, Release 2.6.5

* Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle — computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

e Decimal numbers can be represented exactly. In contrast, numbers like 1.1 do not have an ex-
act representation in binary floating point. End users typically would not expect 1.1 to display as
1.1000000000000001 as it does with binary floating point.

* The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 is
exactly equal to zero. In binary floating point, the resultis 5.5511151231257827e~-017. While near
to zero, the differences prevent reliable equality testing and differences can accumulate. For this reason,
decimal is preferred in accounting applications which have strict equality invariants.

e The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The
trailing zero is kept to indicate significance. This is the customary presentation for monetary applications.
For multiplication, the “schoolbook” approach uses all the figures in the multiplicands. For instance, 1.3
x 1.2gives1.56while1.30 % 1.20 gives 1.5600.

* Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting
to 28 places) which can be as large as needed for a given problem:

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal (10.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal (7 0.1428571428571428571428571429")

¢ Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts
of the standard. When needed, the programmer has full control over rounding and signal handling. This
includes an option to enforce exact arithmetic by using exceptions to block any inexact operations.

* The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance,
the coefficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity,
—Infinity, and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags
indicating the results of operations, and trap enablers which determine whether signals are treated as excep-
tions. Rounding options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN,
ROUND_HALF_EVEN, ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals
in the decimal module are: Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded,
Subnormal, Overflow, and Underflow.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the
trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring
a calculation.

See Also:
e IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

¢ IEEE standard 854-1987, Unofficial IEEE 854 Text.

188 Chapter 10. Numeric and Mathematical Modules

http://speleotrove.com/decimal/
http://754r.ucbtest.org/standards/854.pdf

The Python Library Reference, Release 2.6.5

10.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with get context () and,
if necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import =«

>>> getcontext ()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, or tuples. To create a Decimal from a f1oat, first
convert it to a string. This serves as an explicit reminder of the details of the conversion (including representation
error). Decimal numbers include special values such as NaN which stands for “Not a number”, positive and
negative Infinity, and -0.

>>> getcontext () .prec = 28

>>> Decimal (10)

Decimal ("107)

>>> Decimal ("3.14")

Decimal ("3.14")

>>> Decimal ((0, (3, 1, 4), -2))
Decimal (' 3.14")

>>> Decimal (str (2.0 *x 0.5))
Decimal (’1.41421356237")

>>> Decimal (2) +* Decimal(’0.5")
Decimal (71.414213562373095048801688724")
>>> Decimal (' NaN’)
Decimal (" NaN’)

>>> Decimal (' —-Infinity’)
Decimal (' -Infinity’)

The significance of a new Decimal is determined solely by the number of digits input. Context precision and
rounding only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ("3.0")

Decimal ("3.0")

>>> Decimal (' 3.1415926535")

Decimal ("3.1415926535")

>>> Decimal (/3.1415926535’) + Decimal(’2.7182818285")
Decimal ("5.85987")

>>> getcontext () .rounding = ROUND_UP

>>> Decimal ("3.1415926535") + Decimal(’2.7182818285")
Decimal ("5.85988")

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = map(Decimal, "1.34 1.87 3.45 2.35 1.00 0.03 9.25" .split())
>>> max (data)

Decimal (" 9.25")

>>> min (data)

Decimal ("0.03")

>>> sorted(data)

[Decimal ("0.03"), Decimal (’1.00"), Decimal(’1.34"),
Decimal ("2.35"), Decimal(’3.45"), Decimal(’9.25")]
>>> sum(data)

Decimal (719.29")

>>> a,b,c = datal[:3]

>>> str(a)

Decimal ("1.87"),

10.4. decimal — Decimal fixed point and floating point arithmetic 189

The Python Library Reference, Release 2.6.5

r1.347

>>> float (a)
1.3400000000000001
>>> round(a, 1) # round() first converts to binary floating point
1.3

>>> int (a)

1

>>> a *« 5
Decimal (" 6.70")
>>> a *« b
Decimal ('2.5058")
>>> c % a

Decimal ("0.77")

And some mathematical functions are also available to Decimal:

>>> getcontext () .prec = 28

>>> Decimal (2) .sqrt ()

Decimal (71.414213562373095048801688724")
>>> Decimal (1) .exp ()

Decimal (72.718281828459045235360287471")
>>> Decimal ("107) .1n ()

Decimal ("2.302585092994045684017991455")
>>> Decimal ("107) .1ogl0 ()

Decimal ("1")

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal (' 7.325") .quantize (Decimal (' .01"), rounding=ROUND_DOWN)
Decimal (" 7.32")

>>> Decimal (' 7.325") .quantize (Decimal ('1.’), rounding=ROUND_UP)
Decimal (" 8")

As shown above, the get context () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make
an alternate active, use the set context () function.

In accordance with the standard, the Decimal module provides two ready to use standard contexts,
BasicContext and ExtendedContext. The former is especially useful for debugging because many of
the traps are enabled:

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal (70.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=I[1])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

Decimal (¥ 0.142857143")

>>> Decimal (42) / Decimal (0)

Decimal (' Infinity’)

>>> setcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-

190 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

Decimal (42) / Decimal (0)
DivisionByZero: x / O

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by
using the clear_flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags|()

>>> Decimal (355) / Decimal (113)

Decimal (/' 3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[Rounded, Inexact], traps=[])

The flags entry shows that the rational approximation to P 1 was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps field of a context:

>>> setcontext (ExtendedContext)
>>> Decimal (1) / Decimal (0)
Decimal (! Infinity’)
>>> getcontext () .traps([DivisionByZero] = 1
>>> Decimal (1) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#112>", 1line 1, in -toplevel-
Decimal (1) / Decimal (0)
DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric types.

10.4.2 Decimal objects

class Decimal (/value, [context]])
Construct a new Decimal object based from value.

value can be an integer, string, tuple, or another Decimal object. If no value is given, returns
Decimal (* 0'). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters are removed:

sign A A

digit A L A A A~ A G LA A S A A A LA A A A B - 1
indicator 1= e’ | 'E'

digits ::= digit [digit]...

decimal-part ::= digits ’.’ [digits] | [’.’] digits

exponent-part ::= indicator [sign] digits

infinity ::= 'Infinity’ | ’'Inf’

nan ::= 'NaN’ [digits] | ’sNaN’ [digits]

numeric-value = decimal-part [exponent-part] | infinity
numeric-string = [sign] numeric-value | [sign] nan

If value is a unicode string then other Unicode decimal digits are also permitted where digit appears
above. These include decimal digits from various other alphabets (for example, Arabic-Indic and De-
vanagari digits) along with the fullwidth digits u’ \uf£10’ through u’ \uff19’.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple
of digits, and an integer exponent. For example, Decimal ((0, (1, 4, 1, 4), -3)) returns
Decimal ("1.414").

10.4. decimal — Decimal fixed point and floating point arithmetic 191

The Python Library Reference, Release 2.6.5

The context precision does not affect how many digits are stored. That is determined exclusively by the
number of digits in value. For example, Decimal (' 3.00000") records all five zeros even if the context
precision is only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with
the value of NaN.

Once constructed, Decimal objects are immutable. Changed in version 2.6: leading and trailing whites-
pace characters are permitted when creating a Decimal instance from a string. Decimal floating point objects
share many properties with the other built-in numeric types such as f1oat and int. All of the usual math
operations and special methods apply. Likewise, decimal objects can be copied, pickled, printed, used as
dictionary keys, used as set elements, compared, sorted, and coerced to another type (such as f1oat or
long).

In addition to the standard numeric properties, decimal floating point objects also have a number of special-
ized methods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal (' 321e+5’) .adjusted () returns seven. Used for determining the position
of the most significant digit with respect to the decimal point.

as_tuple()
Return a named tuple representation of the number: DecimalTuple (sign, digits,
exponent). Changed in version 2.6: Use a named tuple.

canonical ()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is
always canonical, so this operation returns its argument unchanged. New in version 2.6.

compare (other; [context])
Compare the values of two Decimal instances. This operation behaves in the same way as the usual
comparison method __cmp___ (), except that compare () returns a Decimal instance rather than an
integer, and if either operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal ('NaN’)
a<bh ==> Decimal (' -1")
a ==>b ==> Decimal ("0')
a>bo ==> Decimal ("1')

compare_signal (other, [context])
This operation is identical to the compare () method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.
New in version 2.6.

compare_total (other)
Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare () method, but the result gives a total ordering on Decimal instances. Two Decimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal (12.0") .compare_total (Decimal ("12"))
Decimal (" -1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal (" 0’) if both operands have the same representation, Decimal (/-1) if the first
operand is lower in the total order than the second, and Decimal (’ 1’) if the first operand is higher
in the total order than the second operand. See the specification for details of the total order. New in
version 2.6.

compare_total_mag (other)
Compare two operands using their abstract representation rather than their value as in

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

compare_total (), but ignoring the sign of each operand. x.compare_total_mag(y) is
equivalent to x . copy_abs () .compare_total (y.copy_abs ()). New in version 2.6.

conjugate ()
Just returns self, this method is only to comply with the Decimal Specification. New in version 2.6.

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed. New in version 2.6.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed. New in version 2.6.

copy_sign (other)
Return a copy of the first operand with the sign set to be the same as the sign of the second operand.
For example:

>>> Decimal ("2.3") .copy_sign(Decimal ("-1.5"))
Decimal ("-2.3")

This operation is unaffected by the context and is quiet: no flags are changed and no rounding is
performed. New in version 2.6.

exp ([context])
Return the value of the (natural) exponential function e x % at the given number. The result is correctly
rounded using the ROUND_HALF_EVEN rounding mode.

>>> Decimal (1) .exp ()

Decimal (72.718281828459045235360287471")

>>> Decimal (321) .exp ()

Decimal ("2.561702493119680037517373933E+139")

New in version 2.6.

£ma (other, third, [context])
Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other.

>>> Decimal (2) .fma (3, 5)
Decimal ("117)

New in version 2.6.

is_canonical ()
Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is
always canonical, so this operation always returns True. New in version 2.6.

is finite ()
Return True if the argument is a finite number, and False if the argument is an infinity or a NaN.
New in version 2.6.

is_infinite()
Return True if the argument is either positive or negative infinity and False otherwise. New in
version 2.6.

is_nan()
Return True if the argument is a (quiet or signaling) NaN and False otherwise. New in version 2.6.

is normal ()
Return True if the argument is a normal finite non-zero number with an adjusted exponent greater
than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. Note, the
term normal is used here in a different sense with the normalize () method which is used to create
canonical values. New in version 2.6.

10.4. decimal — Decimal fixed point and floating point arithmetic 193

The Python Library Reference, Release 2.6.5

is_qgnan()
Return True if the argument is a quiet NaN, and Fa 1 se otherwise. New in version 2.6.

is_signed()
Return True if the argument has a negative sign and a1 se otherwise. Note that zeros and NaNs can
both carry signs. New in version 2.6.

is_snan|()
Return True if the argument is a signaling NaN and False otherwise. New in version 2.6.

is_subnormal ()
Return True if the argument is subnormal, and False otherwise. A number is subnormal is if it is
nonzero, finite, and has an adjusted exponent less than Emin. New in version 2.6.

is_ zero()
Return True if the argument is a (positive or negative) zero and False otherwise. New in version
2.6.

1n ([context])
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode. New in version 2.6.

10g10 ([context])
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode. New in version 2.6.

logb (/context])
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If the
operand is a zero then Decimal (' -Infinity’) is returned and the DivisionByZero flag is
raised. If the operand is an infinity then Decimal (' Infinity’) is returned. New in version 2.6.

logical_and (other, [context])
logical_and () is a logical operation which takes two logical operands (see Logical operands).
The result is the digit-wise and of the two operands. New in version 2.6.

logical_invert ([context])
logical_invert () is alogical operation. The result is the digit-wise inversion of the operand.
New in version 2.6.

logical_or (other, [context])
logical_or () is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands. New in version 2.6.

logical_xor (other, [context])
logical_xor () is a logical operation which takes two logical operands (see Logical operands).
The result is the digit-wise exclusive or of the two operands. New in version 2.6.

max (other, [context])
Like max (self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

max_mag (other, [context])
Similar to the max () method, but the comparison is done using the absolute values of the operands.
New in version 2.6.

min (other, [context])
Likemin (self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

min_mag (other, [context])
Similar to the min () method, but the comparison is done using the absolute values of the operands.
New in version 2.6.

194

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

next_minus ([context])
Return the largest number representable in the given context (or in the current thread’s context if no
context is given) that is smaller than the given operand. New in version 2.6.

next_plus ([context])
Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand. New in version 2.6.

next_toward (other, [context])
If the two operands are unequal, return the number closest to the first operand in the direction of the
second operand. If both operands are numerically equal, return a copy of the first operand with the
sign set to be the same as the sign of the second operand. New in version 2.6.

normalize ([context])
Normalize the number by stripping the rightmost trailing zeros and converting any result equal to
Decimal (" 0’) to Decimal (' 0e0’). Used for producing canonical values for members of an
equivalence class. For example, Decimal (' 32.100’) and Decimal (' 0.321000e+2") both
normalize to the equivalent value Decimal (/' 32.1").

number_ class ([context])
Return a string describing the class of the operand. The returned value is one of the following ten
strings.

*"-Infinity", indicating that the operand is negative infinity.
*"—Normal", indicating that the operand is a negative normal number.
*"-Subnormal", indicating that the operand is negative and subnormal.
*"-Zero", indicating that the operand is a negative zero.
*"+Zero", indicating that the operand is a positive zero.
*"+Subnormal", indicating that the operand is positive and subnormal.
*"+Normal", indicating that the operand is a positive normal number.
*"+Infinity", indicating that the operand is positive infinity.
*"NaN", indicating that the operand is a quiet NaN (Not a Number).
*"sNaN", indicating that the operand is a signaling NaN.
New in version 2.6.
quantize (exp, [rounding, [context, [watchexp]]])

Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal (/1.41421356") .quantize (Decimal ("1.000"))
Decimal ("1.414")

Unlike other operations, if the length of the coefficient after the quantize operation would be greater
than precision, then an TnvalidOperation is signaled. This guarantees that, unless there is an
error condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and
inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary.
In this case, the rounding mode is determined by the rounding argument if given, else by the given
context argument; if neither argument is given the rounding mode of the current thread’s context is
used.

If watchexp is set (default), then an error is returned whenever the resulting exponent is greater than
Emax or less than Et iny.

10.4. decimal — Decimal fixed point and floating point arithmetic 195

The Python Library Reference, Release 2.6.5

radix ()
Return Decimal (10), the radix (base) in which the Decimal class does all its arithmetic. Included
for compatibility with the specification. New in version 2.6.

remainder near (other, [context])
Compute the modulo as either a positive or negative value depending on which is closest to zero.
For instance, Decimal (10) .remainder_near (6) returns Decimal (' -2’) which is closer
to zero than Decimal (" 4').

If both are equally close, the one chosen will have the same sign as self.

rotate (other, [context])
Return the result of rotating the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to rotate. If the second operand is
positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand
is padded on the left with zeros to length precision if necessary. The sign and exponent of the first
operand are unchanged. New in version 2.6.

same_quantum (other; [context])
Test whether self and other have the same exponent or whether both are NaN.

scaleb (other, [context])
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10+ «other. The second operand must be an integer. New in version 2.6.

shift (other, [context])
Return the result of shifting the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to shift. If the second operand is
positive then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient
are zeros. The sign and exponent of the first operand are unchanged. New in version 2.6.

sqgrt ([context])
Return the square root of the argument to full precision.

to_eng_string ([context])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the
decimal place. For example, converts Decimal (123E+1’) to Decimal (' 1.23E+3")

to_integral ([rounding, [context]])
Identical to the to_integral_value () method. The to_integral name has been kept for
compatibility with older versions.

to_integral_exact ([rounding, [context]])
Round to the nearest integer, signaling Tnexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If
neither parameter is given then the rounding mode of the current context is used. New in version 2.6.

to_integral_value ([rounding, [context]])
Round to the nearest integer without signaling Inexact or Rounded. If given, applies rounding;
otherwise, uses the rounding method in either the supplied context or the current context. Changed in
version 2.6: renamed from to_integral to to_integral_value. The old name remains valid
for compatibility.

Logical operands

The logical_and(), logical_invert (), logical_or (), and logical_xor () methods expect
their arguments to be logical operands. A logical operand is a Decimal instance whose exponent and sign
are both zero, and whose digits are all either 0 or 1.

196 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

10.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine
which signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontext () and
setcontext () functions:

getcontext ()
Return the current context for the active thread.

setcontext (¢)
Set the current context for the active thread to c.

Beginning with Python 2.5, you can also use the with statement and the 1ocalcontext () function to tem-
porarily change the active context.

localcontext (/c])
Return a context manager that will set the current context for the active thread to a copy of ¢ on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified,
a copy of the current context is used. New in version 2.5. For example, the following code sets the current
decimal precision to 42 places, performs a calculation, and then automatically restores the previous context:

from decimal import localcontext

with localcontext () as ctx:

ctx.prec = 42 # Perform a high precision calculation
s = calculate_something()
s = +s # Round the final result back to the default precision

New contexts can also be created using the Context constructor described below. In addition, the module
provides three pre-made contexts:

class BasicContext ()
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions)
except Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class ExtendedContext ()
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are
not raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence
of conditions that would otherwise halt the program.

class DefaultContext ()
This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts creating by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow,
InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

10.4. decimal — Decimal fixed point and floating point arithmetic 197

The Python Library Reference, Release 2.6.5

class Context (prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
Creates a new context. If a field is not specified or is None, the default values are copied from the
DefaultContext. If the flags field is not specified or is None, all flags are cleared.

The prec field is a positive integer that sets the precision for arithmetic operations in the context.
The rounding option is one of:

*ROUND_CEILING (towards Infinity),

*ROUND_DOWN (towards zero),

*ROUND_FLOOR (towards —Infinity),

*ROUND_HALF_DOWN (to nearest with ties going towards zero),

*ROUND_HALF_EVEN (to nearest with ties going to nearest even integer),

*ROUND_HALF_UP (to nearest with ties going away from zero), or

*ROUND_UP (away from zero).

*ROUND_05UP (away from zero if last digit after rounding towards zero would have been O or 5;
otherwise towards zero)

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave
the flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents.

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E; oth-
erwise, a lowercase e is used: Decimal (' 6.02e+23"). Changed in version 2.6: The ROUND_05UP
rounding mode was added. The Context class defines several general purpose methods as well as a large
number of methods for doing arithmetic directly in a given context. In addition, for each of the Decimal
methods described above (with the exception of the adjusted () and as_tuple () methods) there is a
corresponding Context method. For example, C.exp (x) is equivalent to x . exp (context=C).

clear_flags ()
Resets all of the flags to 0.

copy ()
Return a duplicate of the context.

copy_decimal (num)
Return a copy of the Decimal instance num.

create_decimal (num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor,
the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the
current precision. In the following example, using unrounded inputs means that adding zero to a sum
can change the result:

>>> getcontext () .prec 3

>>> Decimal (" 3.4445’) 4+ Decimal(’1.0023")

Decimal ("4.45")

>>> Decimal (/' 3.4445") + Decimal(0) + Decimal(’1.0023")
Decimal ("4.44")

This method implements the to-number operation of the IBM specification. If the argument is a string,
no leading or trailing whitespace is permitted.

Etiny ()
Returns a value equal to Emin — prec + 1 which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is set to Et iny.

198 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

Etop ()
Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic
operations which take place within the current context for the active thread. An alternative approach is
to use context methods for calculating within a specific context. The methods are similar to those for the
Decimal class and are only briefly recounted here.

abs (x)
Returns the absolute value of x.

add (x, y)
Return the sum of x and y.

canonical (x)
Returns the same Decimal object x.

compare (x, y)
Compares x and y numerically.

compare_signal (x, y)
Compares the values of the two operands numerically.

compare_total (x, y)
Compares two operands using their abstract representation.

compare_total_mag (x, y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs (x)
Returns a copy of x with the sign set to 0.

copy_negate (x)
Returns a copy of x with the sign inverted.

copy_sign(x, y)
Copies the sign from y to x.

divide (x, y)
Return x divided by y.

divide_int (x, y)
Return x divided by y, truncated to an integer.

divmod (x, y)
Divides two numbers and returns the integer part of the result.

exp (x)
Returns e ** x.

fma (x, y, 2)
Returns x multiplied by y, plus z.

is_canonical (x)
Returns True if x is canonical; otherwise returns False.

is finite (x)
Returns True if x is finite; otherwise returns False.

is_infinite (x)
Returns True if x is infinite; otherwise returns False.

is_nan (x)
Returns True if x is a gNaN or sNaN; otherwise returns False.

is _normal (x)
Returns True if x is a normal number; otherwise returns False.

10.4. decimal — Decimal fixed point and floating point arithmetic 199

The Python Library Reference, Release 2.6.5

is_gnan (x)
Returns True if x is a quiet NaN; otherwise returns False.

is_signed (x)
Returns True if x is negative; otherwise returns False.

is_snan (x)

Returns True if x is a signaling NaN; otherwise returns False.

is_subnormal (x)
Returns True if x is subnormal; otherwise returns False.

is_zero (x)
Returns True if x is a zero; otherwise returns False.

1n (x)
Returns the natural (base e) logarithm of x.

logl0 (x)
Returns the base 10 logarithm of x.

logb (x)

Returns the exponent of the magnitude of the operand’s MSD.

logical_and (x, y)

Applies the logical operation and between each operand’s digits.

logical_invert (x)
Invert all the digits in x.

logical_or (x,y)

Applies the logical operation or between each operand’s digits.

logical_xor (x, y)

Applies the logical operation xor between each operand’s digits.

max (x, y)

Compares two values numerically and returns the maximum.

max_mag (x, y)
Compares the values numerically with their sign ignored.

min (x, y)

Compares two values numerically and returns the minimum.

min_mag (x, y)
Compares the values numerically with their sign ignored.

minus (x)

Minus corresponds to the unary prefix minus operator in Python.

multiply (x, y)
Return the product of x and y.

next_minus (x)
Returns the largest representable number smaller than x.

next_plus (x)
Returns the smallest representable number larger than x.

next_toward (x, y)
Returns the number closest to x, in direction towards y.

normalize (x)
Reduces x to its simplest form.

number class (x)
Returns an indication of the class of x.

200

Chapter 10.

Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

plus (x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context preci-
sion and rounding, so it is not an identity operation.

power (x, y, [modulo])
Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x » xy. If x is negative then y must be integral. The result will be inexact
unless y is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The result
should always be correctly rounded, using the rounding mode of the current thread’s context.

With three arguments, compute (x**y) % modulo. For the three argument form, the following
restrictions on the arguments hold:

eall three arguments must be integral

*y must be nonnegative

eat least one of x or y must be nonzero

*modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power (x, y, modulo) is equal to the value that would
be obtained by computing (xx*y) % modulo with unbounded precision, but is computed more
efficiently. The exponent of the result is zero, regardless of the exponents of x, y and modulo.
The result is always exact. Changed in version 2.6: y may now be nonintegral in x*xy. Stricter
requirements for the three-argument version.

quantize (x, y)
Returns a value equal to x (rounded), having the exponent of y.

radix ()
Just returns 10, as this is Decimal, :)

remainder (x, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (x, y)
Returns x — y * n, where n is the integer nearest the exact value of x / vy (if the result is 0 then
its sign will be the sign of x).

rotate (x, y)
Returns a rotated copy of x, y times.

same_quantum (x, y)
Returns True if the two operands have the same exponent.

scaleb (x, y)
Returns the first operand after adding the second value its exp.

shift (x, y)
Returns a shifted copy of x, y times.

sqrt (x)
Square root of a non-negative number to context precision.

subtract (x, y)
Return the difference between x and y.

to_eng_string (x)
Converts a number to a string, using scientific notation.

to_integral_exact (x)
Rounds to an integer.

to_sci_string (x)
Converts a number to a string using scientific notation.

10.4. decimal — Decimal fixed point and floating point arithmetic 201

The Python Library Reference, Release 2.6.5

10.4.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context
trap enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if the DivisionByZero trapis set, then aDivisionByZero exception is raised upon encountering
the condition.

class Clamped ()
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible,
the exponent is reduced to fit by adding zeros to the coefficient.

class DecimalException ()
Base class for other signals and a subclass of ArithmeticError.

class DivisionByZero ()
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is
not trapped, returns Infinity or —Infinity with the sign determined by the inputs to the calculation.

class Inexact ()
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal
flag or trap is used to detect when results are inexact.

class InvalidOperation ()
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible
causes include:

Infinity - Infinity
0 « Infinity
Infinity / Infinity

o)

x % 0

Infinity % x

X._rescale(non-integer)
sgqrt (-x) and x > 0

0 »x O

X *x (non—-integer)

x xx Infinity

class Overflow ()
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result depends
on the rounding mode, either pulling inward to the largest representable finite number or rounding outward
to Infinity. In either case, Inexact and Rounded are also signaled.

class Rounded ()
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5. 0).
If not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

202 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

class Subnormal ()
Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class Underflow ()
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also
signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError (exceptions.StandardError)
DecimalException
Clamped
DivisionByZero (DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow (Inexact, Rounded)
Underflow (Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

10.4.5 Floating Point Notes
Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0. 1
exactly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities result-
ing in loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with
insufficient precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext () .prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (u + v) + w

Decimal (¥ 9.5111111")

>>> u + (v + w)

Decimal ("10")

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal ("6.0000003")
>>> (u*xv) + (uxw)

Decimal (0.01")

>>> u * (v+w)

Decimal (0.0060000")

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid
loss of significance:

>>> getcontext () .prec = 20

>>> u, v, w = Decimal (11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (u + v) + w

Decimal (¥ 9.51111111")

>>> u + (v + w)

Decimal (¥ 9.51111111")

>>>

10.4. decimal — Decimal fixed point and floating point arithmetic 203

The Python Library Reference, Release 2.6.5

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal(’6.0000003")
>>> (u*v) + (u*w)

Decimal ("0.0060000")

>>> u * (vtw)

Decimal ("0.0060000")

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity,
Infinity, and two zeros, +0 and —0.

Infinities can be constructed directly with: Decimal (' Infinity’). Also, they can arise from dividing by
zero when the DivisionByZero signal is not trapped. Likewise, when the Overf1low signal is not trapped,
infinity can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large,
indeterminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the ITnvalidOperation signal is trapped, raise an
exception. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once
created, will flow through other computations always resulting in another NaN. This behavior can be useful for a
series of computations that occasionally have missing inputs — it allows the calculation to proceed while flagging
specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value
when an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test
for equality where one of the operands is a quiet or signaling NaN always returns False (even when doing
Decimal (' NaN’)==Decimal (' NaN'’)), while a test for inequality always returns True. An attempt to
compare two Decimals using any of the <, <=, > or >= operators will raise the ITnvalidOperation signal if
either operand is a NaN, and return Fa 1 se if this signal is not trapped. Note that the General Decimal Arithmetic
specification does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN
were taken from the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use
the compare () and compare—-signal () methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative
zeros are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with dif-
fering precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized
floating point representations, it is not immediately obvious that the following calculation returns a value equal to
Zero:

>>> 1 / Decimal (' Infinity’)
Decimal (" OE-1000000026")

10.4.6 Working with threads

The getcontext () function accesses a different Context object for each thread. Having separate thread
contexts means that threads may make changes (such as getcontext.prec=10) without interfering with
other threads.

Likewise, the set context () function automatically assigns its target to the current thread.

If setcontext () has not been called before get context (), then getcontext () will automatically cre-
ate a new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each
thread will use the same values throughout the application, directly modify the DefaultContext object. This

204 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

should be done before any threads are started so that there won’t be a race condition between threads calling
getcontext (). For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy ()
DefaultContext.traps[InvalidOperation] = 1

setcontext (DefaultContext)

Afterwards, the threads can be started
tl.start ()
t2.start ()
t3.start ()

10.4.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

def moneyfmt (value, places=2, curr='’, sep=',’, dp=".",
pos=’’", neg='-', trailneg='"'):
"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places 1s zero
pos: optional sign for positive numbers: ’+’, space or blank
neg: optional sign for negative numbers: -/, ' (’, space or blank
trailneg:optional trailing minus indicator: ’'-’, ’)’, space or blank

>>> d = Decimal ("-1234567.8901")

>>> moneyfmt (d, curr=’5")

/-51,234,567.89"

>>> moneyfmt (d, places=0, sep=’.’, dp=’’, neg=’’, trailneg=’-")
’71.234.568-7

>>> moneyfmt (d, curr=’$’, neg=’(’, trailneg=")")

7 ($1,234,567.89)"

>>> moneyfmt (Decimal (123456789), sep=" ')

7123 456 789.007

>>> moneyfmt (Decimal ('-0.02"), neg=’<’, trailneg=’>")

7<0.02>"

g = Decimal (10) =+ —-places # 2 places ——> 70.01"
sign, digits, exp = value.quantize (q) .as_tuple()
result = []

digits = map(str, digits)
build, next = result.append, digits.pop
if sign:

build(trailneq)
for i in range (places):

build(next () if digits else '0')
build (dp)
if not digits:

build(’0")

10.4. decimal — Decimal fixed point and floating point arithmetic 205

The Python Library Reference, Release 2.6.5

i=0
while digits:
build(next ())
i+=1
if 1 == 3
i=0
build
build (curr)
build(neg if sign else pos)
return '’ .join(reversed(result))

and digits:

(sep)

def pi():
"""Compute Pi to the current precision.

>>> print pi()
3.141592653589793238462643383

mmn

getcontext () .prec += 2 # extra digits for intermediate steps

three = Decimal (3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:
lasts = s
n, na = n+tna, nat+8
d, da = d+da, da+32
t = (t +n) / d
s += t
getcontext () .prec —= 2
return +s # unary plus applies the new precision
def exp (x):
"""Return e raised to the power of x. Result type matches input type.

>>> print exp (Decimal (1))
2.718281828459045235360287471
>>> print exp (Decimal (2))
7.389056098930650227230427461
>>> print exp(2.0)
7.38905609893

>>> print exp (2+07)
(7.38905609893+07)

mmrn

getcontext () .prec += 2
i, lasts, s, fact, num = 0, 0, 1, 1, 1

while s != lasts:
lasts = s
i +=1

fact »= i

num *= X

s += num / fact
getcontext () .prec —= 2
return +s

def cos(x):
""'Return the cosine of x as measured in radians.

>>> print cos (Decimal (70.57))

206 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

0.8775825618903727161162815826
>>> print cos (0.5)
0.87758256189

>>> print cos (0.5+07)
(0.87758256189+07)

mmn

getcontext () .prec += 2

i, lasts, s, fact, num, sign =0, O, 1, 1, 1, 1
while s != lasts:

lasts = s

i += 2

fact = 1 = (i-1)
num *= X * X

sign *= -1
s += num / fact * sign
getcontext () .prec —= 2

return +s

def sin(x):
"""'Return the sine of x as measured in radians.

>>> print sin(Decimal (70.57))
0.4794255386042030002732879352
>>> print sin(0.5)
0.479425538604

>>> print sin(0.5+07)
(0.479425538604+07)

mmn

getcontext () .prec += 2

i, lasts, s, fact, num, sign =1, 0, %, 1, x, 1
while s != lasts:

lasts = s

i += 2

fact »= 1 % (i-1)
num *= X * X

sign x= -1
s += num / fact * sign
getcontext () .prec —= 2

return +s

10.4.8 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal (' 1234.5"). Is there a way to minimize typing when using
the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D(’1.23") + D(’3.45")
Decimal ("4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded.
Others are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize () method rounds to a fixed number of decimal places. If the ITnexact trap is set, it is also
useful for validation:

>>> TWOPLACES = Decimal (10) %% -2 # same as Decimal (70.01")

10.4. decimal — Decimal fixed point and floating point arithmetic 207

The Python Library Reference, Release 2.6.5

>>> # Round to two places
>>> Decimal (’3.214") .qguantize (TWOPLACES)
Decimal (" 3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal ('3.21") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Decimal ("3.21")

>>> Decimal (' 3.214") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Traceback (most recent call last):
Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed
point. Others operations, like division and non-integer multiplication, will change the number of decimal places
and need to be followed-up with a quantize () step:

>>> a = Decimal ("102.72") # Initial fixed-point values

>>> b = Decimal(’3.17")

>>> a + b # Addition preserves fixed-point
Decimal (*105.89")

>>> a - b

Decimal (" 99.55")

>>> a % 42 # So does integer multiplication
Decimal (74314.24")

>>> (a * b).quantize (TWOPLACES) # Must quantize non-integer multiplication
Decimal (' 325.62")

>>> (b / a).quantize (TWOPLACES) # And quantize division

Decimal ("0.03")
In developing fixed-point applications, it is convenient to define functions to handle the quantize () step:

>>> def mul (x, y, fp=TWOPLACES) :

.. return (x * y).quantize (fp)

>>> def div(x, y, fp=TWOPLACES) :
return (x / y).quantize (fp)

>>> mul (a, b) # Automatically preserve fixed-point
Decimal (' 325.62")

>>> div (b, a)

Decimal ("0.03")

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and 02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A.The normalize () method maps all equivalent values to a single representative:

>>> values = map (Decimal, 200 200.000 2E2 .02E+4’ .split())
>>> [v.normalize () for v in values]
[Decimal (' 2E+2’), Decimal (' 2E+2’), Decimal (' 2E+2’), Decimal ('2E+2")]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential represen-
tation?

A. For some values, exponential notation is the only way to express the number of significant places in the co-
efficient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s
two-place significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes,
losing significance, but keeping the value unchanged:

>>> def remove_exponent (d) :
return d.quantize (Decimal(l)) if d == d.to_integral() else d.normalize()

208 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

>>> remove_exponent (Decimal (' 5E+37))
Decimal (" 5000")

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, all binary floating point numbers can be exactly expressed as a Decimal. An exact conversion may take
more precision than intuition would suggest, so we trap Inexact to signal a need for more precision:

def float_to_decimal (f) :
"Convert a floating point number to a Decimal with no loss of information"
n, d = f.as_integer_ratio()

numerator, denominator = Decimal (n), Decimal (d)
ctx = Context (prec=60)
result = ctx.divide (numerator, denominator)
while ctx.flags[Inexact]:

ctx.flags[Inexact] = False

ctx.prec x= 2

result = ctx.divide (numerator, denominator)

return result

>>> float_to_decimal (math.pi)
Decimal (73.141592653589793115997963468544185161590576171875")

Q. Why isn’t the float_to_decimal () routine included in the module?

A. There is some question about whether it is advisable to mix binary and decimal floating point. Also, its use
requires some care to avoid the representation issues associated with binary floating point:

>>> float_to_decimal (1.1)
Decimal (71.100000000000000088817841970012523233890533447265625")

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only
the results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that
the results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext () .prec = 3

>>> Decimal (/3.104") + Decimal(’2.104")

Decimal ("5.21")

>>> Decimal ("3.104") + Decimal(’0.000”) + Decimal(’2.104")
Decimal ("5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext () .prec = 3
>>> +Decimal ('1.23456789") # unary plus triggers rounding
Decimal ("1.23")

Alternatively, inputs can be rounded upon creation using the Context .create_decimal () method:

>>> Context (prec=5, rounding=ROUND_DOWN) .create_decimal ("' 1.2345678")
Decimal (1.2345")

10.5 fractions — Rational numbers

10.5. fractions — Rational numbers 209

The Python Library Reference, Release 2.6.5

New in version 2.6. The fract ions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class Fraction (numerator=0, denominator=1)
class Fraction (other_fraction)
class Fraction (string)

The first version requires that numerator and denominator are instances of numbers.Integral and
returns a new Fraction instance with value numerator/denominator. If denominator is 0, it
raises a ZeroDivisionError. The second version requires that other_ fraction is an instance of
numbers.Rational and returns an Fraction instance with the same value. The last version of the
constructor expects a string or unicode instance in one of two possible forms. The first form is:

[sign] numerator [’/’ denominator]

where the optional sign may be either ‘4+’ or ‘-* and numerator and denominator (if present) are
strings of decimal digits. The second permitted form is that of a number containing a decimal point:

[sign] integer ’.’ [fraction] | [sign] ’.’ fraction

where integer and fraction are strings of digits. In either form the input string may also have leading
and/or trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction(l6, -10)
Fraction (-8, 5)

>>> Fraction(123)

Fraction (123, 1)

>>> Fraction ()

Fraction (0, 1)

>>> Fraction(’3/7")
Fraction (3, 7)

[40794 refs]

>>> Fraction(’ -3/7 ")
Fraction (-3, 7)

>>> Fraction(’1.414213 \t\n’)
Fraction (1414213, 1000000)
>>> Fraction(’—-.125")
Fraction (-1, 8)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of
the methods and operations from that class. Fraction instances are hashable, and should be treated as
immutable. In addition, Fract ion has the following methods:

from float (fit)
This class method constructs a F ract i on representing the exact value of flt, which mustbe a f 1oat.
Beware that Fraction.from_float (0.3) is not the same value as Fraction (3, 10)

from decimal (dec)
This class method constructs a Fraction representing the exact value of dec, which must be a
decimal.Decimal.

limit_denominator (max_denominator=1000000)
Finds and returns the closest Fraction to self that has denominator at most max_denominator.
This method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction(’3.1415926535897932") .1limit_denominator (1000)
Fraction (355, 113)

or for recovering a rational number that’s represented as a float:

210

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

>>> from math import pi, cos

>>> Fraction.from_float (cos(pi/3))

Fraction (4503599627370497, 9007199254740992)

>>> Fraction.from_float (cos(pi/3)) .limit_denominator ()
Fraction(1l, 2)

ged (a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the absolute
value of gcd (a, b) is the largest integer that divides both a and b. gcd (a, b) has the same sign as b if
b is nonzero; otherwise it takes the sign of a. gcd (0, 0) returns O.

See Also:

Module numbers The abstract base classes making up the numeric tower.

10.6 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential,
gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random (), which generates a random float uniformly
in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2*%19937-1. The underlying implementation in C is both fast and threadsafe.
The Mersenne Twister is one of the most extensively tested random number generators in existence. However,
being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic
purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random
class. You can instantiate your own instances of Random to get generators that don’t share state. This is espe-
cially useful for multi-threaded programs, creating a different instance of Random for each thread, and using the
jumpahead () method to make it likely that the generated sequences seen by each thread don’t overlap.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in
that case, override the random (), seed (), getstate (), setstate () and jumpahead () methods. Op-
tionally, a new generator can supply a getrandbits () method — this allows randrange () to produce
selections over an arbitrarily large range. New in version 2.4: the getrandbits () method. As an example of
subclassing, the random module provides the WichmannHi 11 class that implements an alternative generator in
pure Python. The class provides a backward compatible way to reproduce results from earlier versions of Python,
which used the Wichmann-Hill algorithm as the core generator. Note that this Wichmann-Hill generator can no
longer be recommended: its period is too short by contemporary standards, and the sequence generated is known
to fail some stringent randomness tests. See the references below for a recent variant that repairs these flaws.
Changed in version 2.3: Substituted MersenneTwister for Wichmann-Hill. Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argument x can be any hashable object. If x is
omitted or None, current system time is used; current system time is also used to initialize the generator
when the module is first imported. If randomness sources are provided by the operating system, they are
used instead of the system time (see the os.urandom () function for details on availability). Changed
in version 2.4: formerly, operating system resources were not used. If x is not None or an int or long,
hash (x) is used instead. If x is an int or long, x is used directly.

getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to
setstate () to restore the state. New in version 2.1.Changed in version 2.6: State values produced
in Python 2.6 cannot be loaded into earlier versions.

10.6. random — Generate pseudo-random numbers 211

The Python Library Reference, Release 2.6.5

setstate (srate)
state should have been obtained from a previous call to getstate (), and setstate () restores the
internal state of the generator to what it was at the time setstate () was called. New in version 2.1.

jumpahead (n)
Change the internal state to one different from and likely far away from the current state. # is a non-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs, in
conjunction with multiple instances of the Random class: setstate () or seed () can be used to force
all instances into the same internal state, and then jumpahead () can be used to force the instances’ states
far apart. New in version 2.1.Changed in version 2.3: Instead of jumping to a specific state, n steps ahead,
jumpahead (n) jumps to another state likely to be separated by many steps.

getrandbits (k)
Returns a python long int with k£ random bits. This method is supplied with the MersenneTwister gen-
erator and some other generators may also provide it as an optional part of the API. When available,
getrandbits () enables randrange () to handle arbitrarily large ranges. New in version 2.4.

Functions for integers:

randrange ([start], stop, [step])
Return a randomly selected element from range (start, stop, step). This is equivalent to
choice (range (start, stop, step)), butdoesn’t actually build a range object. New in version
1.5.2.

randint (a, b)
Return a random integer N such thata <= N <= b.

Functions for sequences:

choice (seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

shuffle (x, [random])
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the function random ().

Note that for even rather small len (x), the total number of permutations of x is larger than the period
of most random number generators; this implies that most permutations of a long sequence can never be
generated.

sample (population, k)
Return a k length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3. Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will
also be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and
second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an xrange () object as an argument. This is especially
fast and space efficient for sampling from a large population: sample (xrange (10000000), 60).

The following functions generate specific real-valued distributions. Function parameters are named after the
corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these
equations can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (q, b)
Return a random floating point number N suchthata <= N <= bfora <= bandb <= N <= a for
b < a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
equationa + (b-a) * random().

212 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

triangular (low, high, mode)
Return a random floating point number N such that low <= N <= high and with the specified mode
between those bounds. The low and high bounds default to zero and one. The mode argument defaults to
the midpoint between the bounds, giving a symmetric distribution. New in version 2.6.

betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter
would be called “lambda”, but that is a reserved word in Python.) Returned values range from O to positive
infinity if lambd is positive, and from negative infinity to O if lambd is negative.

gammavariate (alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta
> 0.

gauss (mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the
normalvariate () function defined below.

lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter,
which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform
random angle over the range 0 to 2*pi.

paretovariate (alpha)
Pareto distribution. alpha is the shape parameter.

weibullvariate (alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generators:

class WichmannHill ([seed])
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Random plus the whseed () method described below. Because this class is implemented in pure Python,
it is not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644
which is small enough to require care that two independent random sequences do not overlap.

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. See seed () for
details. whseed () does not guarantee that distinct integer arguments yield distinct internal states, and can
yield no more than about 2**24 distinct internal states in all.

class SystemRandom ([seed])
Class that uses the os.urandom () function for generating random numbers from sources provided by
the operating system. Not available on all systems. Does not rely on software state and sequences are not
reproducible. Accordingly, the seed () and jumpahead () methods have no effect and are ignored. The

getstate () and setstate () methods raise Not ImplementedError if called. New in version
2.4,

Examples of basic usage:

>>> random.random () # Random float x, 0.0 <= x < 1.0
0.37444887175646646
>>> random.uniform (1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523

10.6. random — Generate pseudo-random numbers 213

The Python Library Reference, Release 2.6.5

>>> random.randint (1, 10) # Integer from 1 to 10, endpoints included

>>> random.randrange (0, 101, 2) # Even integer from 0 to 100
26

>>> random.choice (" abcdefghij’) # Choose a random element
ICI

>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle (items)

>>> items

(7, 3, 2, 5, 6, 4, 1]

>>> random.sample([1, 2, 3, 4, 51, 3) # Choose 3 elements
(4, 1, 5]
See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generator”’, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30
1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics 31 (1982) 188-190.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long
period and comparatively simple update operations.

10.7 itertools — Functions creating iterators for efficient loop-
ing
New in version 2.3. This module implements a number of izerator building blocks inspired by constructs from

APL, Haskell, and SML. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently
in pure Python.

For instance, SML provides a tabulation tool: tabulate (£) which produces a sequence £ (0) , £(1),
The same effect can be achieved in Python by combining imap () and count () toform imap (£, count ()).

These tools and their built-in counterparts also work well with the high-speed functions in the operator module.
For example, the multiplication operator can be mapped across two vectors to form an efficient dot-product:
sum (imap (operator.mul, vectorl, vector2)).

Infinite Iterators:

Iterator | Argu- Results Example
ments
count () | start start, start+1, start+2, ... count (10) —--> 10 11 12 13 14
cycle() | p p0, pl, ... plast, p0, p1, ... cycle('ABCD’) -——> A B CDARB
C D
repeat (] elem [,n] elem, elem, elem, ... endlessly orup | repeat (10, 3) —--> 10 10 10
to n times

Iterators terminating on the shortest input sequence:

214 Chapter 10. Numeric and Mathematical Modules

http://code.activestate.com/recipes/576707/

The Python Library Reference, Release 2.6.5

Iterator Arguments Results Example
chain () P q - p0, pl, ... plast, q0, ql, ... | chain('ABC’, ’'DEF’) --> A B C D
E F
dropwhile|(pred, seq seq[n], seq[n+1], starting | dropwhile (lambda x: x<5,
when pred fails [1,4,6,4,11) —-—> 6 4 1
groupby ()| iterablel, sub-iterators grouped by
keyfunc] value of keyfunc(v)
ifilter ()| pred, seq elements of seq where ifilter (lambda x: x%2,
pred(elem) is True range (10)) --> 1 3 5 7 9
ifilterfall pred) seq elements of seq where ifilterfalse (lambda x: x%2,
pred(elem) is False range (10)) -—> 0 2 4 6 8
islice () | seq, [start,] elements from islice (' ABCDEFG’, 2, None) —--—> C
stop [, step] seq[start:stop:step] DEFG
imap () func, p, q, ... func(p0, q0), func(pl, imap (pow, (2,3,10), (5,2,3)) —-—>
ql), ... 32 9 1000
starmap ()| func, seq func(*seq[0]), starmap (pow, [(2,5), (3,2),
func(*seq[1]), ... (10,3)]1) —-—> 32 9 1000
tee () it, n itl, it2 , ... itn splits one
iterator into n
takewhile|(pred, seq seq[0], seq[1], until pred | takewhile (lambda x: x<5,
fails [1,4,6,4,1]1) —-——> 1 4
izip () P, Q- (pl0], q[OD), (p[1], q[1]), | izip(’ABCD’, ’xy’) --> Ax By
izip_longepLq,)... (pl01, q[0]), (p[11, q[1D), izip_longest (' ABCD’, ’xy’,
fillvalue='-') --> Ax By C- D-
Combinatoric generators:
Iterator Arguments Results
product () P> - cartesian product, equivalent to a nested for-loop
[repeat=1]
permutations () pl, 1] r-length tuples, all possible orderings, no repeated
elements
combinations () p,T r-length tuples, in sorted order, no repeated elements
product (" ABCD’, AA AB AC AD BA BB BC BD CA CB CC CD DA
repeat=2) DB DC DD
permutations (' ABCD’, AB AC AD BA BC BD CA CB CD DA DB DC
2)
combinations (" ABCD’, AB AC AD BC BD CD

2)

10.7.1 Itertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

chain (*iterables)

Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the
next iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single

sequence. Equivalent to:

def chain(xiterables):

chain (’ABC’,

'DEF’)

for it in iterables:
for element in it:
yield element

--> A B CDEF

10.7. itertools — Functions creating iterators for efficient looping

215

The Python Library Reference, Release 2.6.5

from iterable (iterable)

Alternate constructor for chain (). Gets chained inputs from a single iterable argument that is evaluated
lazily. Equivalent to:

@classmethod
def from_ iterable(iterables):
chain.from iterable([’ABC’, ’'DEF’]) ——> A B C D E F
for it in iterables:
for element in it:
yield element

New in version 2.6.

combinations (iterable, r)

Return r length subsequences of elements from the input iterable.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are
unique, there will be no repeat values in each combination.

Equivalent to:

def combinations (iterable, r):
combinations (’ABCD’, 2) —--> AB AC AD BC BD CD
combinations (range(4), 3) ——> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = range(r)
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != i + n
break

- Ir:

else:
return
indices[i] += 1
for j in range(i+l, r):
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)

The code for combinations () can be also expressed as a subsequence of permutations () after
filtering entries where the elements are not in sorted order (according to their position in the input pool):

def combinations (iterable, r):
pool = tuple(iterable)

n = len(pool)
for indices in permutations(range(n), r):
if sorted(indices) == list (indices):

yield tuple(pool[i] for i in indices)

The number of items returnedisn! / r! / (n-r)! when 0 <= r <= norzerowhenr > n.
New in version 2.6.

count (/n])

Make an iterator that returns consecutive integers starting with n. If not specified n defaults to zero. Often
used as an argument to imap () to generate consecutive data points. Also, used with izip () to add
sequence numbers. Equivalent to:

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

def count (n=0) :
count (10) —-> 10 11 12 13 14
while True:
yield n
n += 1

cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is
exhausted, return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle(iterable):

cycle(’ABCD’”) --—> A B CDABTCDABTCD
saved = []
for element in iterable:

yield element

saved. append (element)
while saved:

for element in saved:

yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the
iterable).

dropwhile (predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns
every element. Note, the iterator does not produce any output until the predicate first becomes false, so it
may have a lengthy start-up time. Equivalent to:

def dropwhile (predicate, iterable):
dropwhile (lambda x: x<5, [1,4,6,4,1]) ——> 6 4 1
iterable = iter (iterable)
for x in iterable:
if not predicate (x):
yield x
break
for x in iterable:
yield x

groupby (iterable, [key])
Make an iterator that returns consecutive keys and groups from the iterable. The key is a function computing
a key value for each element. If not specified or is None, key defaults to an identity function and returns the
element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The operation of groupby () is similar to the unigq filter in Unix. It generates a break or new group every
time the value of the key function changes (which is why it is usually necessary to have sorted the data using
the same key function). That behavior differs from SQL’s GROUP BY which aggregates common elements
regardless of their input order.

The returned group is itself an iterator that shares the underlying iterable with groupby (). Because the
source is shared, when the groupby () object is advanced, the previous group is no longer visible. So, if
that data is needed later, it should be stored as a list:

groups = []

uniquekeys = []

data = sorted(data, key=keyfunc)

for k, g in groupby (data, keyfunc):
groups.append (list (g)) # Store group iterator as a list
uniquekeys.append (k)

groupby () is equivalent to:

10.7. itertools — Functions creating iterators for efficient looping 217

The Python Library Reference, Release 2.6.5

class groupby (object) :

[k for k, g in groupby (’AAAABBBCCDAABBB’)] --> A B C D A B
[list(g) for k, g in groupby (’AAAABBBCCD’)] —--> AAAA BBB CC D
def _ init__ (self, iterable, key=None):

if key is None:

key = lambda x: x

self.keyfunc = key

self.it = iter (iterable)

self.tgtkey = self.currkey = self.currvalue = object ()
def = iter_ (self):

return self
def next (self):

while self.currkey == self.tgtkey:
self.currvalue = next (self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

self.tgtkey = self.currkey
return (self.currkey, self._grouper (self.tgtkey))
def _grouper(self, tgtkey):

while self.currkey == tgtkey:
yield self.currvalue
self.currvalue = next (self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

New in version 2.4.

ifilter (predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is True. If
predicate is None, return the items that are true. Equivalent to:

def ifilter (predicate, iterable):
ifilter(lambda x: x%2, range(10)) —-—> 1 3 5 7 9
if predicate is None:
predicate = bool
for x in iterable:
if predicate (x):
yield x

ifilterfalse (predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is False.
If predicate is None, return the items that are false. Equivalent to:

def ifilterfalse(predicate, iterable):
ifilterfalse(lambda x: x%2, range(10)) —-—> 0 2 4 6 8
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x

imap (function, *iterables)
Make an iterator that computes the function using arguments from each of the iterables. If function is set
to None, then imap () returns the arguments as a tuple. Like map () but stops when the shortest iterable
is exhausted instead of filling in None for shorter iterables. The reason for the difference is that infinite
iterator arguments are typically an error for map () (because the output is fully evaluated) but represent a
common and useful way of supplying arguments to imap () . Equivalent to:

def imap (function, =*iterables):
imap (pow, (2,3,10), (5,2,3)) ——> 32 9 1000
iterables = map(iter, iterables)

218 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

while True:
args = [next (it) for it in iterables]
if function is None:
yield tuple (args)
else:
yield function(xargs)

islice (iterable, [start], stop, [step])

Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements from
the iterable are skipped until start is reached. Afterward, elements are returned consecutively unless step is
set higher than one which results in items being skipped. If stop is None, then iteration continues until the
iterator is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slicing, islice ()
does not support negative values for start, stop, or step. Can be used to extract related fields from data where
the internal structure has been flattened (for example, a multi-line report may list a name field on every third
line). Equivalent to:

def islice(iterable, <*args):
islice(’ABCDEFG’, 2) —-——> A B
islice (’ABCDEFG’, 2, 4) —--> C D
islice(’ABCDEFG’, 2, None) ——> C D E F G
islice (’ABCDEFG’, 0, None, 2) ——> A C E G
s = slice(xargs)

it = iter(xrange(s.start or 0, s.stop or sys.maxint, s.step or 1))
nexti = next (it)
for i, element in enumerate (iterable) :
if 1 == nexti:
yield element
nexti = next (it)

If start is None, then iteration starts at zero. If step is None, then the step defaults to one. Changed in
version 2.5: accept None values for default start and step.

izip (*iterables)
Make an iterator that aggregates elements from each of the iterables. Like zip () except that it returns an
iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to:

def izip(xiterables):
izip(’ABCD’, ’xy’) —-—-> Ax By
iterables = map(iter, iterables)
while iterables:
yield tuple (map (next, iterables))

Changed in version 2.4: When no iterables are specified, returns a zero length iterator instead of raising
a TypeError exception. The left-to-right evaluation order of the iterables is guaranteed. This makes
possible an idiom for clustering a data series into n-length groups using 1zip (x [iter (s)] *n).

izip () should only be used with unequal length inputs when you don’t care about trailing, unmatched
values from the longer iterables. If those values are important, use 1 zip_longest () instead.

izip longest (*iterables, [fillvalue])
Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length,
missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted. Equiv-
alent to:

def izip_longest (xargs, =*kwds):
izip_longest (’ABCD’, ’xy’, fillvalue=’-’) --> Ax By C- D-
fillvalue = kwds.get (' fillvalue’)
def sentinel (counter = ([fillvalue]=* (len(args)-1)) .pop):

yield counter () # yields the fillvalue, or raises IndexError

fillers = repeat (fillvalue)

10.7. itertools — Functions creating iterators for efficient looping 219

The Python Library Reference, Release 2.6.5

iters = [chain(it, sentinel (), fillers) for it in args]
try:
for tup in izip(xiters):
yield tup
except IndexError:
pass

If one of the iterables is potentially infinite, then the 1zip_longest () function should be wrapped with
something that limits the number of calls (for example islice () or takewhile ()). If not specified,
fillvalue defaults to None. New in version 2.6.

permutations (iterable, [r])

Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length
permutations are generated.

Permutations are emitted in lexicographic sort order. So, if the input iferable is sorted, the permutation
tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are
unique, there will be no repeat values in each permutation.

Equivalent to:

def permutations(iterable, r=None):
permutations (’ABCD’, 2) —-—-> AB AC AD BA BC BD CA CB CD DA DB DC
permutations (range(3)) —--> 012 021 102 120 201 210
pool = tuple(iterable)

n = len(pool)
r = n if r is None else r
if r > n:
return
indices = range (n)
cycles = range(n, n-r, —-1)
yield tuple(pool[i] for i in indices([:r])
while n:
for i in reversed(range(r)):
cycles[i] =1
if cycles[i] == O0:
indices[i:] = indices[i+1l:] + indices[i:i+1]
cycles([i] = n — 1
else:
Jj = cycles[i]
indices[i], indices[-]J] = indices[-3j], indices[i]
yield tuple(pool[i] for i in indices([:r])
break
else:
return

The code for permutations () can be also expressed as a subsequence of product (), filtered to
exclude entries with repeated elements (those from the same position in the input pool):

def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product (range(n), repeat=r):
if len(set (indices)) ==
yield tuple(pool[i] for i in indices)

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.5

The number of items returnedisn! / (n-r)! when 0 <= r <= n or zero when r > n. New in
version 2.6.

product (*iterables, [repeat])
Cartesian product of input iterables.

Equivalent to nested for-loops in a generator expression. For example, product (A, B) returns the same
as ((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This
pattern creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples are
emitted in sorted order.

To compute the product of an iterable with itself, specify the number of repetitions with the optional repeat
keyword argument. For example, product (A, repeat=4) means the same as product (A, A, A,
A).

This function is equivalent to the following code, except that the actual implementation does not build up
intermediate results in memory:

def product (xargs, =*xkwds):
product (’ABCD’, ’xy’) —-—-> Ax Ay Bx By Cx Cy Dx Dy
product (range (2), repeat=3) —--> 000 001 010 011 100 101 110 111
pools = map(tuple, args) * kwds.get (' repeat’, 1)

result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]

for prod in result:
yield tuple (prod)

New in version 2.6.

repeat (object, [times])
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is
specified. Used as argument to imap () for invariant function parameters. Also used with izip () to
create constant fields in a tuple record. Equivalent to:

def repeat (object, times=None):
repeat (10, 3) —--> 10 10 10
if times is None:
while True:
yield object
else:
for i in xrange (times) :
yield obiject

starmap (function, iterable)
Make an iterator that computes the function using arguments obtained from the iterable. Used instead
of imap () when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference between imap () and starmap () parallels the distinction between
function (a,b) and function (*c). Equivalent to:

def starmap (function, iterable):
starmap (pow, [(2,5), (3,2), (10,3)]) —-—> 32 9 1000
for args in iterable:
yield function (xargs)

Changed in version 2.6: Previously, starmap () required the function arguments to be tuples. Now, any
iterable is allowed.

takewhile (predicate, iterable)
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

10.7. itertools — Functions creating iterators for efficient looping 221

The Python Library Reference, Release 2.6.5

def takewhile (predicate, iterable):
takewhile (lambda x: x<5, [1,4,6,4,1]) ——> 1 4
for x in iterable:
if predicate (x):
yield x
else:
break

tee (iterable, [n=2])
Return n independent iterators from a single iterable. Equivalent to:

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen (mydeque) :
while True:

if not mydeque: # when the local deque is empty
newval = next (it) # fetch a new value and
for d in deques: # load it to all the deques

d.append (newval)
yield mydeque.popleft ()
return tuple(gen(d) for d in deques)

Once tee () has made a split, the original iterable should not be used anywhere else; otherwise, the iterable
could get advanced without the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how much temporary data needs to be
stored). In general, if one iterator uses most or all of the data before another iterator starts, it is faster to use
list () instead