Debug Tool
User's Guide and Reference

Release 2

SC09-2137-03

Debug Tool
User's Guide and Reference

Release 2

SC09-2137-03

— Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page Xii.

Fifth Edition (March 1998)

This edition applies to the Debug Tool feature of the following compilers:
¢ Release 4 of 0S/390 C/C++ and OS/390 Language Environment (Program Number 5645-001)

¢ Version 1, Release 2, of IBM COBOL for MVS & VM (Program Number 5688-197), with Version 1, Release 5 of the IBM Lan-
guage Environment for MVS & VM (Program Number 5688-198),

¢ Version 2, Release 1 of IBM COBOL for OS/390 & VM (Program Number 5648-A25) with Release 3 of OS/390 Language Envi-
ronment (Program Number 5645-001)

¢ Version 1, Release 1, Modification Level 1, of the IBM PL/I for MVS & VM (Program Number 5688-235). with Version 1, Release
4, Madification Level 0, of the IBM Language Environment for MVS & VM (Program Number 5688-198),

and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.
Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department W92/H3
P. O. Box 49023

San Jose, CA 95161-9023

United States of America

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to IBM.
To find out how, see “We'd Like to Hear from You” at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Contents

Notices
Programming interface information
Trademarks and service marks

About this book
What's new
Who might use this book
How this book is organized
How to read the syntax diagrams

Chapter 1. Before you begin debugging
Debug Tool debugging environments
Debug Tool sessions
Full-screen session interface L
Denoting environmental differences oL
Terminology
Planning to run your program with Debug Tool

Chapter 2. Preparing to debug your program
Compiling a C program with the compile-time TEST option
Using #pragma to specify compile-time TEST option
Compiling a C++ program with the compile-time TEST option
Placing compiled-in hooks for functions and nested blocks
Placing compiled-in hooks for statements and path points
Compiling a COBOL program with the compile-time TEST option
Compiling a PL/I program with the compile-time TEST option
Debugging multilanguage programs
Debugging an application fully supported by Language Environment
Debugging an application partially supported by Language Environment

Chapter 3. Beginning a debugging session
Using the run-time TEST option
Run-time TEST option syntax
Run-time TEST option examples
Invoking your program when starting a debugging session
Invoking Debug Tool under CICS
Invoking your program for a debugging session
Using alternative Debug Tool invocation methods
Invoking Debug Tool with CEETEST
Invoking Debug Tool with PLITEST
Invoking Debug Tool with the __ctest() function
Specifying run-time TEST option with #pragma runopts in C and C++

Chapter 4. Debugging your programs in full-screen mode
Preparing for debugging
Invoking your program with Debug Tool
Ending a debug session
Basic tasks of Debug Tool

Debug Tool interface

Saving your log file for futureuse

© Copyright IBM Corp. 1995, 1998

18
18
19
27
28
28
29
31
32
37
38
39

40
40
41
41
42
42

Contents

Help . . .
Window control
Setting a line breakpoint
Stepping through or running your program.
Using a C program to demonstrate a Debug Tool session
Ctasks
Using a C++ program to demonstrate a Debug Tool session
C++tasks
Using a COBOL program to demonstrate a Debug Tool session
COBOL tasks
Using a PL/I program to demonstrate a Debug Tool session
PL/tasks

Chapter 5. Using the Debug Tool interfaces
Customizing Debug Tool for your environment
Using the Debug Tool Session Panel
Session Panel windows
Source window (1)
Monitor window (3)
Log window (2)
Using the Session Log file to maintain a record of your session
Entering commands in a Debug Tool session
Command sequencing
Using the command line
Issuing system commands
Using prefix commands
Using cursor commands
Using Program Function (PF) keys to enter commands
Defining PF keys
Abbreviating commands
Retrieving commands
Retrieving lines from the Session log and Source windows
Creating EQUATES and using string substitution
Navigating through Debug Tool Session Panel windows
Moving the cursor
Scrolling the windows
Positioning lines at the top of windows
Searching for a character or character string,
Customizing your SeSSION
Changing Session Panel window layout
Opening and closing Session Panel windows
Sizing Session Panel windows L
Intersecting windows
Horizontal windows
Vertical windows
Zooming awindow
Customizing colors
Customizing settings
Getting help during your session

Chapter 6. Multiple processes and enclaves
Debugging applications within multiple enclaves
Invoking Debug Tool within an enclave
Using the source window and related windows

iv Debug Tool User's Guide and Reference

Contents

Retaining a log file of your Debug Tool session 104
Processing commands from a commands file 104
Using breakpoints within multiple enclaves 104
Ending a Debug Tool session 104
Using Debug Tool commands within multiple enclaves 105
Chapter 7. Using Debug Tool in different modes and environments .. 107
Using Debug Tool inlinemode 107
Commands you can use inline mode 107
Getting HELP during a line-mode session 108
Using Debug Tool in batchmode 108
Running multitasking programs with Debug Tool 108
MVS/ESA SP V5R1 with OpenEdition R2 requirement 109
Restrictions when debugging multitasking applications 109
Debugging ISPF applications 109
Debugging DB2 programs 109
Programming considerations 110
Program preparation 110
Precompile requirements 110
Compile requirements 110
Link requirements 111
Bind requirements 111
Using Debug Tool with DB2 programs 111
Batchmode 111
Interactive mode 112
Debugging IMS programs 113
Programming considerations 113
Program preparation 114
Compile requirements 114
Link requirements 114
Using Debug Tool with IMS programs 114
Interactive mode 114
Batchmode 115
Using alternative methods of command input under IMS 115
Debugging CICS programs 116
Debug modes under CICS 116
Invoking Debug Tool under CICS 117
Preparing and using DTCN to invoke Debug Tool under CICS 117
Preparing and using CEEUOPT to invoke Debug Tool under CICS 122
Preparing and using compile-time directives to invoke Debug Tool under
CICS . 122
Preparing and using CEDF to invoke Debug Tool under CICS 123
Restrictions when debugging under CICS 123
Chapter 8. Debug Tool Support of programming languages 125
Multiple enclaves and interlanguage communication (ILC) 125
Compatible attributes mapped between HLL datatypes 125
Debug Tool evaluation of HLL expressions 126
Debug Tool interpretation of HLL variables and constants 126
HLL variables 126
HLL constants 126
Debug Tool variables (or intrinsic functions) 127
Modifiable Debug Tool variables 128
Nonmodifiable Debug Tool variables 128

Contents V

Contents

Interpretive subsets 130
Qualifying variables and changing the point of view 131
Qualification 131
Changing the pointof view, 132
Debug Tool handling of conditions and exceptions 133
Condition handling in Debug Tool 133
Exception handling within expressions (C/C++ and PL/lonly) 134
Requesting an attention interrupt during interactive sessions 135
Debug Tool's built-in functions 135
For use with C/C++, COBOL, and PL/l 136
For use with C/C++ and PL/l 136
Foruse with PL/l 137
Chapter 9. Using Debug Tool with C/C++ programs 138
Debug Tool commands 138
Using C/C++ variables with Debug Tool 138
Accessing program variables 138
Displaying values of C/C++ variables or expressions 139
Declaring temporary variables 139
Assigning values to C/C++ variables 140
Using Debug Tool variables in C/C++ 140
C/CH++ expressions 145
Using Debug Tool functions with C/C++ 148
Debug Tool evaluation of C/C++ expressions 150
Using SET INTERCEPT with C programs 151
Objects and scopes 153
Storage classes 155
Blocks and block identifiersforC L. 156
Blocks and block identifiers for C++ oL 157
Displaying environmental information 157
Using qualification for C/C++ 158
Using qualifiers 160
Changing the pointof view 162
Stepping through C++ programs 163
Setting breakpoints in C++ 163
AT ENTRY/EXIT 163
AT CALL . . . 164
Examining C++ objects 164
Objects 165
Classes e 165
Staticdata 165
Globaldata 166
Low-level debugging, 166
Chapter 10. Using Debug Tool with COBOL Programs 168
Debugging environment provided for COBOL programs 168
Debug Tool Subset of COBOL commands 168
Restrictions on COBOL-like commands 169
Using COBOL variables with Debug Tool 172
Accessing program variables Lo 172
Assigning values to COBOL variables 172
Declaring temporary variables 174
Displaying values of COBOL variables 174
Using DBCS characters 175

Vi Debug Tool User's Guide and Reference

Contents

Using Debug Tool variablesin COBOL 175
Debug Tool evaluation of COBOL expressions 181
Displaying the results of expression evaluation 181
Using constants in expressions 182
Using Debug Tool functions with COBOL 182
Using %oHEX 182
Using the %STORAGE function 182
Using qualification for COBOL 183
Using qualifiers 183
Changing the pointof view 185
Chapter 11. Using Debug Tool with PL/I programs 186
Debug Tool Subset of PL/l commands 186
PL/I language statements 186
Using Debug Tool variablesin PL/l 187
Conditions and condition handling 188
Freeform input 189
TEST(ERROR, ...) 189
LIST STORAGE e 189
Session variables 189
Accessing program variables 189
Structures 190
PL/l eXpressions, 191
PL/I built-in functions 191
Using SET WARNING command with built-ins 192
Unsupported PL/I language elements 192
Positive identification of a compile unit (CU) 192
Chapter 12. Using Debug Tool commands 193
Command modes and language support 193
Entering commands, 193
Command format 193
Charactersetand case 193
Abbreviating keywords 194
Continuation (full-screen and line mode) 195
Significance of blanks 196
Comments 197
Constants 197
Retrieving commands from the log and source windows 198
Online command syntax help 198
Common syntax elements 199
Block_Name 199
Block_Spec 199
Compile_Unit Name 200
CU_Spec e 201
Expression 201
Load_Module Name 202
Load_Spec 202
References 202
Statement_Id 203
Statement_Id_Range and Stmt_Id_ Spec 203
Statement_Label 204
Chapter 13. Debug Tool commands 205

Contents Vil

Contents

ANALYZE command (PL/l) 205
Assignment command (PL/l) 206
AT command 207
Every clause 208
AT ALLOCATE (PL/l) e 209
AT APPEARANCE 210
AT CALL . . . 212
AT CHANGE 214
AT CURSOR (full-screen mode) 217
AT DATE (COBOL) 218
AT DELETE 218
AT ENTRY/EXIT 219
AT GLOBAL 220
AT LABEL 222
AT LINE . . 223
AT LOAD 224
AT OCCURRENCE e, 225
AT PATH . . 228
AT Prefix (full-screen mode) 229
AT STATEMENT 230
AT TERMINATION e, 231
BEGIN command (PL/l) 232
block command (C/C++) 233
break command (C/C++) 233
CALL command 234
CALL %DUMP 235
CALL entry name (COBOL) 239
CALL procedure 240
CLEAR command 240
CLEAR prefix (full-screen mode) 243
CMS command (VM) 244
COMMENT command 245
COMPUTE command (COBOL) 245
CURSOR command (full-screenmode) 246
Declarations (C/C++), 247
C/C++ compatible attributes 249
Declarations (COBOL) 250
DECLARE command (PL/I) 253
PL/I compatible attributes 254
DESCRIBE command 255
DISABLE command 257
DISABLE prefix (full-screenmode) 258
do/while command (C/C++) 259
DO command (PL/) 259
ENABLE command 262
ENABLE prefix (full-screen mode) 262
EVALUATE command (COBOL) 262
Expression command (C/C++) 264
FIND command 265
forcommand (C/IC++) 266
GO command 267
GOTO command 268
GOTO LABEL command 269
if command (C/C++) 270

viii Debug Tool User's Guide and Reference

Contents

IF command (COBOL) 271
IF command (PL/I) 272
IMMEDIATE command (full-screen mode) 273
INPUT command (C/C++and COBOL) 274
LIST command 274
LIST (blank) 275
LIST AT . . 275
LIST CALLS 278
LIST CURSOR (full-screen mode) 278
LIST expression 279
LIST FREQUENCY e 280
LIST LAST 280
LIST LINE NUMBERS 281
LISTLINES 281
LIST MONITOR e, 281
LIST NAMES 281
LISTON (PL/l)y 283
LISTPROCEDURES 283
LIST REGISTERS e 284
LIST STATEMENT NUMBERS 284
LIST STATEMENTS 285
LISTSTORAGE s, 286
MONITOR command 287
MOVE command (COBOL) 288
Null command 289
ON command (PL/I) 289
PANEL command (full-screen mode) 291
PERFORM command (COBOL) 293
Prefix commands (full-screen mode) 295
PROCEDURE command 295
QUERY command 296
QUERY prefix (full-screenmode) 299
QUIT command e 299
RETRIEVE command (full-screen mode) 300
RUN command 301
SCROLL command (full-screenmode) 301
SELECT command (PL/l) 303
SET command 304
SET CHANGE 305
SET COLOR (full-screen and line mode) 306
SET COUNTRY e 308
SETDBCS 308
SET DEFAULT LISTINGS (MVS) 309
SET DEFAULT SCROLL (full-screenmode) 309
SET DEFAULT WINDOW (full-screen mode) 310
SETECHO 310
SET EQUATE 311
SET EXECUTE e 312
SET FREQUENCY e 312
SET HISTORY 313
SET INTERCEPT (C/C++and COBOL) 314
SET KEYS (full-screen and line mode) 315
SETLOG e 315
SET LOG NUMBERS (full-screen and line mode) 316

Contents X

Contents

SET MONITOR NUMBERS (full-screen and line mode)
SETMSGID e
SET NATIONAL LANGUAGE
SET PACE e
SET PFKEY . . .
SET PROGRAMMING LANGUAGE
SET PROMPT (full-screen and line mode)
SET QUALIFY
SET REFRESH (full-screen mode)
SET REWRITE
SET SCREEN (full-screen and line mode)
SET SCROLL DISPLAY (full-screen mode)
SET SOURCE
SET SUFFIX (full-screen mode)
SET TEST e
SET WARNING (C/C++and PL/l)
SET command (COBOL)
SHOW Prefix command (full-screen mode)
STEP command
switch command (C/C++)
SYSTEM command
TRIGGER command
TSO command (MVS)
USE command
while command (C/C++)
WINDOW command (full-screenmode)
WINDOW CLOSE
WINDOW OPEN
WINDOW SIZE e
WINDOW ZOOM

Appendix A. Coexistence
Coexistence with other debuggers
Coexistence with unsupported HLL modules

Appendix B. Using Debug Tool in a production mode
Fine-tuning your programs with Debug Tool
Removing hooks, statement tables, and symbol tables
Using Debug Tool on optimized programs

Appendix C. Using C/C++ Reference Information with Debug Tool

Creserved keywords
Operators and operands
Language Environment conditions and their C/C++ equivalents

Appendix D. Using COBOL Reference Information with Debug Tool

COBOL listing files
Debug Tool interpretive subset of COBOL commands
COBOL reserved keywords
Allowable comparisons for the Debug Tool IF command
Allowable moves for the Debug Tool MOVE command
Allowable moves for the Debug Tool SET command

Appendix E. Debug Tool Messages

X Debug Tool User's Guide and Reference

Contents

Symbols in messages 355
Bibliography, 422
High level language publications 422
Related publications 422
Softcopy publications 423
Glossary 424
Index . . . 430

Contents Xi

Notices

Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent product, program or service that does not infringe any of IBM's intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

This publication contains examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming interface information

This book is intended to help you debug application programs. This book docu-
ments General-use Programming Interface and Associated Guidance Information
provided by Debug Tool.

General-use Programming Interfaces allow you to write programs that obtain the
services of Debug Tool.

Trademarks and service marks

Xii

The following terms, used in this publication, are trademarks or service marks of
International Business Machines Corporation in the United States or other coun-

tries:

AD/Cycle MVS
BookManager MVS/ESA
C/370 Open Class
C/C++ for MVS/ESA OpenEdition
CICs 0Ss/2
CICS/ESA 0S/390
COBOL/370 Systems Application Architecture
DATABASE 2 SAA

DB2 SQL/DS

DRDA System/370
FFST/2 System/390
IBM VisualAge

IMS VM/ESA
IMS/ESA Virtual Machine/

Language Environment

Enterprise Systems Architecture

© Copyright IBM Corp. 1995, 1998

About This Book

About this book

Debug Tool combines the richness of the System/370 and System/390 subsystem
environments with the power of Language Environment to provide a debugger for
programmers to isolate and fix their program bugs and test their applications.
Debug Tool gives you the capability of testing programs in batch or using a nonpro-
grammable terminal in full-screen or line mode to debug your programs interac-
tively.

This book contains instructions and examples to help you use the Debug Tool to
debug C, C++, COBOL, and PL/I applications running with Language Environment.
Topics covered include preparing your application for debugging, accomplishing
basic debugging tasks, and Debug Tool's interaction with different programming
languages. A complete command reference section is also included.
You can begin testing with Debug Tool after learning just a few concepts:

e How to invoke it

e How to set, display, and remove breakpoints

e How to step through your program
Debug Tool commands are similar to commands from the supported high level lan-
guages (HLLs).
Note: When MVS is used in this book, it refers to both MVS and OS/390 systems.

What's new

The following is a list of enhancements that have been added to Release 2 of IBM
Debug Tool:

e Support for COBOL Millenium Language Extensions.

e Scenarios in each language to help you get started using Debug Tool to debug
your applications.

e Support for VisualAge COBOL remote debugging for host applications.
e Enhancements to DTCN to allow easier Debug Tool access by users.

e Support in MVS, CICS, and OS/390 OpenEdition services for source level
debugging of header file functions which allows you to view the source of a
function residing in the header file while it runs.

e Support in MVS for debugging POSIX applications including:

— Applications whose source code resides in HFS

— Applications that use POSIX multithreading

— Applications that use fork/exec, but Debug Tool can be active in one
process only

— Applications that use asynchronous signals, as long as they are handled by
the Language Environment condition manager

You cannot debug applications that run under the OpenEdition shell. The
POSIX applications must run under either TSO or MVS batch and must reside
in a PDS or PDSE load module. You cannot run POSIX applications that
reside in an HFS executable module.

© Copyright IBM Corp. 1995, 1998 Xiii

About This Book

Release 2 of Debug Tool contains the following enhancements:

e Full debugging support of COBOL applications exploiting the new Object Ori-
ented enhancements, and the improved interoperability with the C language.
The new debugging support includes:

— debugging of classes and methods
— support for long program names, and mixed case program names
— support for null terminated strings (Z literals)

e Debug Tool CICS Interactive Run-Time Facility (DTCN). The DTCN panel
allows CICS developers to:

— Dynamically modify the Language Environment run-time options to use
Debug Tool

— Establish the scope of your debugging session in terms of region, trans-
action, and terminal

— Debug your application either interactively or in batch

 Interactive online debugging of CICS batch transactions.

Who might use this book

This book is intended for application programmers using Debug Tool to debug
HLLs with Language Environment. Throughout this book, these languages are
referred to as C/C++, COBOL, and PL/I.

The following operating systems and subsystems are supported:

¢ 0S/390 and MVS

- TSO
CICS
— JES/Batch
- IMS
- DB2

. VM
— SQL/DS

Note: To use this book and debug a program written in one of the supported lan-
guages, you need to know how to write, compile, and run such a program.

How this book is organized

The first four chapters of this book discuss the preparatory work you must complete
before using Debug Tool and provides sample scenarios for each supported lan-
guage to help you begin using Debug Tool. The scenarios include helpful hints
when performing some basic debugging tasks. The next two chapters discuss how
to customize Debug Tool for your particular environment and gives you information
about using Debug Tool in a variety of environments, including MVS/JES batch
mode, line mode, Customer Information Control System (CICS), Information Man-
agement System (IMS), DATABASE 2 (DB2), and debugging applications that
contain Structured Query Language/Data System (SQL/DS) statements.

Xiv Debug Tool User's Guide and Reference

About This Book

Chapters 8-11 provide information about Debug Tool's interaction with different pro-
gramming languages. Debug Tool variables, functions, and expression evaluation
are explained.

Chapter 12 contains all the Debug Tool commands, shows their syntax, and pro-
vides examples of their use.

The appendixes include the following information:

Discussion of the coexistence of Debug Tool with HLL modules compiled with
previous versions of compilers

Information on how to optimize your programs while still retaining some debug-
ging capability

Reference information for C and COBOL that include reserved keywords and
Debug Tool interpretive subsets of HLL commands

Complete list of Debug Tool messages.

Following the appendixes are a bibliography and a glossary of terms.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book:

Arrow symbols

Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

»— Indicates the beginning of a statement.

— Indicates that the statement syntax is continued on the next line.
— Indicates that a statement is continued from the previous line.
—>< Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
»— symbol and end with the —> symbol.

Conventions

* Keywords, their allowable synonyms, and reserved parameters, appear in
uppercase. These items must be entered exactly as shown.

e Variables appear in lowercase italics (for example, column-name). They
represent user-defined parameters or suboptions.

¢ When entering commands, separate parameters and keywords by at least
one blank if there is no intervening punctuation.

e Enter punctuation marks (slashes, commas, periods, parentheses, quota-
tion marks, equal signs) and numbers exactly as given.

¢ Footnotes are shown by a number in parentheses, for example, (1).

¢ A b symbol indicates one blank position.

Required items

Required items appear on the horizontal line (the main path).
»»—REQUIRED_ITEM

\4
A

About this book XV

About This Book

Optional Items

Optional items appear below the main path.
»»—REQUIRED_ITEM

\4
A

|—opt ional_i temJ

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

|—opt ional_i tem—|

A

»—REQUIRED_ITEM

A\

Multiple required or optional items

If you can choose from two or more items, they appear vertically in a stack. If
you must choose one of the items, one item of the stack appears on the main
path.

\4
A

»»—REQUI RED_ITEM—Erequi red_choicel
required_choi ceZJ

If choosing one of the items is optional, the entire stack appears below the
main path.
»»>—REQUIRED_ITEM t >

optional_choicel
optional_choice2

A

Repeatable items

An arrow returning to the left above the main line indicates that an item can be
repeated.

»—REQUIRED_ITEM—LrepeatabZe_item |

\ 4
A

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

»»—REQUI RED_ITEM—[r"epeatabZe_i tem |

A\
A

A repeat arrow above a stack indicates that you can specify more than one of
the choices in the stack.

Default keywords

IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the
syntax diagram, the default choices are underlined.

default_choice
»»—REQUIRED_ITEM E]

opt ional_choicej
optional_choice

\ 4
A

XVi Debug Tool User's Guide and Reference

Before you begin debugging

Chapter 1. Before you begin debugging

Debug Tool is a program-testing and analysis aid that helps you examine, monitor,
and control the execution of programs written in C/C++, COBOL, or PL/l on
0S/390, MVS or VM. Debuggable applications can include other languages, but
Debug Tool does not debug those portions of your application. In this book, MVS
refers to both MVS and 0S/390.

This chapter provides an overview of the terminology used by Debug Tool and
some helpful hints you should consider before beginning.

Debug Tool debugging environments

Debug Tool provides several debugging environments. The number of platforms
and languages supported by Debug Tool has necessitated that certain terms and
conventions be adopted for use throughout this manual to reduce possible conflict
between references to the different systems.

The terms full-screen mode, line mode, and batch mode are used to describe the
types of debugging sessions or interfaces Debug Tool provides. Included in the
following sections are definitions of these terms, as well as a discussion of the plat-
forms supported by Debug Tool.

Debug Tool sessions
Full-Screen Session Debug Tool provides an interactive full-screen interface on a
3270 device. The full-screen interface is made up of
session panel windows containing information about your
debugging session.

Line-Mode Session Enter Debug Tool commands on the command line and
receive debugging information, one line at a time, while you
are programming.

Batch-Mode Session Debug Tool command files provide a mechanism to prede-
fine series of Debug Tool commands to be performed on an
executing batch application. Neither terminal input nor user
interaction is available for batch debugging of a batch appli-
cation.

Full-screen and line-mode sessions are both interactive types of sessions.

Full-screen session interface
Debug Tool provides:

e A Source window in which to view your program source or listing

e A Log window, which records commands and other interactions between Debug
Tool and your program

* A Monitor window in which to monitor changes in your program

You can adjust the sizes of the windows with the cursor, and change the relative
locations of the windows by typing your preferences on a template.

© Copyright IBM Corp. 1995, 1998 1

Before you begin debugging

Figure 1 on page 2 shows the three windows of Debug Tool.

COBOL LOCATION: MULTCU :> 75.1
Command =—=> Scroll ==> PAGE
MONITOR --+----1----+----2----4----3--ot-ofooeet—---boet----6 LINE: 1 OF 2

*hkkkkhkhrkhxkkrkhrrkkxkkxhxkkxx*x [OP OF MONITOR *****kkkkkkkhkhrkkhrhhkhrrkhxhkkdhrk
0001 1 01 MULTCU:>PROGRAM-USHORT-BIN 00000
0002 2 01 MULTCU:>PROGRAM-SSHORT-BIN +00000

kkkkkkkkkkhxkkkrxhxkxkxkxxkxx BOTTOM OF MONITOR ***kkkkkkkkkkkhkhkhkkhkhkhkkhk

SOURCE: MULTCU =--l---m#mmm=2mmmetmmm=3emmmtmmm-boooatom-Bommnt LINE: 66 OF 85

70 PROCEDURE DIVISION. .
71 *hkkkkkhkhkkkhhkhkhhhhhhhdhdhhddhhhhhdhkhdhhhhhhdhhhhdhhdddrrdrrhrxxxx |
72 * THIS IS THE MAIN PROGRAM AREA. This program only displays

73 * text. .
74 khkkhhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhhhdhhhddhrhdhrhddrrs |
75 DISPLAY "MULTCU COBOL SOURCE STARTED." UPON CONSOLE.

76 MOVE 25 TO PROGRAM-USHORT-BIN.

77 MOVE —25 TO PROGRAM-SSHORT-BIN.

78 PERFORM TEST-900.

79 PERFORM TEST-1000.

80 DISPLAY "MULTCU COBOL SOURCE ENDED." UPON CONSOLE.

L0G 0--=—tmmmmlommbomm 2o oo =3mbomo b boo o5 —to—--6 LINE: 6 OF 14
0007 MONITOR

0008 LIST PROGRAM-USHORT-BIN ;

0009 MONITOR

0010 LIST PROGRAM-SSHORT-BIN ;

0011 AT 75 ;

0012 AT 77 ;

0013 AT 79 ;

0014 GO ;

Figure 1. Debug Tool Windows

For an explanation of all the windows, see Chapter 5, “Using the Debug Tool
interfaces” on page 84.

Denoting environmental differences
Certain aspects of Debug Tool usage can differ, not only across platforms but from
system to system and from subsystem to subsystem. When this occurs, differ-
ences are marked in the text in the following manner:

For MVS Only : MVS-specific information.

Special language-specific information about accomplishing a task or using a partic-
ular procedure might also be marked the same way. More extensive differences
are usually discussed in separate sections.

Terminology

Because of differing terminology among the various languages supported by Debug
Tool, as well as differing terminology between platforms, a group of common terms
has been established. Table 1 on page 3 lists these terms and their equivalency
in each language.

2 Debug Tool User's Guide and Reference

Before you begin debugging

Table 1. Terminology

Debug Tool C/C++ Equivalent COBOL Equivalent PL/I Equivalent
Term
Compile Unit C/C++ source file Program or Class Program
Block Function or Compound Program, Nested Block
Statement Program, Method or

PERFORM Group of

Statements
Label Label Paragraph Name or Label

Section Name

Planning to run your program with Debug Tool

Before you can test your program using Debug Tool, you need to plan how you
want to conduct your debugging session.

* Do you want to compile your program with hooks?

Hooks are instructions inserted in a program by a compiler at compile time.
Using hooks allows you to set breakpoints that instruct Debug Tool to gain
control at selected points during program run time.

You can choose where to place the hooks. For example, you can place them
at statements, or only at entry to and exit from blocks.

For more information on placing hooks and accessing symbol tables, see
Chapter 2, “Preparing to debug your program” on page 5.

* Do you want to reference variables during your Debug Tool session?

If yes, you need to instruct the compiler to create a symbol table. The symbol
table contains descriptions of variables, their attributes, and their location in
storage. These descriptions are used by Debug Tool when referencing vari-
ables.

For more information on placing hooks and accessing symbol tables, see
Chapter 2, “Preparing to debug your program” on page 5.

* Do you want full debugging capability or smaller application size and higher
performance?

Removing hooks, statement tables, or symbol tables can increase your applica-
tion's performance and/or decrease its size. See Appendix B, “Using Debug
Tool in a production mode” on page 344 for a complete discussion.

* Do you need to reduce data set I/0?

The source (for C/C++) and the source listing (for COBOL and PL/I) data sets
should be defined with a suitable block size to minimize data set /O when
using Debug Tool. Use a block size that is as large as possible in your envi-
ronment.

e When do you want to start Debug Tool and when do you want it to gain
control?

There are a variety of ways to invoke Debug Tool, as well as many options for
allowing it to gain control of your test program.

Chapter 1. Before you begin debugging 3

Before you begin debugging

4

To invoke Debug Tool, you can use the run-time TEST option. This option gives
you the choice of invoking Debug Tool either before you run your application, at
the occurrence of an HLL condition while your application is running, or at the
occurrence of an attention interrupt. Also, Language Environment, as well as
certain HLLs, provides a run-time service you can call while your program is
executing, at the location of your choice.

After Debug Tool is invoked, it gains control of your program and suspends
execution to allow you to take such actions as checking the value of a variable
or examining the contents of storage.

Do you want to use Debug Tool interactively, in line mode, or in batch mode?

Refer to “Debug Tool sessions” on page 1 to determine how you want to use
Debug Tool when debugging your application.

Debug Tool User's Guide and Reference

Compiling a C program with TEST

Chapter 2. Preparing to debug your program

This chapter describes how to prepare your programs for debugging with Debug
Tool. It discusses how to compile your programs using the TEST compile-time
option to furnish Debug Tool with the necessary debugging information.

Information for using the TEST option with each language compiler and debugging
multilanguage programs is discussed separately in the following sections:

Compiling your C program with the compile-time TEST option
Compiling your C++ program with the compile-time TEST option
Compiling your COBOL program with the compile-time TEST option
Compiling your PL/I program with the compile-time TEST option
Debugging multilanguage programs

Compiling a C program with the compile-time TEST option

Before testing your C program with Debug Tool, you must compile it with the C
compile-time TEST option, as described below. This option causes the compiler to
retain information about your application program that Debug Tool uses.

The TEST suboptions BLOCK, LINE, and PATH regulate the points where the compiler
inserts program hooks. When you set breakpoints, they are associated with the
hooks which are used to instruct Debug Tool where to gain control of your program.

The symbol table suboption SYM regulates the inclusion of symbol tables into the
object output of the compiler. Debug Tool uses the symbol tables to obtain infor-
mation about the variables in the program.

When using the C compile-time TEST option, be aware that:
e The C compile-time TEST option generates entry and exit hooks for functions.

e The C compile-time TEST option implicitly specifies the GONUMBER option, which
causes the compiler to generate line number tables corresponding to the input
source file. You can explicitly remove this option by specifying NOGONUMBER.

* Programs compiled with both the TEST and either OPT(1) or OPT(2) options do
not have line hooks, block hooks, path hooks, or a symbol table generated,
regardless of the TEST suboptions specified. Only function entry and exit hooks
are generated for optimized programs.

¢ You can specify any number of TEST suboptions, including conflicting sub-
options (for example, both PATH and NOPATH). The last suboptions specified
take effect. For example, if you specify TEST(BLOCK, NOBLOCK, BLOCK, NOLINE,
LINE), what takes effect is TEST(BLOCK, LINE) since BLOCK and LINE are speci-
fied last.

¢ No duplicate hooks are generated even if two similar TEST suboptions are spec-
ified. For example, if you specify TEST(BLOCK, PATH), the BLOCK suboption
causes the generation of entry and exit hooks. The PATH suboption also
causes the generation of entry and exit hooks. However, only one hook is gen-
erated at each entry and exit.

See 0S/390 C/C++ User's Guide for more information on the compile-time TEST
option.

© Copyright IBM Corp. 1995, 1998 5

Compiling a C program with TEST

You can specify any combination of the C TEST suboptions in any order. The
default suboptions are BLOCK, LINE, PATH, and SYM.

The syntax for the C compile-time TEST option is:

NOTEST |
> TEST

\
A

—BLOCK—

—LINE——
—PATH—
—SYM——
(—NOBLOCK)
—NOLINE—
—NOPATH—
—NOSYM—
—ALL—
—NONE——

The compile-time TEST suboptions control the generation of symbol tables and
program hooks Debug Tool needs to debug your programs. The choices you make
when compiling your program affect the amount of Debug Tool function available
during your debugging session. When a program is under development, you
should compile the program with TEST(ALL) to get the full capability of Debug Tool.

The following list explains what is produced by each option and suboption and how
Debug Tool uses them when debugging your program:

TEST
Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The extent of the information provided depends on which of
the following suboptions are selected.

The following restrictions apply when using TEST:

e The maximum number of lines in a single source file cannot exceed
131,072.

¢ The maximum number of include files which have executable statements
cannot exceed 1024.

If you do exceed these limits, the results from Debug Tool are undefined. Also,
a Language Environment dump generated from a program compiled with the
TEST option yields incorrect line numbers and source file information.

NOTEST
Specifies that no debugging information is to be generated. That is, no state-
ment hooks or path hooks are compiled into your program, no dictionary tables
are created, and Debug Tool does not have access to any symbol information.

e You cannot STEP through program statements. You can suspend execution
of the program only at the initialization of the main compile unit.

e You cannot examine or use any program variables.

e You can LIST storage and registers.

e You cannot use the Debug Tool command GOTO.

6 Debug Tool User's Guide and Reference

Compiling a C program with TEST

BLOCK
Inserts only block entry and exit hooks into your program's object output. A
block is any number of data definitions, declarations, or statements
enclosed within a single set of braces. BLOCK also creates entry and exit
hooks for nested blocks. If SYM is enabled, symbol tables are generated for
variables local to these nested blocks.

e You can only gain control at entry and exit of blocks.

¢ |ssuing a command such as STEP causes your program to run, until it
reaches the exit point.

NOBLOCK
Prevents symbol information and entry and exit hooks from being gener-
ated for nested blocks.

LINE
Hooks are generated at most executable statements. Hooks are not gener-
ated for:

¢ Lines that identify blocks (lines containing braces)
e Null statements
e Labels

NOLINE
Suppresses the generation of statement (line number) hooks.

PATH
Hooks are generated at all path points.

* This option does not influence the generation of entry and exit hooks
for nested blocks. The BLOCK suboption must be specified if such
hooks are desired.

e Debug Tool can gain control only at path points and block entry and
exit points. If you attempt to STEP through your program, Debug Tool
gains control only at statements that coincide with path points, giving
the appearance that not all statements are executed.

e The Debug Tool command GOTO is valid only for statements and labels
coinciding with path points.

NOPATH
No path hooks are generated.

SYM
Generates symbol tables in the program'’s object output that gives Debug
Tool access to variables and other symbol information.

e You can reference all program variables by name, allowing you to
examine them or use them in expressions.

* You can use the Debug Tool command GOTO to branch to a label (para-
graph or section name).

NOSYM
Suppresses the generation of symbol tables. Debug Tool does not have
access to any symbol information.

¢ You cannot reference program variables by name.

Chapter 2. Preparing to debug your program 7

Compiling a C program with TEST

e You cannot use commands such as LIST or DESCRIBE to access a vari-
able or expression.

¢ You cannot use commands such as CALL or GOTO to branch to another
label (paragraph or section hame).

ALL
Block and line hooks are inserted and a symbol table is generated. Hooks
are generated at all statements, all path points (if-then-else, calls, and so
on), and at all function entry and exit points.

ALL is equivalent to TEST(LINE, BLOCK, PATH, SYM).
NONE

Generates all compiled-in hooks only at function entry and exit points.
Block and line hooks are not inserted, and the symbol tables is suppressed.

TEST(NONE) is equivalent to TEST(NOLINE, NOBLOCK, NOPATH, NOSYM).

Placing compiled-in hooks for functions and nested blocks
The following rules apply to the placement of compiled-in hooks for getting in and
out of functions and nested blocks:

e The hook for function entry is placed before any initialization or statements for
the function.

* The hook for function exit is placed just before actual function return.

e The hook for nested block entry is placed before any statements or initialization
for the block.

e The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points
The following rules apply to the placement of compiled-in hooks for statements and
path points:

e Label hooks are placed before the code and all other statement or path point
hooks for the statement.

¢ The statement hook is placed before the code and path point hook for the
statement.

¢ A path point hook for a statement is placed before the code for the statement.

Using #pragma to specify compile-time TEST option
The compile-time TEST/NOTEST option can be specified either when you invoke your
program or directly in your program, using a #pragma.

This #pragma must appear before any executable code in your program.

If you link together two or more compile units with differing #pragmas, the options
specified with the first compile unit are honored. With multiple enclaves, the
options specified with the first enclave (or compile unit) invoked in each new
process are honored.

If you specify options on the command line and in a #pragma, any options entered
on the command line override those specified in the #pragma unless you specify
NOEXECOPS. Specifying NOEXECOPS, either in a #pragma or with the compile-time
EXECOPS option, prevents any command line options from taking effect.

8 Debug Tool User's Guide and Reference

Compiling a C++ program with TEST

The following example generates symbol table information, symbol information for
nested blocks, and line number hooks:

#pragma options (test(SYM,BLOCK,LINE))

This is equivalent to TEST(SYM,BLOCK,LINE,PATH). The default PATH means that the
PATH breakpoint will be triggered for the program containing the following statement:

#pragma options(test)
You can also use a #pragma to specify run-time options. This is explained, with

examples, in “Specifying run-time TEST option with #pragma runopts in C and C++”"
on page 39.

For more information about #pragma options, refer to 0S/390 C/C++ Language Ref-
erence.

Compiling a C++ program with the compile-time TEST option

Before testing your C++ program with Debug Tool, you must compile it with the
C++ compile-time TEST option, as described below. This option causes the com-
piler to retain information about your application program that Debug Tool uses.
See “Compiling a C program with the compile-time TEST option” on page 5 for an
explanation of the debug information generated by TEST (ALL).

NOTEST
»—J:TEST —l

\ 4
A

The following list explains what is produced by each option and how Debug Tool
uses them when debugging your program:

NOTEST
Specifies that no debugging information is to be generated. That is, no state-
ment hooks or path hooks are compiled into your program, no dictionary tables
are created, and Debug Tool does not have access to any symbol information.

e You cannot STEP through program statements. You can suspend execution
of the program only at the initialization of the main compile unit.

e You cannot examine or use any program variables.

e You can LIST storage and registers.

e You cannot use the Debug Tool command GOTO.

TEST
Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The following restrictions apply when using the TEST option

¢ The maximum number of lines in a single source file cannot exceed
131,072.

¢ The maximum number of include files which have executable statements
cannot exceed 1024.

If you do exceed these limits, the results from Debug Tool are undefined. Also,
a Language Environment dump generated from a program compiled with the
TEST option yields incorrect line numbers and source file information.

Chapter 2. Preparing to debug your program 9

Compiling a COBOL program with TEST

Placing compiled-in hooks for functions and nested blocks

The following rules apply to the placement of compiled-in entry and exit hooks for
functions and nested blocks:

The hook for function entry is placed before any initialization or statements for
the function.

The hook for function exit is placed just before actual function return.

The hook for nested block entry is placed before any statements or initialization
for the block.

The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points

The following rules apply to the placement of compiled-in hooks for statements and
path points:

Label hooks are placed before the code and all other statement or path point
hooks for the statement.

The statement hook is placed before the code and path point hook for the
statement.

A path point hook for a statement is placed before the code for the statement.

Compiling a COBOL program with the compile-time TEST option

When you compile with the TEST option, the compiler creates the dictionary tables
that Debug Tool uses to obtain information about program variables, and inserts
program hooks at selected points in your program. Your source is not modified.
These points can be at the entrances and exits of blocks, at statement boundaries,
and at points in the program where program flow might change between statement
boundaries (called path points), such as before and after a CALL statement. Using
these hooks, you can set breakpoints to instruct Debug Tool to gain control of your
program at selected points during its execution.

When using the COBOL compile-time TEST option, be aware that:

 If you specify NUMBER with TEST, make sure the sequence fields in your source

code all contain numeric characters.

Usually, when you specify TEST, the compile-time options NOOPTIMIZE and
OBJECT automatically go into effect, preventing you from debugging optimized
programs. However, TEST(NONE, SYM) does not conflict with OPT, allowing
limited debugging of optimized programs. See Appendix B, “Using Debug Tool
in a production mode” on page 344 for more information on debugging pro-
duction programs.

The compile-time TEST option and the run-time DEBUG option are mutually exclu-
sive, with DEBUG taking precedence. If you specify both the WITH DEBUGGING
MODE clause in your SOURCE-COMPUTER paragraph and the USE FOR DEBUGGING
statement in your code, TEST is deactivated. The compile-time TEST option
appears in the list of options, but a diagnostic message is issued telling you
that because of the conflict, TEST is not in effect.

The syntax for the COBOL compile-time TEST option is:

10 Debug Tool User's Guide and Reference

Compiling a COBOL program with TEST

NOTEST
NOTES
(ALL, SYM)
> TESTT— >
TES (—ALL T SM—T—)
BLOCK NOSYM
NONE
PATH
STMT

The compile-time TEST suboptions control the production of such debugging aids as
dictionary tables and program hooks that Debug Tool needs to debug your
program. The choices you make when compiling your program can affect the
amount of Debug Tool function available during your debugging session. When a
program is under development, compile the program with TEST(ALL) to get the full
capability of Debug Tool. The following list explains each option and suboption and
the capabilities of Debug Tool when your program is compiled using these options.

NOTEST
Specifies that no debugging information is to be generated, that is, no state-
ment hooks or path hooks are compiled into your program, no dictionary tables
are created, and Debug Tool does not have access to any symbol information.
Using NOTEST produces the following results:

e You cannot STEP through program statements.

e You can suspend execution of the program only at the initialization of the
main compile unit.

e You can include calls to CEETEST in your program to allow you to suspend
program execution and issue Debug Tool commands.

e You cannot examine or use any program variables.
e You can LIST storage and registers.

* The source listing produced by the compiler cannot be used; therefore, no
listing is available during a debugging session.

» Because a statement table is not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY location.

TEST
Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The extent of the information provided depends on which of
the following suboptions are selected.

ALL
Generates all compiled-in hooks, which includes all statement, path, date
processing, and program entry and exit hooks.

e The COBOL compiler only generates compiled-in hooks for date proc-
essing statements when either the DATEPROC (FLAG) or
DATEPROC (NOFLAG) compile-time option is specified. A date processing
statement is any statement that references a date field, or any EVAL-
UATE or SEARCH statement WHEN phrase that references a date
field.

* You can set breakpoints at all statements and path points, and STEP
through your program.

Chapter 2. Preparing to debug your program 11

Compiling a COBOL program with TEST

12

e Debug Tool can gain control of the program at all statements, path
points, date processing statements, labels, and block entry and exit
points, allowing you to enter Debug Tool commands.

e Branching to statements and labels using the Debug Tool command
GOTO is allowed.

BLOCK
Hooks are inserted at all block entry and exit points.

e Debug Tool gains control at entry and exit of your program, methods,
nested programs, and PERFORM group of statements.

e Debug Tool can be explicitly invoked at any point with a call to CEETEST.

e |ssuing a command such as STEP causes your program to run until it
reaches the next entry or exit point.

e GOTO can be used to branch to statements that coincide with block entry
and exit points.

NONE
No hooks are inserted in the program.

e The GOTO command is valid for some statements and labels coinciding
with path points.

e A call to CEETEST can be used at any point to invoke Debug Tool.

PATH
Hooks are inserted at all path points.

e Debug Tool can gain control only at path points and block entry and
exit points. If you attempt to STEP through your program, Debug Tool
gains control only at statements that coincide with path points, giving
the appearance that not all statements are executed.

e A call to CEETEST can be used at any point to invoke Debug Tool.

e The Debug Tool command GOTO is valid for all statements and labels
coinciding with path points.

STMT
Hooks are inserted at every statement and label, at every date processing
statement, and at all entry and exit points.

e The COBOL compiler only generates compiled-in hooks for date proc-
essing statements when either the DATEPROC (FLAG) or
DATEPROC (NOFLAG) compile-time option is specified. A date processing
statement is any statement that references a date field, or any EVAL-
UATE or SEARCH statement WHEN phrase that references a date
field.

* You can set breakpoints at all statements and STEP through your
program.

e Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

e Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

Debug Tool User's Guide and Reference

Compiling a PL/I program with TEST

SYM

Generates dictionary tables in the program's object output (including the

symbol table), that gives Debug Tool access to variables and other symbol
information.

* You can reference all program variables by name, which allows you to
examine them or use them in expressions.

e SYMis required to support labels (paragraph or section names) as GOT0O
targets.

NOSYM

Suppresses the generation of dictionary tables. Debug Tool does not have

access to any symbol information. Using NOSYM produces the following
results:

¢ You cannot reference program variables by name.

* You cannot use commands such as LIST a variable or expression con-
taining a variable, or DESCRIBE a variable name.

¢ You cannot use commands such as CALL variable to branch to another

program, or GOTO to branch to another label (paragraph or section
name).

Specifying TEST with no suboptions is equivalent to TEST(ALL, SYM).

See the COBOL Language Reference publications for more information about the
compile-time TEST option.

Note: To be able to view your source code while debugging in interactive mode,

you must direct the listing to a nontemporary file that is available during the
debugging session.

During a debugging session, Debug Tool displays the first file it finds named
userid.pgmname.list in the Source window. Use the SET SOURCE command
to associate your source listing with the program you are debugging. See
“SET SOURCE” on page 324 as well as “SET DEFAULT LISTINGS (MVS)”
on page 309 (for partitioned data sets).

Compiling a PL/I program with the compile-time TEST option

The PL/I compiler provides support for Debug Tool under control of the compile-
time TEST option and its suboptions for hook locations and symbol tables. The
hook location suboptions (BLOCK, STMT, PATH, ALL, and NONE) regulates the points at
which the compiler inserts hooks. These program hooks allow Debug Tool to gain
control at select points in a program during execution. The symbol table suboption
(SYM or NOSYM) controls the insertion of symbol tables into the program. Debug Tool
uses the symbol tables to obtain information about program variables.

The syntax for the PL/I compile-time TEST option is:

Chapter 2. Preparing to debug your program 13

Compiling a PL/I program with TEST

NOTEST
NOTES
r~(NONE, SYM)
> TESTT— >
TES (—ALL T SM—T—)
BLOCK NOSYM
NONE
PATH
STMT

The choices you make when compiling your program can affect the amount of
Debug Tool function available during your debugging session. When a program is
under development, compile the program with TEST(ALL) to get the full capability of
Debug Tool. The following list explains each option and suboption and the capabili-
ties of Debug Tool when your program is compiled using these options:

NOTEST
Specifies that no debugging information is generated, that is, no statement
hooks or path hooks are compiled into your program, no dictionary tables are
created, and Debug Tool does not have access to any symbol information.
Using NOTEST produces the following results:

e You can LIST storage and registers.

* You can include calls to PLITEST or CEETEST in your program SO you can
suspend running your program and issue Debug Tool commands.

* You cannot STEP through program statements. You can suspend running
your program only at the initialization of the main compile unit.

e You cannot examine or use any program variables.

e Because statement hooks are not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY LOCATION. A state-
ment table is available if compiled with STMT or GOSTMT.

TEST
Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The extent of the information provided depends on which of
the following suboptions are selected:

ALL
Generates all compiled-in hooks, which includes all statement, path, and
program entry and exit hooks.

* You can set breakpoints at all statements and path points, and STEP
through your program.

e Debug Tool can gain control of the program at all statements, path
points, labels, and block entry and exit points, allowing you to enter
Debug Tool commands.

e Enables branching to statements and labels using the Debug Tool
command GOTO.

BLOCK
Hooks are inserted at all block entry and exit points.

e Enables Debug Tool to gain control at block boundaries: block entry
and block exit.

14 Debug Tool User's Guide and Reference

NONES
No

PATH

Compiling a PL/I program with TEST

You can gain control only at entry and exit of your program and all
entry and exit points of internal program blocks.

A call to PLITEST or CEETEST can be used to invoke Debug Tool at any
point in your program.

Issuing a command such as STEP causes your program to run until it
reaches the next block entry or exit point.

Block hooks are not inserted into a NULL ON-unit or an ON-unit consisting
of a single GOTO statement.

hooks are inserted in the program.

A call to PLITEST or CEETEST can be used to invoke Debug Tool at any
point in your program.

Causes hooks to be inserted:

Before the THEN part of an IF statement.

Before the ELSE part of an IF statement.

Before the first statement of all WHEN clauses of a SELECT-group.
Before the OTHERWISE statement of a SELECT-group.

At the end of a repetitive DO statement, just before the Do-group is to be
executed.

At every CALL or function reference, both before and after control is
passed to the routine.

Before the statement following a user label, excluding labeled FORMAT
statements. If a statement has multiple labels, only one hook is
inserted.

Specifying PATH also causes BLOCK hooks to be inserted.

STMT

Hooks are inserted before most executable statements and labels. STMT
also causes BLOCK hooks to be inserted.

SYM

You can set breakpoints at all statements and STEP through your
program.

Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

Generates a symbol table to be compiled into the program. The symbol
table is required for examining program variables or program control con-
stants by name.

You can reference all program variables by name, which allows you to
examine them or use them in expressions.

SYM is required to support labels as GOTO targets.

Chapter 2. Preparing to debug your program 15

Debugging multilanguage programs

NOSYM
Suppresses the generation of a symbol table. Debug Tool does not have
access to any symbol information which causes the following results:

e You cannot reference program variables by name.

* You cannot use commands such as LIST a variable or expression con-
taining a variable, or DESCRIBE a variable name.

* You cannot use commands such as CALL variable to branch to another
program, or GOTO to branch to another label (procedure or block name).

See the PL/I for MVS and VM Programming Guide for more information about the
compile-time TEST option.

Note: To be able to view your source code while debugging in interactive mode,
PL/I programs must be compiled using the PL/I compile-time SOURCE option.
You must also direct the listing to a nontemporary file that is available
during the debugging session.

During a debugging session, Debug Tool displays the first file it finds named
userid.pgmname.list in the Source window. Use the SET SOURCE command
to associate your source listing with the program you are debugging. See
“SET SOURCE" on page 324, as well as “SET DEFAULT LISTINGS
(MVS)” on page 309 (for partitioned data sets).

Compiling with TEST(STMT), TEST(PATH), or TEST(ALL) causes a statment number
table to be generated. If the compile-time STMT option is in effect, TEST causes
GOSTMT to apply. If the compile-time NUMBER option is in effect, TEST causes
GONUMBER to apply.

Debugging multilanguage programs

16

This section discusses strategies you can employ when debugging programs
written in more than one language.

The process of debugging multilanguage programs is simplified by the introduction
of Language Environment. Language Environment supports the creation of applica-
tion programs written in more than one HLL by providing a single environment to
run such programs using interlanguage communication (ILC).

When the need to debug a multilanguage program arises, you can find yourself
facing one of the following scenarios:

¢ You need to debug an application written in more than one language, where
each language is supported by Language Environment and can be debugged
by Debug Tool.

e You need to debug an application written in more than one language, where
not all of the languages are supported by Language Environment, nor can they
be debugged by Debug Tool.

When writing a multilanguage application, a number of special considerations arise
because you must work outside the scope of any single language. The Language
Environment initialization process establishes an environment tailored to the set of
HLLs constituting the main load module of your application program. This removes
the need to make explicit calls to manipulate the environment. Also, termination of

Debug Tool User's Guide and Reference

Debugging multilanguage programs

the Language Environment environment is accomplished in an orderly fashion,
regardless of the mixture of HLLs present in the application.

Debugging an application fully supported by Language Environment

If you are debugging a program written in a combination of languages supported by
Language Environment and compiled by supported compilers, very little is required
in the way of special actions. Debug Tool normally recognizes a change in pro-
gramming languages and automatically switches to the correct language when a
breakpoint is reached. If desired, you can use the SET PROGRAMMING LANGUAGE
command to stay in the language you specify; however, you can only access vari-
ables defined in the currently set programming language. For details, see “SET
PROGRAMMING LANGUAGE" on page 319.

When defining session variables you want to access from compile units of different
languages, you must define them with compatible attributes. See “C/C++ compat-
ible attributes” on page 249, “COBOL compatible attributes” on page 252, or “PL/I
compatible attributes” on page 254 for a table showing compatible attributes for
variables declared in the supported languages.

For more information on creating multilanguage applications, see the 0S/390 Lan-
guage Environment Programming Guide

Debugging an application partially supported by Language

Environment

Sometimes you might find yourself debugging applications that contain compile
units written in languages not supported by either Debug Tool or Language Envi-
ronment. For example, you can run programs containing mixtures of Assembler,
C/C++, COBOL, FORTRAN, and PL/I source code with Debug Tool. You can
invoke Debug Tool and perform testing only for the sections of a multilanguage
program written in a supported language and compiled with a Language
Environment-enabled compiler, or relink-edited to take advantage of Language
Environment library routines. If you are debugging a compile unit written in a sup-
ported language and the compile unit calls another unsupported language, a break-
point set with AT CALL is triggered. Debug Tool determines the name of the
compile unit, but little else. Your compile unit runs unhindered by Debug Tool.
When program execution returns to a compile unit of a known HLL, Debug Tool
once again gains control and execute commands.

Chapter 2. Preparing to debug your program 17

Using TEST

Chapter 3. Beginning a debugging session

This chapter explains how to begin a debugging session with Debug Tool. It
covers the run-time TEST option, which gives you several alternatives for beginning
a debugging session when specified during the invocation of your program.

Also covered are Language Environment callable services CEETEST and PLITEST,
and the C library function _ ctest(). These can be inserted into your program to
govern the invocation of Debug Tool. The use of #pragma runopts to specify the
run-time TEST option in C programs is discussed in more detail.

For MVS Only : If your source or listing does not come up in Debug Tool when you
start it, press PF4 (LIST) with the cursor on the command line. This puts you in the
Source ldentification panel. The Source Identification panel indicates the name of
the source or listing file that was intended to be used by Debug Tool. With this
name you can verify if the file exists or if you have authorization to access it. If
your file is stored at a different place, use the SET SOURCE command or type over
the Listing/Source file field with the new name to have Debug Tool search for the
source or listing there. The SET DEFAULT LISTINGS command provides another
method of finding your files provided they are stored to a PDS.

For C/C++ compile units, Debug Tool requires a file containing the source code.
By default, when Debug Tool encounters a new C/C++ compile unit, it looks for the
source code in a file whose name is the one that was used on the compile step.
For COBOL and PL/I compile units, Debug Tool requires a file containing the com-
piler listing. By default, when Debug Tool encounters a new VS COBOL Il or PL/I
compile unit, it looks for the listing in a file named hlg.cuname.LIST. For
COBOL/370, COBOL for MVS, and COBOL for OS/390, Debug Tool looks for the
listing in a partitioned data set member named cuname.

When Debug Tool is invoked using one of the methods described in this chapter, it
interrupts the execution of your program to allow you to take appropriate actions.
Debug Tool returns control to your program at the point of its interruption as the
result of a GO or STEP command. You can also specify that control return to some
other point in your program with the GOTO or GO BYPASS command. You can even
specify that control be given to another program with the CALL command or a
C/C++ function invocation.

If Debug Tool gains control because of a program condition, when control is
returned to the program, the condition is raised in the program unless explicitly pre-
vented (see “GO command” on page 267).

Using the run-time TEST option

18

You can use the run-time TEST option to invoke Debug Tool and begin testing your
program. The simplest form of the TEST option is TEST with no suboption; however,
suboptions provide you with more flexibility. There are four suboptions available:

e test_level (determines what HLL conditions raised by your program will cause
Debug Tool to gain control)

© Copyright IBM Corp. 1995, 1998

Using TEST

e commands_file (determines which primary commands file is used as the initial
source of commands in the absence of, or as an alternative to, a terminal or
workstation)

e prompt_Tevel (determines whether an initial commands list is unconditionally
executed during program initialization)

» preferences_file (specifies the session parameter and a file that you can use
to specify default settings for your debugging environment, such as customizing
the settings on the Debug Tool Profile panel)

Run-time TEST option syntax
You can specify any combination of the run-time TEST suboptions, but they must be
specified in the order presented. Any option or suboption referred to as "default" is
the IBM-supplied default, and might have been changed by your system adminis-
trator during installation. For examples of how to use TEST and each of its sub-
options, see page 27.

The syntax for this option is:

Chapter 3. Beginning a debugging session 19

Using TEST

NOTEST
L EsT r n >
(E b
l—{ test_level |J |—{ commands_file }J

|]
L—{ prompt_level }-—J | L—{ preferences_file }J)

test_level:

—ALL—|
| |

»
>

\4
A

commands_file:

*.

—commands_file_designator—

prompt_level:
| —PROMPT |
| |
—NOPROMPT

—E'I' E—Eéommand 'I'j—

preferences_file:

—MFIL:
| |—"/oter‘minal_idJ
I >
—LU2:
[—APPC& |—%CODEDT—
B appc_workstation_id C 1
VADAPPC&—@- %session_id—
|—"/08009
LVADTCPIP&@—tcpip_workstation_id B
%port_id—
—INSPPREF: |
> |
—preferences_file_designator—

Notes:
! Double quotes for MVS; single quotes for VM.

2 Supports only VisualAge COBOL programs.

NOTEST
Specifies that Debug Tool is not invoked at program initialization. However,
invoking Debug Tool is still possible through the use of CEETEST, PLITEST, or the
__ctest() function. In such a case, the suboptions specified with NOTEST are
used when Debug Tool is invoked.

TEST
Specifies that Debug Tool is given control according to its suboptions. The
TEST suboptions supplied will also be used if Debug Tool was invoked with
CEETEST, PLITEST, or _ ctest().

test_level :

ALL (or blank)
Specifies that the occurrence of an attention interrupt, termination of your
program (either normally or through an ABEND), or any program or Language

20 Debug Tool User's Guide and Reference

Using TEST

Environment condition of Severity 1 and above causes Debug Tool to gain
control, regardless of whether a breakpoint is defined for that type of condition.
If a condition occurs and a breakpoint exists for the condition, the commands
specified in the breakpoint are executed. If a condition occurs and a breakpoint
does not exist for that condition, or if an attention interrupt occurs, Debug Tool
does the following:

* In interactive mode, it reads commands from a commands file (if it exists)
or prompts you for commands

¢ |n noninteractive mode, it reads commands from the commands file

For more information about attention interrupts, see “Requesting an attention
interrupt during interactive sessions” on page 135.

ERROR
Specifies that only the following conditions cause Debug Tool to gain control
without a user-defined breakpoint.

e For C/C++:

An attention interrupt
Program termination
A predefined Language Environment condition of Severity 2 or above
Any C/C++ condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

e For COBOL:

— An attention interrupt
— Program termination
— A predefined Language Environment condition of Severity 2 or above.

e For PL/I:

— An attention interrupt, directed at either PL/I or Debug Tool
— Program termination
— A predefined Language Environment condition of Severity 2 or above.

Language Environment conditions are described in the 0S/390 Language
Environment Debugging Guide and Run-Time Messages.

If a breakpoint exists for one of the above conditions, commands specified in
the breakpoint are executed. If no commands are specified, Debug Tool reads
commands from a commands file or prompts you for them in interactive mode.

NONE
Specifies that Debug Tool gains control from a condition only if a breakpoint is
defined for that condition. If a breakpoint exists for the condition, the com-
mands specified in the breakpoint are executed. An attention interrupt does not
cause Debug Tool to gain control unless Debug Tool has previously been
invoked. For information about how to change the TEST level after you start
your session, see “SET TEST” on page 326.

commands_file :

* (or blank)
Indicates that no commands file is supplied. The terminal, if available, is used
as the source of Debug Tool commands.

Chapter 3. Beginning a debugging session 21

Using TEST

commands _file _designator

Valid designation (ddname or data set for MVS, or filedef or file id for CMS) for
the primary commands file which is used instead of the terminal as initial
source of commands after the preferences file finishes running. If the desig-
nator might cause an ambiguity in the list of suboptions, enclose it in single or
double quotation marks to differentiate it from the remainder of the list. If you
are using a single ddname, no quotation marks are required.

The commands_file_designator has a maximum length of 80 characters.

If the specified ddname is longer than eight characters, it is automatically trun-
cated, but no error message is issued.

When the end of the file is reached, Debug Tool interactively prompts you for
commands until a QUIT command or the end of your application is reached.

The use of a primary commands file is required when debugging batch pro-
grams with a noninteracting interface, and this suboption enables you to specify
a source of commands when using Debug Tool in batch mode. It also allows
you to use a log file from one Debug Tool session as a source of commands in
a subsequent Debug Tool session to regression test your application.

When not using an interactive interface (for example, VisualAge COBOL work-

station), the primary commands file is required for batch debugging sessions. It
acts as a surrogate terminal. Debug Tool reads and executes commands from
it until either the file runs out of commands or your program finishes running.

If the end of the file is reached without encountering a QUIT command, Debug
Tool looks to your terminal, if available, for commands. If your terminal is not
available (if you are debugging in batch, for example), Debug Tool forces a GO
until the end of your program is reached.

Note: VisualAge COBOL does not support use of a commands file.

prompt_level :

PROMPT (or , or blank)

Indicates that you want Debug Tool invoked immediately after Language Envi-
ronment initialization. Commands are read from the preferences file and then
any designated primary commands file. If neither file exists, commands are
read from your terminal or workstation.

NOPROMPT (or *)

Indicates that you do not want Debug Tool invoked immediately after Language
Environment initialization. Instead, your application begins running.

command

One or more valid Debug Tool commands. Debug Tool is invoked immediately
after program initialization, and then the command (or command string) is exe-
cuted. The command string can have a maximum length of 250 characters,
and should be enclosed in double quotation marks (MVS) or single quotation
marks (VM). Multiple commands must be separated by a semicolon.

Note: If you include a STEP or GO in your command string, none of the subse-
guent commands are processed. The command string operates like a
commands file. The VisualAge COBOL workstation interface does not
support commands file.

22 Debug Tool User's Guide and Reference

Using TEST

preferences_file :

MF1I
Specifies Debug Tool should be invoked in MFI mode, that is, you are using a
3270-type terminal for your debugging sessions.

terminal_id (for CICS only)
Specifies up to a four-character-length terminal id which receives Debug Tool
screen output during dual terminal session. The corresponding terminal should
be in service and acquired ready to receive Debug Tool-related I/0.

INSPPREF (or blank)
Debug Tool-supplied default preferences file ddname. Any preferences file that
is specified to Debug Tool becomes the first source of Debug Tool commands
after the debugger is invoked. It is often used to set up the Debug Tool envi-
ronment.

preferences _file_designator
Valid designation (ddname or data set for MVS, or filedef or file id for CMS)
specifying the preferences file to be used.

This file is read the first time Debug Tool is invoked, and must contain a
sequence of Debug Tool commands to be executed.

* Specifies that no preferences file is supplied.

Note: INSPPREF and preferences file designator are not supported when
using the VisualAge COBOL workstation interface. * is always
assumed.

For Workstation Debugging Only

Workstation debugging provides the advantage of a GUI interface between the
workstation and the host-based Debug Tool. It also provides important additional
function such as the ability to interactively debug batch processes. For example, a
COBOL batch job running in MVS/JES, or a COBOL CICS batch transaction, can
be interactively debugged via a TCP/IP connection to a workstation equipped with
VisualAge COBOL.

Currently there are two workstation products that interface with Debug Tool:
VisualAge COBOL and CODE/370. When you want to debug your host applica-
tions from your workstation, use one of the following protocols to communicate with
the host:

e If you have VisualAge COBOL installed on your OS/2 workstation, you can use
either APPC or TCP/IP to communicate with the host.

» |f you have VisualAge COBOL installed on your Windows workstation, use
TCP/IP to communicate with the host.

* If you have CODE/370 installed on your OS/2 workstation, you can use either
APPC or LU2 to communicate with the host.

When this type of debugging is performed, the host application invokes Debug
Tool, which in turn invokes the workstation interface that you've designated in one
of the suboptions. The following suboptions are qualified as to which workstation
product they apply.

Chapter 3. Beginning a debugging session 23

Using TEST

LU2
Specifies you want to establish a Debug Tool session with a CODE/370 work-
station using an LU2 session to provide a GUI access.

APPC&
Specifies you want to establish a Debug Tool session with a workstation that
has been set up for APPC communications with the host. This suboption
applies only to workstations equipped with CODE/370 and configured for APPC
communications.

VADAPPC&
Specifies that Debug Tool is interfacing with an OS/2 workstation equipped with
VisualAge COBOL and configured for APPC communications with the host.
This suboption is valid only when you have installed and are using VisualAge
COBOL on your OS/2 workstation.

appc_workstation_id
A 1-to-8 character alphanumeric name defining your workstation at APPC con-
figuration time. This is the APPC name of the workstation which will display
your debug information. An example of this symbolic destination name would
be AJSMITH or DEPT87. If you do not define appc_workstation_id properly
when APPC is configured and your application is running in batch (for example,
JES), Debug Tool is not initiated. The batch program continues to run or termi-
nates, depending on its state when the debug session is attempted. If
appc_workstation_id is improperly defined and your application is running in the
TSO foreground, or in CICS when the task has a terminal associated with it, an
MFI session is created. This behavior is consistent for APPC sessions
attempted with workstations equipped with either VisualAge COBOL or
CODE/370.

%CODEDT
Default session_id for a CODE/370 workstation.

%session_id
Specifies a unique name of the application you want to debug. If you identify
your session with the same session_id as that of an existing session, an initial-
ization failure for the session being started will occur.

VADTCPIP&
Specifies that Debug Tool is interfacing with either an OS/2 or a Windows NT
workstation equipped with VisualAge COBOL and configured for TCP/IP com-
munications with the host. This suboption is valid only when you have installed
and are using VisualAge COBOL on your workstation.

tcpip_workstation _id
TCP/IP name of the workstation which will display your debug information.

%8000
Default port id.

%eport_id
Specifies a unique TCP/IP port on your workstation which is used by the
daemon program.

| VisualAge COBOL only

24 Debug Tool User's Guide and Reference

Using TEST

If you are using the VADTCPIP& suboption, consider the following possible errors:

e The tcpip_workstation_id or port_id parameters must be syntactically or
functionally correct. If they are not and you attempt an interactive session, an
MFI session will be allocated. For example, if you attempt a session from TSO
or CICS with incorrect parameters, you will receive an MFI session at your host
window. This error is noted in the MVS SDSF log as an allocation failure.

e If the tcpip_workstation id or port_id parameters are not syntactically or
functionally correct, and you attempt an interactive batch session with Debug
Tool, Debug Tool will terminate and the batch application will continue to run as
though no debug session was ever attempted. This error occurs when, for
example, you run a JES batch job or CICS batch transaction. If the parameters
are incorrect, your program will continue to run as if you never attempted to
initialize Debug Tool. This error is noted in the MVS SDSF log as an allocation
failure.

e For TCP/IP sessions, the daemon must be started at the workstation before
you initialize Debug Tool. VisualAge COBOL documentation contains informa-
tion on using the daemon program.

| End of VisualAge COBOL only

End of Workstation Parameters

Other run-time TEST option considerations
When using the run-time TEST option, remember that:

e The Language Environment run-time options have the following order of pre-
cedence (from highest to lowest):

1. Installation options in the CEEDOPT file that were specified as
nonoverrideable with the NONOVR attribute.

2. Options specified by the Language Environment assembler user exit.
Debug Tool uses the DTCN transaction in the CICS environment and cus-
tomized Language Environment user exit EQADCCXT that is link-edited with
the application. For additional information see “Preparing and using DTCN
to invoke Debug Tool under CICS” on page 117.

3. Options specified at the invocation of your application, using the run-time
TEST option, unless accepting run-time options is disabled by Language
Environment (EXECOPS/NOEXECOPS).

4. Options specified within the source program (with #pragma or PLIXOPT) or
application options specified with CEEUOPT and link-edited with your appli-
cation.*

5. Option defaults specified at installation in CEEDOPT.
6. IBM-supplied defaults.

Suboptions are processed in the following order:

1 If the object module for the source program is input to the linkage editor before the CEEUOPT object module, then these options
override CEEUOPT defaults. You can force the order in which objects modules are input by using linkage editor control state-
ments.

Chapter 3. Beginning a debugging session 25

Using TEST

1. Commands entered at the command line override any defaults or sub-
options specified at run time.

2. Commands executed from a preferences file override the command string
and any defaults or suboptions specified at run time.

3. Commands from a commands file override default suboptions, suboptions
specified at run time, commands in a command string, and commands in a
preferences file.

In C, C++ or PL/I, you can define TEST with suboptions using a #pragma
runopts or PLIXOPT string, then specifying TEST with no suboptions at run time.
This causes the suboptions specified in the #pragma runopts or PLIXOPT string
to take effect.

Some suboptions are disabled with NOTEST, but are still allowed. This means
you can start your program using the NOTEST option and then specify sub-
options you might want to take effect later in your debugging session. The
program begins to run without Debug Tool taking control.

To enable the suboptions you specified with NOTEST, invoke Debug Tool during
your program's run time using a library service call such as CEETEST, PLITEST,
or the _ ctest() function.

If the test level in effect causes Debug Tool to gain control at a condition or at
a particular program location, an implicit breakpoint with no associated action is
assumed. This occurs even though you have not previously defined a break-
point for that condition or location using an initial command string or a primary
commands file. Control is given to your terminal or to your primary commands
file.

The primary commands file acts as a surrogate terminal. Once it is accessed
as a source of commands, it continues to act in this capacity until all com-
mands have been executed or Debug Tool has ended. This differs from the
USE file in that, if a USE file contains a command that returns control to the
program (such as STEP or G0), all subsequent commands are discarded.
However, USE files invoked from within a primary commands file take on the
characteristics of the primary commands file and can be executed until com-
plete.

In batch mode, when end-of-file is reached in your commands file, a GO
command is forced at each request for a command until the program termi-
nates. If another command is requested after program termination, a QUIT
command is forced.

If Debug Tool is invoked during program initialization, invocation occurs before
the main prolog has completed. At that time, no program blocks are active and
references to variables in the main procedure cannot be made, compile units
cannot be called, and GOTO cannot be used. However, references to static vari-
ables can be made.

If you enter STEP at this point, before entering any other commands, both
program and Language Environment initialization will complete and give you
access to all variables. You can also enter all valid commands.

If Debug Tool is invoked while your program is running (for example, using a
CEETEST call), it might not be able to find all compile units associated with your
application. Compile units located in load modules that are not currently active
are not known to Debug Tool, even if they were run prior to Debug Tool's
initialization.

26 Debug Tool User's Guide and Reference

Using TEST

Debug Tool also does not know about compile units that were not compiled
with the compile-time TEST option, even if they are active, nor does it know
about compile units written in unsupported languages.

For example, suppose load module modl contains compile units cul and cu2,
both compiled with the TEST option. The compile unit cul calls cux, contained
in load module mod2, which returns after it completes processing. The compile
unit cu2 contains a call to the CEETEST library service. When the call to CEETEST
initializes Debug Tool, only cul and cu2 are known to it. Debug Tool does not
recognize cux.

e The results of the execution of the initial commands list or commands file are
logged as comments in the session log. The session log can be used as a
commands file without having to edit out the results from a previous run.

e The initial command list, whether it consists of a command string included in
the run-time options or a primary commands file, can contain a USE command
to get commands from a secondary file. If invoked from the primary commands
file, a USE file takes on the characteristics of the primary commands file. See
“USE command” on page 336 for details.

e The initial command string is performed only once, when Debug Tool is first
initialized in the process.

e Commands in the preferences file are performed only once, when Debug Tool
is first initialized in the process.

* You can change the run-time TEST/NOTEST options at any time with the SET TEST
command. See “SET TEST” on page 326.

e The primary commands file is shared across multiple enclaves.

Run-time TEST option examples

The following examples of using the Run-Time TEST Option are provided to illustrate
run-time options available for your programs. They do not illustrate complete com-
mands. For more information on specifying run-time options, see “Invoking your
program for a debugging session” on page 29, and 0OS/390 Language Environment
Programming Guide.

e NOTEST

Debug Tool is not invoked at program initialization. Note that a call to CEETEST,
PLITEST, or _ ctest() causes Debug Tool to be invoked during the program's
execution.

e TEST

Specifying TEST with no suboptions causes a check for other possible defi-
nitions of the suboption. For example, C and C++ allow default suboptions to
be selected at compile time using #pragma runopts. Similarly, PL/I offers the
PLIXOPT string. Language Environment provides the macro CEEXOPT. Using this
macro, you can specify installation and program-specific defaults. For more
information on using CEEXOPT, see OS/390 Language Environment Program-
ming Guide.

If no other definitions for the suboptions exist, the IBM-supplied default test
level is (ALL, *, PROMPT).

o TEST(ALL,*,*,%)

Chapter 3. Beginning a debugging session 27

Invoking your program when starting a session

Debug Tool is not invoked initially; however, any condition or an attention in
your program causes Debug Tool to be invoked, as does a call to CEETEST,
PLITEST, or _ ctest(). Neither a primary commands file nor preferences file is
used.

e TEST(NONE,,*,*)

Debug Tool is not invoked initially and begins by running in a "production
mode", that is, with minimal effect on the processing of the program. However,
Debug Tool can be invoked using CEETEST, PLITEST, or _ ctest().

e TEST(ALL,test.scenario,PROMPT,prefer)

Debug Tool is invoked at the end of environment initialization, but before the
main program prolog has completed. The ddname prefer is processed as the
preferences file, and subsequent commands are found in data set
test.scenario. If all commands in the commands file are processed and you
issue a STEP command when prompted, or a STEP command is executed in the
commands file, the main block completes initialization (that is, its AUTOMATIC
storage is obtained and initial values are set). If Debug Tool is reentered later
for any reason, it continues to obtain commands from test.scenario repeating
this process until end-of-file is reached. At this point, commands are obtained
from your terminal.

e TEST(ALL,,,MFI%F000:)

For CICS dual terminal and CICS batch, Debug Tool is invoked on the terminal
FOOO at the end of the environment initialization.

» If you are working from a cooperative environment, that is, you are debugging
your host application from your workstation, the following examples apply:

TEST(,,,LU2:%) /* Using LU2 suboption */
TEST(,,,0SCAR:*) /* Using APPC suboption */
TEST(,,,APPC&OSCAR: *) /* Using APPC suboption */
TEST(,,,VADAPPC&OSCAR: *) /* Using VADAPPC suboption =x/

TEST(,,,VADTCPIP&ERNIE:*) /* Using VADTCPIP suboption =x/
TEST(,,,VADTCPIP&machine.somewhere.something.com:*)
TEST(,,,VADTCPIP&9.24.104.79:%)

where 0SCAR and ERNIE are workstation_ids.

Invoking your program when starting a debugging session

After you have decided what level of testing you want to employ during your debug-
ging session, you can invoke your program using the proper run-time TEST option.

If you are using Debug Tool, this requires no special procedures (although certain
considerations exist and are covered in “Invoking your program for a debugging
session” on page 29).

Invoking Debug Tool under CICS

28

To use Debug Tool under CICS, you need to ensure that you have completed all of
the required installation and configuration steps for CICS/ESA, Language Environ-
ment, and Debug Tool. See “Debugging CICS programs” on page 116 and the
appropriate language installation information.

You can invoke Debug Tool in three ways:

Debug Tool User's Guide and Reference

Invoking your program when starting a session

e Single Terminal Mode . Debug Tool displays its screens on the same terminal
as the application. This can be set up using CEETEST, pragma, or CEEUOPT (TEST)
and using DTCN.

e Dual Terminal Mode . Debug Tool displays its screens on a different terminal
than the one used by the application. This can be set up with DTCN or CEDF.

e Batch Mode

Debug Tool does not have a terminal, but uses a commands file for input and
writes output to the log. This can be set up using CEETEST, pragma, or
CEEUOPT(TEST).

See “Debugging CICS programs” on page 116 for more details.

Invoking your program for a debugging session

Invoking Debug Tool varies depending on the environment where you are debug-
ging your program. Before you begin your session, make sure all Debug Tool and
program libraries are available and that all necessary Debug Tool files, such as the
session log file, the primary commands file, the preferences file, and any desired
USE files are defined and created.

Invoking Debug Tool under MVS in TSO
To begin a debugging session, ensure your program has been compiled with the
compile-time TEST option, and take the following steps:

1. Make sure all Debug Tool data sets are available. This might involve defining
them as part of a STEPLIB library.

Note: High-level qualifiers and load library names will be specific to your
installation.

The installation options will determine whether or not this step is needed. See
the OS/390 Language Environment Programming Guide for more information.

2. Access all other data sets containing files your program needs.

3. If you want a session log file, allocate one. This is a file that keeps a record of
your debugging session, and can be used as a commands file during subse-
guent sessions. For more information on session log files, see “Using the
Session Log file to maintain a record of your session” on page 87.

4. Start your program with the run-time TEST option, specifying the appropriate
suboptions, or include a call to CEETEST, PLITEST, or _ ctest() in the pro-
gram's source. For more information about these calls, see “Using alternative
Debug Tool invocation methods” on page 31.

After accessing all necessary data sets, the command line is used to define the
preferences file setup.pref and the session log file session.Tog as shown in the
following example:

ALLOCATE FILE(insppref) DATASET(setup.pref) REUSE
ALLOCATE FILE(insplog) DATASET(session.log) REUSE
CALL tstscrpt3 '/TEST!

No primary commands file is created. The run-time TEST option is entered from the
command line during invocation of the COBOL program tstscrpt3. Default run-
time suboptions are assumed, as well as the Language Environment default run-
time options for your installation.

Chapter 3. Beginning a debugging session 29

Invoking your program when starting a session

The following CLIST fragment shows how to define Debug Tool-related files and
invoke the C program progl with the run-time TEST option:

ALLOC FI(inspsafe) DA(debug.save) REUSE
ALLOC FI(insplog) DA(debug.log) REUSE
ALLOC FI(insppref) DA(debug.preferen) REUSE

CALL 'MYID.MYQUAL.LOAD(PROG1)' +
' TRAP(ON) TEST(,*,;,insppref)/’

Files include the session log file, debug.1og; the preferences file, debug.preferen;
and the settings file, debug.save, a Debug Tool file that saves Debug Tool settings
for use in future debugging sessions. Its Debug Tool-supplied default ddname is
inspsafe. All necessary data sets must be available prior to invoking this CLIST.

For more information about Language Environment run-time options like TRAP(ON),
see 0S/390 Language Environment Programming Guide.

Invoking your program from a terminal that works only in line mode results in a
line-mode session of Debug Tool. If you want to debug in line mode and you have
a 3270-compatible terminal that is capable of sustaining a full-screen session, you
must specify SET SCREEN OFF. You can specify this with the run-time TEST option by
including the command in a preferences file, or by specifying it as a command
string (for example, TEST(,*,"SET SCREEN OFF",insppref)). For more information
on line mode debugging, see “Using Debug Tool in line mode” on page 107.

Invoking Debug Tool under CMS
To begin a debugging session, ensure that you have compiled your program with
the compile-time TEST option and take the following steps:

1. Access the product minidisk where Debug Tool resides.
2. Access any other minidisks containing files your programs need.

3. Load any text decks your programs need. For example, to use PL/I, C,
COBOL and assembler on VM, the following MACLIB, TXTLIB and LOADLIB
definitions would be required:

GLOBAL MACLIB SCEEMAC OSMACRO
GLOBAL TXTLIB SCEELKED CMSLIB
GLOBAL LOADLIB SCEERUN

4. Create and define any Debug Tool commands files you need, such as a prefer-
ences file, a USE file, or a primary commands file.

5. Define the session log file. This is a file that keeps a record of your debugging
session, and can be used as a commands file during subsequent sessions.

6. Start your program with the run-time TEST option, specifying the appropriate
suboption.

Note: You can also include a call to CEETEST, PLITEST, or _ ctest() in the
program's source.

After you access all necessary disks and load required text decks, the command
line is used to define the preferences file setup pref a and the session log file
seslog log a as shown in the following example:

30 Debug Tool User's Guide and Reference

Using alternative invocation methods

FILEDEF insppref DISK setup pref a (LRECL 80 RECFM F
FILEDEF insplog DISK seslog Tog a (LRECL 72 RECFM F
LOAD tstscrpt2
START = TEST/

No primary commands file is created. The run-time TEST option is entered from the
command line during invocation of the C program tstscrpt2. Default suboptions
are assumed.

If you created a load module with GENMOD, enter:

FILEDEF insppref DISK setup pref a (LRECL 80 RECFM F
FILEDEF insplog DISK seslog log a (LRECL 72 RECFM F
tstscrpt2 TEST/

The REXX EXEC shown below, called startup exec, is created to define all Debug
Tool-related files and invoke the COBOL program progl with the run-time TEST
option. progl must be a load module.

'"FILEDEF insplog DISK dbg log a (LRECL 72 RECFM F'
'"FILEDEF insppref DISK dbg pref a (LRECL 80 RECFM F
'"FILEDEF inspin DISK dhg cmds a (LRECL 72 RECFM F'
'"FILEDEF inspsafe DISK dhg settings a (LRECL 80 RECFM F'
'"GENMOD progl '

'progl * /TEST(,inspin,;,insppref)’

This assumes that the run-time CBLOPTS option was set to ON in the CEEDOPT or
CEEUOPT assembly programs containing defaults and user-defined Language
Environment options. See 0OS/390 Language Environment Programming Guide for
more information.

Files include the session log file, dbg 1og a, and dbg settings a, a Debug Tool file
that saves Debug Tool settings for use in future debugging sessions. Its Debug
Tool-supplied ddname is inspsafe. Also defined are two preallocated files: dbg
pref a (the Debug Tool preferences file) and dbg cmds a (the Debug Tool primary
commands file).

For more information about inspsafe, see “Customizing colors” on page 98 and
“Customizing settings” on page 99.

Using alternative Debug Tool invocation methods

Debug Tool can also be invoked directly from within your program using one of the
following methods:

e Language Environment provides the callable service CEETEST which is invoked
from Language Environment-enabled languages.

e For C or C++ programs, you can use a __ctest() function call or include a
#pragma runopts specification in your program.

Note: The _ ctest() function is not supported in CICS.

e For PL/I programs, you can use a call to PLITEST or by including a PLIXOPT
string which specifies the correct run-time TEST suboptions to invoke Debug
Tool.

Chapter 3. Beginning a debugging session 31

Using alternative invocation methods

Invoking Debug

To invoke Debug Tool using these alternatives, you still need to be aware of the
TEST suboptions specified using NOTEST, CEEUOPT, or other "indirect" settings. See
“Other run-time TEST option considerations” on page 25 for more information.

Tool with CEETEST

Using CEETEST, you can invoke Debug Tool from within your program and send it a
string of commands. If no command string is specified, or the command string is
insufficient, Debug Tool prompts you for commands from your terminal or reads
them from the commands file. In addition, you have the option of receiving a feed-
back code that tells you whether the invocation procedure was successful.

If you don't want to compile your program with hooks, you can use CEETEST calls to
invoke Debug Tool at strategic points in your program. If you decide to use this
method, you still need to compile your application so that symbolic information is
created.

Using CEETEST when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

Usage notes

C/C++ Include Teawi.h header file.

PL/I Include CEEIBMAW and CEEIBMCT. CEEIBMAW is in the Language Envi-
ronment SCEESAMP data set. See the example on page 35.

Batch and CICS Nonterminal Processes
We strongly recommend that you use feedback codes (fc) when using
CEETEST to initiate Debug Tool from a batch process or a CICS nonter-
minal task; otherwise, results are unpredictable.

The syntax for CEETEST is:

For C/C++

»»—v0id—CEETEST—(

)

\ 4
A

I—s tring_of_commandsJ | |—fc—J

For COBOL

»»—CALL—"CEETEST"—USING—string_of_commands—,—fc

\ 4
A

For PL/I

»»>—CALL—CEETEST—(

)

\4
A

*- N *-
|—s tring_of_comman dsJ L ch

string_of commands (input)
Halfword-length prefixed string containing a Debug Tool command list,
string_of commands is optional.

If Debug Tool is available, the commands in the list are passed to the debugger
and carried out.

32 Debug Tool User's Guide and Reference

Using alternative invocation methods

If the string_of commands is omitted, Debug Tool will prompt for commands in
interactive mode.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service.

CEEO000 Severity = 0
Msg_No = Not Applicable
Message = Service completed successfully

CEE2F2 Severity = 3
Msg_No = 2530
Message = A debugger was not available

Note: The CEE2F2 feedback code can also be obtained by MVS/JES batch
applications or CICS nonterminal tasks getting APPC allocation failures. For
example, either the Debug Tool environment was corrupted or the debug event
handler could not be loaded.

Language Environment provides a callable service called CEEDCOD to help you
decode the fields in the feedback code. Requesting the return of the feedback
code is recommended. See 0OS/390 Language Environment Programming Guide
for details.

For C/C++ and COBOL, if Debug Tool was invoked through CALL CEETEST the GOTO
command is only allowed after Debug Tool has returned control to your program via
STEP or GO.

The following examples show how to use CEETEST to invoke Debug Tool from each
language:

Examples of CEETEST function calls for C: In this example, a Nul1l command
string is passed to Debug Tool and a pointer to the Language Environment feed-
back code is returned. If no other TEST run-time options have been compiled into
the program, the call to CEETEST invokes Debug Tool with all defaults in effect.
After it gains control, Debug Tool prompts you for commands.

#include <leawi.h>

#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "");
commands.length = strlen(commands.string);

CEETEST (&commands, &fc);

}

In this example, a string of valid Debug Tool commands is passed to Debug Tool
and a pointer to Language Environment feedback code is returned. The call to
CEETEST invokes Debug Tool and the command string is processed. At statement
23, the values of x and y are displayed in the Log, and execution of the program
resumes. Barring further interrupts, Debug Tool regains control at program termi-

Chapter 3. Beginning a debugging session 33

Using alternative invocation methods

nation and prompts you for commands. The command LIST(z) is discarded when
the command GO is executed.

Note: If you include a STEP or GO in your command string, all commands after that
are not processed. The command string operates like a commands file.
#include <leawi.h>

#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "AT LINE 23; {LIST(x); LIST(y);} GO; LIST(z)");
commands.length = strlen(commands.string);

CEETEST (&commands, &fc);
}
In this example, a string of valid Debug Tool commands is passed to Debug Tool

and a pointer to the feedback code is returned. If the call to CEETEST fails, an
informational message is printed.

If the call to CEETEST succeeds, Debug Tool is invoked and the command string is
processed. At statement 30, the values of x and y are displayed in the Log, and
execution of the program resumes. Barring further interrupts, Debug Tool regains
control at program termination and prompts you for commands.

#include <leawi.h>

#include <string.h>
#include <stdio.h>

#define SUCCESS "\0\0\0\0"
int main (void) {

int x,y,z;
VSTRING commands;

_FEEDBACK fc;

strcpy (commands.string,"AT LINE 30 { LIST(x); LIST(y); } GO;");
commands.length = strlen(commands.string);

CEETEST (&commands,&fc) ;

if (memcmp (&fc,SUCCESS,4) ?= 0) {
printf("CEETEST failed with message number %d\n",fc.tok _msgno);
exit(2999);
}
}

Examples of CEETEST calls for COBOL: A command string is passed to Debug
Tool at its invocation and the feedback code is returned. After it gains control,
Debug Tool becomes active and prompts you for commands or reads them from a
commands file.

For Debug Tool, remember to use the continuation character if your command
exceeds 72 characters. See “Continuation (full-screen and line mode)” on
page 195.

34 Debug Tool User's Guide and Reference

Using alternative invocation methods

77 FC Picture x(12) Value ZEROES.
77 Debugger Picture x(7) Value 'CEETEST'.
01 Parms.
AA Picture 99 Value 14.
BB Picture x(14) Value 'SET SCREEN ON;'.

CALL Debugger USING Parms FC.

A string of commands is passed to Debug Tool when it is invoked. After it gains
control, Debug Tool sets a breakpoint at statement 23, runs the LIST commands
and returns control to the program by running the GO command. The command
string is already defined and assigned to the variable COMMAND-STRING by the fol-
lowing declaration in the data division of your program:

01 COMMAND-STRING.

05 AA Picture 99 Value 60.
05 BB Picture x(60) Value 'AT STATEMENT 23; LIST (x); LIST (y); GO;'.

In addition, the result of the call is returned in the feedback code, using a variable
defined as:

77 fc Picture x(12).
in the data division of your program. You are not prompted for commands.
CALL "CEETEST" USING COMMAND-STRING fc.

Examples of CEETEST calls for PL/I: Assuming all required declarations have
been made, no command string is passed to Debug Tool at its invocation and the
feedback code is returned. After it gains control, Debug Tool becomes active and
prompts you for commands or reads them from a commands file.

CALL CEETEST(*,%); /* omit arguments */
A command string is passed to Debug Tool at its invocation and the feedback code
is returned. After it gains control, Debug Tool becomes active and executes the

command string. Barring any further interruptions, the program runs to the
TERMINATION breakpoint, where Debug Tool prompts for further commands.

Chapter 3. Beginning a debugging session 35

Using alternative invocation methods

36

DCL ch char(50)
init('AT STATEMENT 10 DO; LIST(x); LIST(y); END; GO;');

DCL 1 fb,
5 Severity Fixed bin(15),
5 MsgNo Fixed bin(15),
5 flags,

8 Case hit(2),
8 Sev bit(3),
8 Ctrl bit(3),
5 FaclID Char(3),
5 1S info Fixed bin(31);

DCL CEETEST ENTRY (CHAR(*) VAR OPTIONAL,
1 optional ,
254 real fixed bin(15), /* MsgSev */
254 real fixed bin(15), /* MSGNUM */

254 /* Flags */,
255 bit(2), /* Flags_Case */
255 bit(3), /* Flags_Severity */
255 bit(3), /* Flags_Control =/

254 char(3), /* Facility ID */

254 fixed bin(31)) /* 1.S_Info %/

options(assembler) ;

CALL CEETEST(ch, fb);

This example assumes that you use predefined function prototypes and macros by
including CEEIBMAW, and predefined feedback code constants and macros by
including CEEIBMCT.

A command string is passed to Debug Tool which sets a breakpoint on every tenth
executed statement. Once a breakpoint is set, Debug Tool displays the current
location information and continues the execution. After the CEETEST call the feed-
back code is checked for proper execution.

Note: The feedback code returned is either CEEOOO or CEE2F2. There is no way
to check the result of the execution of the command passed.

Debug Tool User's Guide and Reference

Invoking Debug

Using alternative invocation methods

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DCL 01 FC FEEDBACK;

/* if CEEIBMCT is NOT included, the following DECLARES need to be
provided: = —--------- comment start -------------

Declare CEEIBMCT Character(8) Based;
Declare ADDR Builting
%DCL FBCHECK ENTRY;
%FBCHECK: PROC(fbtoken, condition) RETURNS(CHAR);
DECLARE
fbtoken CHAR;
condition CHAR;
RETURN(' (ADDR(' || fbtoken]||')—>CEEIBMCT = '||condition||')");
%END FBCHECK;
%ACT FBCHECK;

Call CEETEST('AT Every 10 STATEMENT = Do; Q Loc; Go; End;'||
"List AT;', FC);

If ~FBCHECK(FC, CEE000)
Then Put Skip List('

> ERROR! in CEETEST call', FC.MsgNo);

Tool with PLITEST

For PL/I programs, the preferred method of invoking Debug Tool is to use the
built-in subroutine PLITEST. It can be used in exactly the same way as CEETEST,
except that you do not need to include CEEIBMAW or CEEIBMCT, or perform declara-
tions.

The syntax is:

»»—CALL—PLITEST

\4
A

t

|-—(——char‘acter'_si,‘r'ing_e)(pr'ession——)—-|

character_string_expression
Specifies a list of Debug Tool commands. If necessary this is converted to a
fixed-length string.

Notes:

1. If Debug Tool executes a command in a CALL PLITEST command string that
causes control to return to the program (GO for example), any commands
remaining to be executed in the command string are discarded.

2. If you don't want to compile your program with hooks, you can use CALL
PLITEST statements as hooks and insert them at strategic points in your
program. If you decide to use this method, you still need to compile your appli-
cation so that symbolic information is created.

Examples of PLITEST calls for PL/I
CALL PLITEST;

No argument is passed to Debug Tool when it is invoked. After gaining control,
Debug Tool prompts you for commands.

CALL PLITEST('At statement 23 Do; List X; End; Go; List Y;');

Chapter 3. Beginning a debugging session 37

Using alternative invocation methods

Invoking Debug

A string of commands is passed to Debug Tool when it is invoked. After gaining
control, Debug Tool sets a breakpoint at statement 23, and returns control to the
program. You are not prompted for commands. In addition, the LIST Y; command
is discarded because of the execution of the GO command.

DCL ch Char(45) Init('At Statement 23 Do; List x; End;');
CALL PLITEST(ch);

Variable ch is declared as a character string and initialized as a string of com-
mands. The string of commands is passed to Debug Tool when it is invoked. After
it runs the commands, Debug Tool prompts you for more commands.

Tool with the __ ctest() function

You can also use the C/C++ library routine _ ctest() or ctest() to invoke Debug
Tool. Add:

#include <ctest.h>
to your program to use the ctest() function.

Note: If you do not include ctest.h in your source or if you compile using the
option LANGLVL(ANSI), you must use _ ctest() function.

The _ctest() function is not supported in CICS.

When a list of commands is specified with __ctest (), Debug Tool runs the com-
mands in that list. If you specify a null argument, Debug Tool gets commands by
reading from the supplied commands file or by prompting you. If control returns to
your application before all commands in the command list are run, the remainder of
the command list is ignored. Debug Tool will continue reading from the specified
commands file or prompt for more input.

If you do not want to compile your program with hooks, you can use _ ctest()
function calls to invoke Debug Tool at strategic points in your program. If you
decide to use this method, you still need to compile your application so that sym-
bolic information is created.

Using _ ctest() when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

The syntax for this option is:

\ 4
A

»»—int—_ ctest——(—char—=*char_str_exp—)

Note:
1 The syntax for ctest() and _ ctest() is the same.

char_str_exp
Specifies a list of Debug Tool commands.

Examples of __ctest() calls for C/C++:

__ctest(NULL);

A null argument is passed to Debug Tool when it is invoked. After it gains control,
Debug Tool prompts you for commands (or reads commands from the primary
commands file, if specified).

38 Debug Tool User's Guide and Reference

Using alternative invocation methods

__ctest("at 1ine 23 {"
" list x;"
" list y;"
II}II
|Igo;ll
"Tist z;");

A string of commands is passed to Debug Tool when it is invoked. After it gains
control, Debug Tool sets a breakpoint at statement 23 and returns control to the
program. You are not prompted for commands. In this case, the command, LIST
z; is never executed because of the execution of the command GO.

char *ch = "at line 23 Tist x;";
__ctest(ch);

Variable ch is declared as a pointer to character string and initialized as a string of
commands. The string of commands is passed to Debug Tool when it is invoked.
After it runs the string of commands, Debug Tool prompts you for more commands.

#include <stdio.h>
#include <string.h>

char *ch = "at Tine 23 printf(\"x.y is %d\n\", x.y); go;";
char buffer[35.132];

strcpy (buffer, "at change x.y;");
__ctest(strcat(buffer, ch));

A string of commands is passed to Debug Tool when it is invoked. After Debug
Tool gains control, you are not prompted for commands. Debug Tool runs the
commands in the command string and returns control to the program by way of the
GO command.

Specifying run-time TEST option with #pragma runopts in C and C++

The run-time TEST option can be specified either when you invoke your program, or
directly in your source by using this #pragma:

#pragma runopts (test(suboption,suboption...))

This #pragma must appear before the first statement in your source file. For
example, if you specified the following in the source:

#pragma runopts (notest(all,x,prompt))

then entered TEST on the command line, the result would be
TEST(ALL,*,PROMPT).

TEST overrides the NOTEST option specified in the #pragma and, because TEST does
not contain any suboptions of its own, the suboptions ALL, *, and PROMPT remain in
effect.

If you specify NOEXECOPS, either by using a #pragma or with the compile-time
EXECOPS option, no command line run-time options take effect.

For more information on #pragma runopts, see 0S/390 C/C++ User's Guide.

Chapter 3. Beginning a debugging session 39

Invoking your program with Debug Tool

Chapter 4. Debugging your programs in full-screen mode

The most common features of Debug Tool are described in this chapter to help you
get started using this tool to debug your programs. Language-specific examples
and explanations of the most common tasks are provided to help you quickly gain a
basic understanding of how to use Debug Tool.

The PF key definitions used in this chapter are the default settings.

Preparing for debugging

Before using Debug Tool you must compile at least one part of your program with
the compile-time TEST option. This inserts hooks, which are assembly instructions
that you can see in an assembly listing. The execution of these hooks enables
Debug Tool to gain control during program run time. A detailed description of the
compile-time TEST option for each language is provided in Chapter 2, “Preparing to
debug your program” on page 5.

The simplest way to compile your program while you are learning to use Debug
Tool is one of the following:

e for C and C++, compile your program with TEST

 for PL/I and COBOL, compile your program with TEST(ALL,SYM)

Link your program as usual, except for programs to be run under CICS where
member EQADCCXT must be included from the Debug Tool library.

Invoking your program with Debug Tool

40

Invoking your program with Debug Tool in one of the following environments is
described in detail in the appropriate sections in Chapter 7, “Using Debug Tool in
different modes and environments” on page 107.

TSO
IMS
CICs
DB2

This section includes some helpful hints to provide a simple path to help you learn
how to use Debug Tool.

One way to invoke Debug Tool is by using the Language Environment run-time
TEST option.

For TSO you need to include the Debug Tool library into your STEPLIB concat-
enation and invoke your program with the run-time TEST option as shown in the
following example for C, C++, and PL/I:

MYPROG TEST / prog arg list
For COBOL, invoke your program as follows:
MYPROG prog arg Tist / TEST

© Copyright IBM Corp. 1995, 1998

Basic tasks of Debug Tool

Contact your systems programmer if you do not know the name of the Debug Tool
library on your system.

For CICS, make sure Debug Tool is installed in your CICS region before you enter
DTCN to start the Debug Tool control transaction. Press PF4 to save the default
debugging profile. Press PF3 to exit from the DTCN transaction. Enter the name
of the transaction you want to debug.

If you build your application using the ¢89 or C++ OpenEdition Shell Utilities, do the
following steps:

1. Compile your source code as usual, but specify the —g option to generate
debugging information. The —g option is equivalent to the compile-time TEST
option under TSO or MVS batch. For example, to compile the C source file
fred.c from the u/mike/app directory, specify:

cd /u/mike/app
c89 —g —o "//PROJ.LOAD(FREAD)" fred.c

Note: The double quotes in the command-line above are required.
2. Set up your TSO environment, as described above.

3. Debug the program under TSO by entering the following:
FRED TEST ENVAR('PWD=/u/mike/app') /

Note: The single quotes in the command-line above are required.

ENVAR('PWS=/u/mike/app') sets the environment variable PWD to the path from
where the source files were compiled. Debug Tool uses this information to
determine from where it should read the source files.

If you are working in the MVS OpenEdition environment, you can put Debug Tool
into your STEPLIB and set up the Language Environment run-time TEST option
before invoking your program by writing a simple shell script as shown in the fol-
lowing example:

rundbg.sh - set up debug environment, and run program.
export STEPLIB=MVSID.TEST.LOAD:\
SYSID.DBGTOOL.SEQAMOD:SYSID.CEE180.SCEERUN

export CEE RUNTOPS="TEST POSIX(ON)"

myprogram. exe

Ending a debug

session

When you have finished debugging your program, you can either press PF3 (QUIT)
or enter QUIT on the command line to end your Debug Tool session.

Basic tasks of Debug Tool

This section describes how you interface to Debug Tool and describes how to navi-
gate through the windows provided by Debug Tool. It also describes how to navi-
gate through a debugging session and how to find help if you need it.

Chapter 4. Debugging your programs in full-screen mode 41

Basic tasks of Debug Tool

Debug Tool interface

Debug Tool has a command line for issuing commands and three windows:

The SOURCE window views your source code

The LOG window records your commands with Debug Tool's response

The MONITOR window continuously displays the value of monitored variables
and other items depending on the command used.

Saving your log file for future use

Help

To get a record of how many times each line of your code was executed, take the
following steps:

1. Allocate the INSPLOG ddname if you want to keep a permanent record of the

results. Under CICS, instead of allocating the INSPLOG ddname, you must
issue the command:

SET LOG ON FILE fileid

where fileid is the data set name where L0G file output is written.

. Issue the command:

SET FREQUENCY ON;

After you have entered the SET FREQUENCY ON command, your source window is
updated to show the current frequency count. Remember that this command
starts the statistic gathering to display the actual count, so if your application
has already executed a section of code, the data for these executed statements
will not be available.

If you want statement counts for the entire program, issue:

GO ;

LIST FREQUENCY =« ;

which lists the number of times each statement was run. When you quit, the
results are written to the LOG file. You can issue the LIST FREQUENCY * at any

time, but it will only display the frequency count for the currently active compile
unit.

You can find help by either pressing PF1 or entering a question mark (?) on the
command line. This action lists all Debug Tool commands in the LOG window.
Putting a question mark after a partial command displays a list of possible subcom-
mands. For example, enter on the command line:

WINDOW ?
WINDOW CLOSE ?
WINDOW CLOSE SOURCE

Now reopen the SOURCE window with:
WINDOW OPEN SOURCE

to see the results.

42 Debug Tool User's Guide and Reference

Window control

Basic tasks of Debug Tool

The relative layout of the SOURCE, MONITOR and LOG windows can be changed
with the PANEL LAYOUT command. When you are displaying the windows you can
resize the windows by typing WINDOW SIZE on the command line, moving the cursor
to the new intersection point and then pressing ENTER.

Finding text

To find a string within a window, place the string to be searched for in double
guotes (single quotes for a PL/I string) on the command line without pressing
ENTER, move the cursor into the window to be searched, then press PF5 (FIND).
Pressing PF5 will do repeat finds of the same string in the window where the cursor
resides.

Scrolling

If the cursor is on the command line, you can page the SOURCE window up by
pressing PF7 and down by pressing PF8. To page through other windows, place
the cursor in the desired window and press PF7(UP) or PF8 (DOWN).

You can toggle one of the SOURCE, LOG, or MONITOR windows to full screen
(temporarily not displaying the others) by moving the cursor into the window you
want to zoom and pressing PF10(Z00M). Another PF10 will toggle back. PF11(Z00M
LOG) will toggle the LOG window the same way without the cursor needing to be in
the LOG window.

You can scroll to an absolute line of the source file displayed in the SOURCE
window by using the SCROLL command. For example, your source file is in the
SOURCE window and you want to see line 188. To get there, enter the following
command:

SCROLL TO 188

Changing source files

To change the code being viewed in the SOURCE window, you can overtype the
name after SOURCE: on the top line of the SOURCE window with the desired
name. This only works if the CU is already known to Debug Tool You might want
to issue the LIST NAMES CUS command first to determine which CUs are known.

Alternately you can enter the command:

LIST NAMES CUS

and a list of Compilation Units will be written to the LOG window, as shown in the
following example:

USERID.MFISTART.C(CALC)
USERID.MFISTART.C(PUSHPOP)
USERID.MFISTART.C(READTOKN)

You can overtype/insert characters on one of these lines in the LOG window and
press enter to display the modified text on the command line, for example:

SET QUALIFY CU "USERID.MFISTART.C(READTOKN)"

and then press ENTER to issue the command. Overtyping of a line in the LOG
and issuing them as commands is a way to save keystrokes and errors in long
commands.

Chapter 4. Debugging your programs in full-screen mode 43

Basic tasks of Debug Tool

Pressing PF4 (LIST) with the cursor on the command line brings up the Source
Identification Panel, where associations are made between source listings or source
files shown in the Source Window and their compile units. Overtype the
Listings/Source File field with the new name.

For C/C++ Only: For C/C++ compile units, Debug Tool requires a file containing
the source code. By default, when Debug Tool encounters a new C/C++ compile
unit, it looks for the source code in a file whose name is the one that was used in
the compile step.

For COBOL and PL/I Only: For COBOL and PL/I compile units, Debug Tool
requires a file containing the compiler listing. By default, when Debug Tool
encounters a new VS COBOL Il or PL/I compile unit, it looks for the listing in a file
named hlg.cuname.LIST. For COBOL/370, COBOL for MVS, and COBOL for
0S/390, the Debug Tool looks for the listing in a partitioned data set member
named cuname.

Displaying the halted location
After displaying different source files and scrolling, you can go back to the halted
execution point by entering the following command:

SET QUALIFY RESET

Setting a line breakpoint

Pressing PF6(AT/CLEAR) when the cursor is over a particular executable line in the
SOURCE window sets or clears a line breakpoint for that line. You can temporarily
"turn them off' with DISABLE and back on with ENABLE.

Stepping through or running your program.

When Debug Tool comes up, none of your program has run yet (including C++
constructors and static object initialization).

Pressing PF2(STEP) runs your program, halting on the next hook encountered. If
you compiled with TEST for C or C++, or TEST(ALL,SYM) for COBOL or PL/I, STEP
performs one statement.

Pressing PF9(G0) runs your program until a breakpoint is reached, the program
ends, or a condition is raised.

Note: A condition being raised is determined by the setting of the run-time TEST
suboption test_level.

The command STEP OVER runs the called function without stepping into it. If you
accidentally step into a function when you meant to step over it, issue the STEP
RETURN command which steps to the return point (just after the call point).

Displaying a variable's value

To LIST the contents of a single variable, move the cursor to the variable name and
press PF4(LIST). The value of the variable is displayed in the LOG window.

44 Debug Tool User's Guide and Reference

Using a C program for Debug Tool session

Continuously displaying a variable's value
To continuously display or monitor a variables value, you can issue most LIST com-
mands preceded by the word MONITOR. For example, enter:

MONITOR LIST num ;

and the output for this command is continuously displayed in the MONITOR
window. The MONITOR command makes it easy to watch values while stepping
through your program.

Setting a PF key
Suppose you want to set PF1 to be the STEP OVER command with the message
STEPOVER appearing under the PF1 key. You do it by entering:

SET PF1 "STEPOVER" = STEP OVER;

Error numbers for messages in the LOG window
When an error message shows up in the LOG window, you can also get the
message ID number to show up as

EQA1807E The command element d is ambiguous.
instead of
The command element d is ambiguous.

by modifying your profile. Use the PANEL PROFILE command and set Show
message ID numbers to YES by overtyping.

For error message descriptions see Appendix E, “Debug Tool Messages” on
page 355.

Finding a renamed source or Listing file using Debug Tool
At compile time, the source or listing files might have had different names than they
do now.

Pressing PF4 (LIST) with the cursor on the command line brings up the Source
Identification Panel, where associations are made between compile listings or
source files shown in the Source Window and their compile units. Overtype the
Listing/Source file field with the new name. If you need to do this repeatedly, note
the SET SOURCE ON commands generated in the LOG window. You can save these
commands in a file and reissue them with the USE command for future invocations
of Debug Tool.

Using a C program to demonstrate a Debug Tool session

This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your C applications by using an example C
program (CALC) to demonstrate how they're used.

The CALC program is referred to in the following C Tasks section. It is a simple
calculator which reads its input from a character buffer. If integers are read they
are pushed on a stack. If one of the operators + — * / is read, the top two elements
are popped off the stack, the operation is performed on them and the result is
pushed on the stack. The = operator writes out the value of the top element of the
stack to a buffer.

Chapter 4. Debugging your programs in full-screen mode 45

Using a C program for Debug Tool session

46

/* Header file for CALC.C PUSHPOP.C READTOKN.C
/* a simple calculator

typedef enum toks {
T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T_DIVIDE,
T_EQUALS,
T_STOP
} Token;
Token read_token(char buf[]);
typedef struct int_link {
struct int_link * next;
int i;
} IntLink;
typedef struct int_stack {
IntLink * top;
} IntStack;
extern void push(IntStack =, int);
extern int pop(IntStack *);

Debug Tool User's Guide and Reference

*/
*/
*/

Using a C program for Debug Tool session

JAEEEEE FILE CALC.C ===mmmmmmmmm e e oo oo e o e */
/* */
/* A simple calculator which does operations on integers which */
/* are pushed and popped on a stack */
2y */

#include <stdio.h>
#include <stdlib.h>
#include "calc.h"
IntStack stack = { 0 };
main()
{
Token tok;
char word[100];
char buf_out[100];
int num;
for(s;)

tok=read_token(word);
switch(tok)
{
case T_STOP:
break;
case T_INTEGER:
num = atoi (word);
push (&stack,num) ; /* statement */
break;
case T_PLUS:
push(&stack, pop(&stack)+pop(&stack));
break;
case T_MINUS:
num = pop (&stack);
push(&stack, num-pop(&stack));
break;
case T_TIMES:
push(&stack, pop(&stack)*pop(&stack));
break;
case T_DIVIDE:
num = pop (&stack);
push(&stack, num/pop(&stack)); /& statement */
break;
case T_EQUALS:
num = pop (&stack);
sprintf(buf_out,"= %d ",num);
push (&stack,num) ;
break;

1
if (tok==T_STOP)
break;
}

return 0;

}

Chapter 4. Debugging your programs in full-screen mode 47

Using a C program for Debug Tool session

48

JAEEEEE FILE PUSHPOP.C ==== === mmmmm oo oo oo e e e */
/* */
/* A push and pop function for a stack of integers */
] */

#include <stdlib.h>
#include "calc.h"

2y */
/* input: stk - stack of integers */
/* num - value to push on the stack */
/* action: get a link to hold the pushed value, push link on stack */
/* */
extern void push(IntStack * stk, int num)
{

IntLink * ptr;

ptr = (IntLink *) malloc(sizeof(IntLink)); /* */

ptr—>i = num; e statement */

ptr—>next = stk—>top;

stk—>top = ptr;
1
2y */
/* return: int value popped from stack */
/* action: pops top element from stack and gets return value from it x/
K m mm e e */
extern int pop(IntStack * stk)
{

IntLink * ptr;

int num;

ptr = stk—>top;

num = ptr—>i;

stk—>top = ptr—>next;

free(ptr);

return num;
1

Debug Tool User's Guide and Reference

Using a C program for Debug Tool session

JAEEEEE FILE READTOKN.C =====mmmmmmmm oo oo e e e e e */
/* */
/* A function to read input and tokenize it for a simple calculator */
] */

#include <ctype.h>
#include <stdio.h>
#include "calc.h"

/2y */
/* action: get next input char, update index for next call */
/* return: next input char */
JHm e e e e e e */
static char nextchar(void)
j* __ */
/* input action: */
/* 2 push 2 on stack x/
/* 18 push 18 */
/* + pop 2, pop 18, add, push result (20) */
/* = output value on the top of the stack (20) */
/* 5 push 5 */
/* / pop 5, pop 20, divide, push result (4) */
/* = output value on the top of the stack (4) */
/2y */

char * buf_in ="2 18 +=5/=";

static int index; /* starts at 0 */

char ret;

ret = buf_in[index];

++index;

return ret;
}
/2y */
/* output: buf - null terminated token */
/* return: token type */
/* action: reads chars through nextchar() and tokenizes them */
2y */
Token read_token(char buf[])
{

int i;

char c;

/* skip leading white space */
for(c=nextchar();

isspace(c);

c=nextchar())

buf[0] = c; /* get ready to return single char e.g."+" */
buf[1] = 0;
switch(c)

case '+' : return T_PLUS;
case '— : return T_MINUS;
case 'x' : return T_TIMES;
case '/' : return T_DIVIDE;

case '=' : return T_EQUALS;
default:
i=0;

while (isdigit(c)) {
buf[i++] = c;
¢ = nextchar();
}
buf[i] = 0;
if (i=0)
return T_STOP;
else
return T_INTEGER;

Chapter 4. Debugging your programs in full-screen mode 49

C tasks

C tasks

The following sections identify typical tasks you might want to perform while using
Debug Tool with your C program and explanations on how to accomplish these
tasks. The CALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain functions are called
To halt just before read_token is called, issue the command:

AT CALL read_token ;

To halt just after read_token is called, issue the command:
AT ENTRY read_token ;

To take advantage of either of the above actions, you must compile your program
with the compile-time TEST option.

Modifying the value of a variable

To LIST the contents of a single variable, move the cursor to the variable name
and press PF4(LIST). The value is displayed in the LOG window. This is equiv-
alent to entering LIST TITLED variable on the command line. For instance, run the
CALC program to the statement labeled [fJX¥]. Move the cursor over num and
press PF4(LIST). The following appears in the LOG window:

LIST (num) ;
num = 2

To modify the value of num to 22, overtype the num = 2 line to num = 22, press
ENTER to put it on the command line, and press ENTER again to issue the
command.

You can enter most C expressions on the command line.

Now step into the call to push() by pressing PF2(STEP) and step until the statement
labeled PUSHPOP?2 is reached. To view the attributes of variable ptr, issue the
Debug Tool command:

DESCRIBE ATTRIBUTES #ptr;

The result in the LOG window is:

ATTRIBUTES for * ptr
struct int_Tink {
struct int_Tink *next;
int i;

}

You can use this action as a simple browser for structures and unions.

You can list all the values of the members of the structure pointed to by ptr with the
command:

LIST #ptr ;

with results in the LOG window appearing something like this:
LIST * ptr ;

(* ptr).next = 0x0

(* ptr).i =0

50 Debug Tool User's Guide and Reference

C tasks

You can change the value of a structure member by issuing the assignment as a
command as in the following example:

(* ptr).i =33 ;;

Stopping on a line only if a condition is true

Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering GO. For example, in main you want to stop
at T_DIVIDE only if the divisor is O (before the exception occurs). Set the breakpoint
like this:

AT 39 { if(num != 0) GO; }

Line 39 is the statement labeled [¥\Xwj. The command will cause Debug Tool to
stop at line 39. If the value of num is not O, the program will continue. The
command causes Debug Tool to stop on line 39 only if the value of num is 0.

Debugging when only a few parts are compiled with TEST

Suppose you want to set a breakpoint at entry to function push() in file
PUSHPOP.C. PUSHPOP.C has been compiled with TEST but the other files have
not. Debug Tool comes up with an empty SOURCE window. To display the com-
pilation units, enter the command:

LIST NAMES CUS
The LIST NAMES CUS command displays a list of all the compile units that are known
to Debug Tool. Depending on the compiler you are using, or if

"USERID.MFISTART.C(PUSHPOP)" is fetched later on by the application, this compile
unit might not be known to Debug Tool. If it is displayed, enter;

SET QUALIFY CU "USERID.MFISTART.C(PUSHPOP)"

AT ENTRY push;

GO ;

or

AT ENTRY "USERID.MFISTART.C(PUSHPOP)":>push

GO;

If it is not displayed, set an appearance breakpoint as follows:
AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" AT ENTRY push; GO;

The only purpose for this APPEARANCE breakpoint is to gain control the first time a
function in the PUSHPOP compilation unit is run. When that happens, you can set
a breakpoint at entry to push() like this:

AT ENTRY push;

Capturing output to stdout
To redirect stdout to the LOG window, issue the following command:

SET INTERCEPT ON FILE stdout ;

With this set, you will capture not only stdout from your program, but also from
interactive function calls. For example, you can interactively call printf on the
command line to display a null terminated string by entering:

Chapter 4. Debugging your programs in full-screen mode 51

C tasks

printf(sptr);
You might find this easier than using LIST STORAGE.

Invoking interactive function calls

You can invoke a library function (such as strlen) or one of the program functions
interactively by calling it on the command line. In the next example, we call push()
interactively to push one more value on the stack just before a value is popped off.

AT CALL pop

GO ;

push(77);

GO ;

The calculator will produce different results than before because of the additional
value pushed on the stack.

Displaying raw storage
A char * variable ptr can point to a piece of storage containing printable charac-
ters. To display the first 20 characters enter:

LIST STORAGE (*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line,as in:

puts(ptr) ;

Debugging a DLL

Build PUSHPOP.C as a DLL, exporting push() and pop(). Build CALC.C and
READTOKN.C as the program which imports push() and pop() from the DLL
named PUSHPOP. When the application CALC starts the DLL, PUSHPOP will not
be known to Debug Tool. Use the AT APPEARANCE breakpoint to gain control in the
DLL the first time code in that compilation unit appears, as shown in the following
example:

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;
GO ;

The only purpose of this APPEARANCE breakpoint is to gain control the first time a
function in the PUSHPOP compilation unit is run. When this happens, you can set
breakpoints in PUSHPOP.

Getting a function traceback

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;
For example, if you run the CALC example with the commands:

AT ENTRY read_token ;

GO ;

LIST CALLS ;

the LOG will contain something like:

At ENTRY in C function "USERID.MFISTART.C(READTOKN)" :> read_token.
From LINE 18 in C function "USERID.MFISTART.C(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

52 Debug Tool User's Guide and Reference

C tasks

Tracing the run-time path for code compiled with TEST

To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file and USE them when
Debug Tool initially displays your program. Assuming you have a data set
USERID.DTUSE(TRACE) that contains the following Debug Tool commands:

int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY * { \
++indent; \
if (indent < 0) indent = 0; \

printf("%*.s>%s\n", indent, " ", %block); \
GO; \

}

AT EXIT = {\
if (indent < 0) indent = 0; \
printf("%*.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

}

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the use file will be
displayed in the log window.

int foo(int i, int j) {
return i+j;

}

int main(void) {
return foo(1,2);

}

The following trace in the LOG window is displayed after running the sample
program, with the Use file as a source of input for Debug Tool commands:

>main
>fo0
<foo
<main

If you do not want to create the Use file, you can enter the commands through the
command line, and the same effect is achieved.

Finding unexpected storage overwrite errors

During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example where
function set_i changes more than the caller expects it to change.

Chapter 4. Debugging your programs in full-screen mode 53

C tasks

struct s

{ 1ntJ}
struct s a

int i;
={0,0};
/* function sets only field i =/
void set_i(struct s * p, int k)
{

p—>i = k;

p—>j k; /* error, it unexpectedly sets field j also */
}
main() {

set_i(&a,123);
}

Find the address of a with the command
LIST &(a.j) ;

Suppose the result is 0x7042A04. To set a breakpoint which watches for a change
in storage values starting at that address for the next 4 bytes, issue the command:

AT CHANGE %STORAGE(0x7042A04,4)

When the program is run, Debug Tool will halt if the value in this storage changes.

Finding uninitialized storage errors
To help find your uninitialized storage errors, run you program with the Language
Environment run-time TEST and STORAGE options. In the following example:

TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the heap.
For example, storage allocated through malloc() is filled with the byte OXFD. If you
see this byte repeated through storage, it is likely uninitialized heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by calling free() might be filled
with the byte OxFB. If you see this byte repeated through storage, it is likely
storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated through storage, it is likely uninitial-
ized auto storage. The values chosen here are odd and large, to maximize early
problem detection. For example, if you attempt to branch to an odd address you
will get an exception immediately.

As an example of uninitialized heap storage, run program CALC with the run-time
STORAGE option as STORAGE(FD,FB,F9) to the line labeled PUSHPOP2 and issue the
command:

LIST =*ptr ;
You will see the byte fill for uninitialized heap storage as the following example
shows:

LIST * ptr ;
(* ptr).next = OxFDFDFDFD
(* ptr).i = -33686019

54 Debug Tool User's Guide and Reference

Using a C++ program for Debug Tool session

Setting a breakpoint to halt before calling a NULL function

Calling an undefined function or calling a function through a function pointer which
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:

AT CALL ©

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

Using a C++ program to demonstrate a Debug Tool session

This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your C++ applications by using an example C++
program (CALC) to demonstrate how they're used.

The CALC program is referred to in the following C++ Tasks section. It is a simple
calculator which reads its input from a character buffer. If integers are read they
are pushed on a stack. If one of the operators + — * / is read, the top two elements
are popped off the stack, the operation is performed on them and the result is
pushed on the stack. The = operator writes out the value of the top element of the
stack to a buffer.

L — FILE CALC.HPP == m oo mmmmmmmm e */
/* */
/* Header file for CALC.CPP PUSHPOP.CPP READTOKN.CPP */
/* a simple calculator */
] */
typedef enum toks {

T_INTEGER,

T_PLUS,

T_TIMES,

T_MINUS,

T_DIVIDE,

T_EQUALS,

T_STOP,
} Token;

extern "C" Token read_token(char buf[]);
class IntLink {
private::
int i;
IntLink * next;
public:
IntLink();
“IntLink();
int get_i();
void set_i(int j);
IntLink * get_next();
void set next(IntLink * d);
}s
class IntStack {
private:
IntLink * top;
pubTic:
IntStack();
“IntStack();
void push(int);
int pop();
}s

Chapter 4. Debugging your programs in full-screen mode 55

Using a C++ program for Debug Tool session

56

/* A simple calculator which does operations on integers which
/* are pushed and popped on a stack

#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"
IntStack stack;
int main()
{
Token tok;
char word[100];
char buf_out[100];
int num;
for(s;)
{
tok=read_token(word);
switch(tok)
{
case T_STOP:
break;
case T_INTEGER:
num = atoi (word);

stack.push(num); /% statement */
break;

case T_PLUS:
stack.push(stack.pop()+stack.pop());
break;

case T_MINUS:
num + stack.pop();
stack.push(num-stack.pop());
break;

case T_TIMES:
stack.push(stack.pop()*stack.pop());
break;

case T_DIVIDE:
num = stack.pop();
stack.push(num/stack.pop()); /* statement */
break;

case T_EQUALS:
num = stack.pop();
sprintf(buf_out,"= %d ",num);
stack.push(num);
break;

1
if (tok==T_STOP)
break;
}

return 0;

}

Debug Tool User's Guide and Reference

*/
*/
*/

Using a C++ program for Debug Tool session

#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"

/* input: num - value to push on the stack
/* action: get a link to hold the pushed value, push link on stack

void IntStack::push(int num) {
IntLink * ptr;
ptr = new IntLink;
ptr—>set_i(num);
ptr—>set_next(top);
top = ptr;

/* return: int value popped from stack (0 if stack is empty)
/* action: pops top element from stack and get return value from it

int IntStack::pop() {
IntLink * ptr;
int num;
ptr = top;
num = ptr—>get_i();
top = ptr—>get_next();
delete ptr;
return num;

1

IntStack::IntStack() {
top = 0;

1

IntStack:: " IntStack() {
while(top)

pop() s

1

IntLink::IntLink() { /* constructor leaves elements unassigned */

1

IntLink::"IntLink() {

1

void IntLink::set_i(int j) {
i=3;

}

int IntLink::get_i() {
return i;

1

void IntLink::set next(IntLink * p) {
next = p;

1

IntLink * IntLink::get_next() {
return next;

}

Chapter 4. Debugging your programs in full-screen mode

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

57

Using a C++ program for Debug Tool session

58

#include <ctype.h>
#include <stdio.h>
#include "calc.hpp"

/* action: get next input char, update index for next call
/* return: next input char

JHm e e e e
static char nextchar(void)
{
/* input action
* | emmm- mm————
* 2 push 2 on stack
* 18 push 18
* + pop 2, pop 18, add, push result (20)
* = output value on the top of the stack (20)
* 5 push 5
* / pop 5, pop 20, divide, push result (4)
* = output value on the top of the stack (4)
*
/
char * buf_in ="2 18 +=5/=";
static int index; /* starts at 0 */
char ret;
ret = buf_in[index];
++index;
return ret;
}
K m mm e -

/* output: buf - null terminated token
/* return: token type
/* action: reads chars through nextchar() and tokenizes them

extern "C"
Token read_token(char buf[])
{
int i;
char c;
/* skip leading white space */
for(c=nextchar();
isspace(c);
c=nextchar())

buf[0] =c; /
get ready to return single char e.g. "+" */
buf[1] = 0;
switch(c)
i
case '=' : return T_PLUS;
case '=' : return T_MINUS;
case 'x' : return T_TIMES;
case '/' : return T_DIVIDE;

*

case '=' : return T_EQUALS;
default:
i=0;

while (isdigit(c)) {
buf[i++] = c;
¢ = nextchar();
}
buf[i] = 0;
if (i=0)
return T_STOP;
else
return T_INTEGER;

Debug Tool User's Guide and Reference

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

C++ tasks

C++ tasks

The following sections identify typical tasks you might want to perform while using
Debug Tool with your C++ program and explanations on how to accomplish these
tasks. The CALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain functions are called
You need to include the C++ signature along with the function name to set an AT
ENTRY or AT CALL breakpoint for a C++ function.

To facilitate entering the breakpoint, you can display PUSHPOP.CPP in the source
window by overtyping the name of the file on the top line of the source window.
This makes PUSHPOP.CPP your currently qualified program. You can then issue
the command,