

IBM

Debug Tool
User's Guide and Reference
Release 2

 SC09-2137-03

IBM

Debug Tool
User's Guide and Reference
Release 2

 SC09-2137-03

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page xii.

Fifth Edition (March 1998)

This edition applies to the Debug Tool feature of the following compilers:

� Release 4 of OS/390 C/C++ and OS/390 Language Environment (Program Number 5645-001)

� Version 1, Release 2, of IBM COBOL for MVS & VM (Program Number 5688-197), with Version 1, Release 5 of the IBM Lan-
guage Environment for MVS & VM (Program Number 5688-198),

� Version 2, Release 1 of IBM COBOL for OS/390 & VM (Program Number 5648-A25) with Release 3 of OS/390 Language Envi-
ronment (Program Number 5645-001)

� Version 1, Release 1, Modification Level 1, of the IBM PL/I for MVS & VM (Program Number 5688-235). with Version 1, Release
4, Modification Level 0, of the IBM Language Environment for MVS & VM (Program Number 5688-198),

and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department W92/H3
P. O. Box 49023
San Jose, CA 95161-9023
United States of America

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to IBM.
To find out how, see “We'd Like to Hear from You” at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

Notices . xii
Programming interface information . xii
Trademarks and service marks . xii

About this book . xiii
What's new . xiii
Who might use this book . xiv
How this book is organized . xiv
How to read the syntax diagrams . xv

Chapter 1. Before you begin debugging . 1
Debug Tool debugging environments . 1

Debug Tool sessions . 1
Full-screen session interface . 1
Denoting environmental differences . 2
Terminology . 2

Planning to run your program with Debug Tool 3

Chapter 2. Preparing to debug your program 5
Compiling a C program with the compile-time TEST option 5

Using #pragma to specify compile-time TEST option 8
Compiling a C++ program with the compile-time TEST option 9

Placing compiled-in hooks for functions and nested blocks 10
Placing compiled-in hooks for statements and path points 10

Compiling a COBOL program with the compile-time TEST option 10
Compiling a PL/I program with the compile-time TEST option 13
Debugging multilanguage programs . 16

Debugging an application fully supported by Language Environment 17
Debugging an application partially supported by Language Environment . . 17

Chapter 3. Beginning a debugging session 18
Using the run-time TEST option . 18

Run-time TEST option syntax . 19
Run-time TEST option examples . 27

Invoking your program when starting a debugging session 28
Invoking Debug Tool under CICS . 28
Invoking your program for a debugging session 29

Using alternative Debug Tool invocation methods 31
Invoking Debug Tool with CEETEST . 32
Invoking Debug Tool with PLITEST . 37
Invoking Debug Tool with the __ctest() function 38
Specifying run-time TEST option with #pragma runopts in C and C++ . . . 39

Chapter 4. Debugging your programs in full-screen mode 40
Preparing for debugging . 40
Invoking your program with Debug Tool . 40
Ending a debug session . 41
Basic tasks of Debug Tool . 41

Debug Tool interface . 42
Saving your log file for future use . 42

 Copyright IBM Corp. 1995, 1998 iii

 Contents

Help . 42
Window control . 43
Setting a line breakpoint . 44
Stepping through or running your program. 44

Using a C program to demonstrate a Debug Tool session 45
C tasks . 50

Using a C++ program to demonstrate a Debug Tool session 55
C++ tasks . 59

Using a COBOL program to demonstrate a Debug Tool session 66
COBOL tasks . 70

Using a PL/I program to demonstrate a Debug Tool session 75
PL/I tasks . 79

Chapter 5. Using the Debug Tool interfaces 84
Customizing Debug Tool for your environment 84

Using the Debug Tool Session Panel . 84
Session Panel windows . 85

Source window (1) . 86
Monitor window (3) . 87
Log window (2) . 87
Using the Session Log file to maintain a record of your session 87

Entering commands in a Debug Tool session 89
Command sequencing . 90
Using the command line . 90
Issuing system commands . 90
Using prefix commands . 91
Using cursor commands . 91
Using Program Function (PF) keys to enter commands 91

Defining PF keys . 91
Abbreviating commands . 92
Retrieving commands . 92
Retrieving lines from the Session log and Source windows 92
Creating EQUATES and using string substitution 92

Navigating through Debug Tool Session Panel windows 93
Moving the cursor . 93
Scrolling the windows . 93
Positioning lines at the top of windows . 94
Searching for a character or character string 94

Customizing your session . 95
Changing Session Panel window layout . 95
Opening and closing Session Panel windows 96
Sizing Session Panel windows . 96
Intersecting windows . 97
Horizontal windows . 97
Vertical windows . 97
Zooming a window . 97
Customizing colors . 98
Customizing settings . 99

Getting help during your session . 101

Chapter 6. Multiple processes and enclaves 103
Debugging applications within multiple enclaves 103
Invoking Debug Tool within an enclave . 103
Using the source window and related windows 103

iv Debug Tool User's Guide and Reference

 Contents

Retaining a log file of your Debug Tool session 104
Processing commands from a commands file 104
Using breakpoints within multiple enclaves . 104
Ending a Debug Tool session . 104
Using Debug Tool commands within multiple enclaves 105

Chapter 7. Using Debug Tool in different modes and environments . . 107
Using Debug Tool in line mode . 107

Commands you can use in line mode . 107
Getting HELP during a line-mode session 108

Using Debug Tool in batch mode . 108
Running multitasking programs with Debug Tool 108

MVS/ESA SP V5R1 with OpenEdition R2 requirement 109
Restrictions when debugging multitasking applications 109

Debugging ISPF applications . 109
Debugging DB2 programs . 109

Programming considerations . 110
Program preparation . 110
Precompile requirements . 110
Compile requirements . 110
Link requirements . 111
Bind requirements . 111
Using Debug Tool with DB2 programs . 111
Batch mode . 111
Interactive mode . 112

Debugging IMS programs . 113
Programming considerations . 113
Program preparation . 114
Compile requirements . 114
Link requirements . 114
Using Debug Tool with IMS programs . 114
Interactive mode . 114
Batch mode . 115
Using alternative methods of command input under IMS 115

Debugging CICS programs . 116
Debug modes under CICS . 116
Invoking Debug Tool under CICS . 117
Preparing and using DTCN to invoke Debug Tool under CICS 117
Preparing and using CEEUOPT to invoke Debug Tool under CICS 122
Preparing and using compile-time directives to invoke Debug Tool under

CICS . 122
Preparing and using CEDF to invoke Debug Tool under CICS 123
Restrictions when debugging under CICS 123

Chapter 8. Debug Tool Support of programming languages 125
Multiple enclaves and interlanguage communication (ILC) 125
Compatible attributes mapped between HLL data types 125
Debug Tool evaluation of HLL expressions . 126
Debug Tool interpretation of HLL variables and constants 126

HLL variables . 126
HLL constants . 126

Debug Tool variables (or intrinsic functions) 127
Modifiable Debug Tool variables . 128
Nonmodifiable Debug Tool variables . 128

 Contents v

 Contents

Interpretive subsets . 130
Qualifying variables and changing the point of view 131

Qualification . 131
Changing the point of view . 132

Debug Tool handling of conditions and exceptions 133
Condition handling in Debug Tool . 133
Exception handling within expressions (C/C++ and PL/I only) 134

Requesting an attention interrupt during interactive sessions 135
Debug Tool's built-in functions . 135

For use with C/C++, COBOL, and PL/I . 136
For use with C/C++ and PL/I . 136
For use with PL/I . 137

Chapter 9. Using Debug Tool with C/C++ programs 138
Debug Tool commands . 138
Using C/C++ variables with Debug Tool . 138

Accessing program variables . 138
Displaying values of C/C++ variables or expressions 139
Declaring temporary variables . 139
Assigning values to C/C++ variables . 140

Using Debug Tool variables in C/C++ . 140
C/C++ expressions . 145

Using Debug Tool functions with C/C++ . 148
Debug Tool evaluation of C/C++ expressions 150
Using SET INTERCEPT with C programs . 151
Objects and scopes . 153

Storage classes . 155
Blocks and block identifiers for C . 156

Blocks and block identifiers for C++ . 157
Displaying environmental information . 157
Using qualification for C/C++ . 158

Using qualifiers . 160
Changing the point of view . 162

Stepping through C++ programs . 163
Setting breakpoints in C++ . 163

AT ENTRY/EXIT . 163
AT CALL . 164

Examining C++ objects . 164
Objects . 165
Classes . 165
Static data . 165
Global data . 166

Low-level debugging . 166

Chapter 10. Using Debug Tool with COBOL Programs 168
Debugging environment provided for COBOL programs 168
Debug Tool Subset of COBOL commands . 168

Restrictions on COBOL-like commands . 169
Using COBOL variables with Debug Tool . 172

Accessing program variables . 172
Assigning values to COBOL variables . 172
Declaring temporary variables . 174
Displaying values of COBOL variables . 174
Using DBCS characters . 175

vi Debug Tool User's Guide and Reference

 Contents

Using Debug Tool variables in COBOL . 175
Debug Tool evaluation of COBOL expressions 181

Displaying the results of expression evaluation 181
Using constants in expressions . 182

Using Debug Tool functions with COBOL . 182
Using %HEX . 182
Using the %STORAGE function . 182

Using qualification for COBOL . 183
Using qualifiers . 183
Changing the point of view . 185

Chapter 11. Using Debug Tool with PL/I programs 186
Debug Tool Subset of PL/I commands . 186

PL/I language statements . 186
Using Debug Tool variables in PL/I . 187
Conditions and condition handling . 188
Freeform input . 189
TEST(ERROR, ...) . 189
LIST STORAGE . 189
Session variables . 189

Accessing program variables . 189
Structures . 190

PL/I expressions . 191
PL/I built-in functions . 191

Using SET WARNING command with built-ins 192
Unsupported PL/I language elements . 192

Positive identification of a compile unit (CU) 192

Chapter 12. Using Debug Tool commands 193
Command modes and language support . 193
Entering commands . 193

Command format . 193
Character set and case . 193
Abbreviating keywords . 194
Continuation (full-screen and line mode) . 195
Significance of blanks . 196
Comments . 197
Constants . 197

Retrieving commands from the log and source windows 198
Online command syntax help . 198
Common syntax elements . 199

Block_Name . 199
Block_Spec . 199
Compile_Unit_Name . 200
CU_Spec . 201
Expression . 201
Load_Module_Name . 202
Load_Spec . 202
References . 202
Statement_Id . 203
Statement_Id_Range and Stmt_Id_Spec . 203
Statement_Label . 204

Chapter 13. Debug Tool commands . 205

 Contents vii

 Contents

ANALYZE command (PL/I) . 205
Assignment command (PL/I) . 206
AT command . 207

Every_clause . 208
AT ALLOCATE (PL/I) . 209
AT APPEARANCE . 210
AT CALL . 212
AT CHANGE . 214
AT CURSOR (full-screen mode) . 217

| AT DATE (COBOL) . 218
AT DELETE . 218
AT ENTRY/EXIT . 219
AT GLOBAL . 220
AT LABEL . 222
AT LINE . 223
AT LOAD . 224
AT OCCURRENCE . 225
AT PATH . 228
AT Prefix (full-screen mode) . 229
AT STATEMENT . 230
AT TERMINATION . 231

BEGIN command (PL/I) . 232
block command (C/C++) . 233
break command (C/C++) . 233
CALL command . 234

CALL %DUMP . 235
CALL entry_name (COBOL) . 239
CALL procedure . 240

CLEAR command . 240
CLEAR prefix (full-screen mode) . 243

CMS command (VM) . 244
COMMENT command . 245
COMPUTE command (COBOL) . 245
CURSOR command (full-screen mode) . 246
Declarations (C/C++) . 247

C/C++ compatible attributes . 249
Declarations (COBOL) . 250
DECLARE command (PL/I) . 253

PL/I compatible attributes . 254
DESCRIBE command . 255
DISABLE command . 257

DISABLE prefix (full-screen mode) . 258
do/while command (C/C++) . 259
DO command (PL/I) . 259
ENABLE command . 262

ENABLE prefix (full-screen mode) . 262
EVALUATE command (COBOL) . 262
Expression command (C/C++) . 264
FIND command . 265
for command (C/C++) . 266
GO command . 267
GOTO command . 268
GOTO LABEL command . 269
if command (C/C++) . 270

viii Debug Tool User's Guide and Reference

 Contents

IF command (COBOL) . 271
IF command (PL/I) . 272
IMMEDIATE command (full-screen mode) . 273
INPUT command (C/C++ and COBOL) . 274
LIST command . 274

LIST (blank) . 275
LIST AT . 275
LIST CALLS . 278
LIST CURSOR (full-screen mode) . 278
LIST expression . 279
LIST FREQUENCY . 280
LIST LAST . 280
LIST LINE NUMBERS . 281
LIST LINES . 281
LIST MONITOR . 281
LIST NAMES . 281
LIST ON (PL/I) . 283
LIST PROCEDURES . 283
LIST REGISTERS . 284
LIST STATEMENT NUMBERS . 284
LIST STATEMENTS . 285
LIST STORAGE . 286

MONITOR command . 287
MOVE command (COBOL) . 288
Null command . 289
ON command (PL/I) . 289
PANEL command (full-screen mode) . 291
PERFORM command (COBOL) . 293
Prefix commands (full-screen mode) . 295
PROCEDURE command . 295
QUERY command . 296

QUERY prefix (full-screen mode) . 299
QUIT command . 299
RETRIEVE command (full-screen mode) . 300
RUN command . 301
SCROLL command (full-screen mode) . 301
SELECT command (PL/I) . 303
SET command . 304

SET CHANGE . 305
SET COLOR (full-screen and line mode) 306
SET COUNTRY . 308
SET DBCS . 308
SET DEFAULT LISTINGS (MVS) . 309
SET DEFAULT SCROLL (full-screen mode) 309
SET DEFAULT WINDOW (full-screen mode) 310
SET ECHO . 310
SET EQUATE . 311
SET EXECUTE . 312
SET FREQUENCY . 312
SET HISTORY . 313
SET INTERCEPT (C/C++ and COBOL) . 314
SET KEYS (full-screen and line mode) . 315
SET LOG . 315
SET LOG NUMBERS (full-screen and line mode) 316

 Contents ix

 Contents

SET MONITOR NUMBERS (full-screen and line mode) 316
SET MSGID . 317
SET NATIONAL LANGUAGE . 317
SET PACE . 318
SET PFKEY . 318
SET PROGRAMMING LANGUAGE . 319
SET PROMPT (full-screen and line mode) 320
SET QUALIFY . 321
SET REFRESH (full-screen mode) . 322
SET REWRITE . 323
SET SCREEN (full-screen and line mode) 323
SET SCROLL DISPLAY (full-screen mode) 324
SET SOURCE . 324
SET SUFFIX (full-screen mode) . 325
SET TEST . 326
SET WARNING (C/C++ and PL/I) . 327

SET command (COBOL) . 328
SHOW Prefix command (full-screen mode) . 329
STEP command . 329
switch command (C/C++) . 331
SYSTEM command . 333
TRIGGER command . 334
TSO command (MVS) . 336
USE command . 336
while command (C/C++) . 338
WINDOW command (full-screen mode) . 339

WINDOW CLOSE . 339
WINDOW OPEN . 340
WINDOW SIZE . 340
WINDOW ZOOM . 341

Appendix A. Coexistence . 343
Coexistence with other debuggers . 343
Coexistence with unsupported HLL modules 343

Appendix B. Using Debug Tool in a production mode 344
Fine-tuning your programs with Debug Tool 344
Removing hooks, statement tables, and symbol tables 344
Using Debug Tool on optimized programs . 345

Appendix C. Using C/C++ Reference Information with Debug Tool . . . 347
C reserved keywords . 347
Operators and operands . 347
Language Environment conditions and their C/C++ equivalents 348

Appendix D. Using COBOL Reference Information with Debug Tool . . 350
COBOL listing files . 350
Debug Tool interpretive subset of COBOL commands 350
COBOL reserved keywords . 350
Allowable comparisons for the Debug Tool IF command 350
Allowable moves for the Debug Tool MOVE command 352
Allowable moves for the Debug Tool SET command 354

Appendix E. Debug Tool Messages . 355

x Debug Tool User's Guide and Reference

 Contents

Symbols in messages . 355

Bibliography . 422
High level language publications . 422
Related publications . 422
Softcopy publications . 423

Glossary . 424

Index . 430

 Contents xi

 Notices

 Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent product, program or service that does not infringe any of IBM's intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

This publication contains examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming interface information
This book is intended to help you debug application programs. This book docu-
ments General-use Programming Interface and Associated Guidance Information
provided by Debug Tool.

General-use Programming Interfaces allow you to write programs that obtain the
services of Debug Tool.

Trademarks and service marks
The following terms, used in this publication, are trademarks or service marks of
International Business Machines Corporation in the United States or other coun-
tries:

AD/Cycle
BookManager
C/370
C/C++ for MVS/ESA
CICS
CICS/ESA
COBOL/370
DATABASE 2
DB2
DRDA
FFST/2
IBM
IMS
IMS/ESA
Language Environment

MVS
MVS/ESA
Open Class
OpenEdition
OS/2
OS/390
Systems Application Architecture
SAA
SQL/DS
System/370
System/390
VisualAge
VM/ESA
Virtual Machine/

Enterprise Systems Architecture

xii  Copyright IBM Corp. 1995, 1998

 About This Book

About this book

Debug Tool combines the richness of the System/370 and System/390 subsystem
environments with the power of Language Environment to provide a debugger for
programmers to isolate and fix their program bugs and test their applications.
Debug Tool gives you the capability of testing programs in batch or using a nonpro-
grammable terminal in full-screen or line mode to debug your programs interac-
tively.

This book contains instructions and examples to help you use the Debug Tool to
debug C, C++, COBOL, and PL/I applications running with Language Environment.
Topics covered include preparing your application for debugging, accomplishing
basic debugging tasks, and Debug Tool's interaction with different programming
languages. A complete command reference section is also included.

You can begin testing with Debug Tool after learning just a few concepts:

� How to invoke it

� How to set, display, and remove breakpoints

� How to step through your program

Debug Tool commands are similar to commands from the supported high level lan-
guages (HLLs).

Note: When MVS is used in this book, it refers to both MVS and OS/390 systems.

 What's new
The following is a list of enhancements that have been added to Release 2 of IBM
Debug Tool:

| � Support for COBOL Millenium Language Extensions.

� Scenarios in each language to help you get started using Debug Tool to debug
your applications.

� Support for VisualAge COBOL remote debugging for host applications.

� Enhancements to DTCN to allow easier Debug Tool access by users.

� Support in MVS, CICS, and OS/390 OpenEdition services for source level
debugging of header file functions which allows you to view the source of a
function residing in the header file while it runs.

� Support in MVS for debugging POSIX applications including:

– Applications whose source code resides in HFS
– Applications that use POSIX multithreading
– Applications that use fork/exec, but Debug Tool can be active in one

process only
– Applications that use asynchronous signals, as long as they are handled by

the Language Environment condition manager

You cannot debug applications that run under the OpenEdition shell. The
POSIX applications must run under either TSO or MVS batch and must reside
in a PDS or PDSE load module. You cannot run POSIX applications that
reside in an HFS executable module.

 Copyright IBM Corp. 1995, 1998 xiii

 About This Book

Release 2 of Debug Tool contains the following enhancements:

� Full debugging support of COBOL applications exploiting the new Object Ori-
ented enhancements, and the improved interoperability with the C language.
The new debugging support includes:

– debugging of classes and methods
– support for long program names, and mixed case program names
– support for null terminated strings (Z literals)

� Debug Tool CICS Interactive Run-Time Facility (DTCN). The DTCN panel
allows CICS developers to:

– Dynamically modify the Language Environment run-time options to use
Debug Tool

– Establish the scope of your debugging session in terms of region, trans-
action, and terminal

– Debug your application either interactively or in batch

� Interactive online debugging of CICS batch transactions.

Who might use this book
This book is intended for application programmers using Debug Tool to debug
HLLs with Language Environment. Throughout this book, these languages are
referred to as C/C++, COBOL, and PL/I.

The following operating systems and subsystems are supported:

� OS/390 and MVS

 – TSO
 – CICS
 – JES/Batch
 – IMS
 – DB2

 � VM

 – SQL/DS

Note: To use this book and debug a program written in one of the supported lan-
guages, you need to know how to write, compile, and run such a program.

How this book is organized
The first four chapters of this book discuss the preparatory work you must complete
before using Debug Tool and provides sample scenarios for each supported lan-
guage to help you begin using Debug Tool. The scenarios include helpful hints
when performing some basic debugging tasks. The next two chapters discuss how
to customize Debug Tool for your particular environment and gives you information
about using Debug Tool in a variety of environments, including MVS/JES batch
mode, line mode, Customer Information Control System (CICS), Information Man-
agement System (IMS), DATABASE 2 (DB2), and debugging applications that
contain Structured Query Language/Data System (SQL/DS) statements.

xiv Debug Tool User's Guide and Reference

 About This Book

Chapters 8-11 provide information about Debug Tool's interaction with different pro-
gramming languages. Debug Tool variables, functions, and expression evaluation
are explained.

Chapter 12 contains all the Debug Tool commands, shows their syntax, and pro-
vides examples of their use.

The appendixes include the following information:

� Discussion of the coexistence of Debug Tool with HLL modules compiled with
previous versions of compilers

� Information on how to optimize your programs while still retaining some debug-
ging capability

� Reference information for C and COBOL that include reserved keywords and
Debug Tool interpretive subsets of HLL commands

� Complete list of Debug Tool messages.

Following the appendixes are a bibliography and a glossary of terms.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book:

Arrow symbols

Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

55─── Indicates the beginning of a statement.

───5 Indicates that the statement syntax is continued on the next line.

5─── Indicates that a statement is continued from the previous line.

───5% Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
5─── symbol and end with the ───5 symbol.

Conventions

� Keywords, their allowable synonyms, and reserved parameters, appear in
uppercase. These items must be entered exactly as shown.

� Variables appear in lowercase italics (for example, column-name). They
represent user-defined parameters or suboptions.

� When entering commands, separate parameters and keywords by at least
one blank if there is no intervening punctuation.

� Enter punctuation marks (slashes, commas, periods, parentheses, quota-
tion marks, equal signs) and numbers exactly as given.

� Footnotes are shown by a number in parentheses, for example, (1).

� A ␣ symbol indicates one blank position.

Required items

Required items appear on the horizontal line (the main path).

55──REQUIRED_ITEM──5%

 About this book xv

 About This Book

Optional Items

Optional items appear below the main path.

55──REQUIRED_ITEM─ ──┬ ┬─────────────── ────────────────────────────────5%
 └ ┘─optional_item─

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

 ┌ ┐─optional_item─
55──REQUIRED_ITEM─ ──┴ ┴─────────────── ────────────────────────────────5%

Multiple required or optional items

If you can choose from two or more items, they appear vertically in a stack. If
you must choose one of the items, one item of the stack appears on the main
path.

55──REQUIRED_ITEM─ ──┬ ┬─required_choice1─ ─────────────────────────────5%
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the
main path.

55──REQUIRED_ITEM─ ──┬ ┬────────────────── ─────────────────────────────5%
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

Repeatable items

An arrow returning to the left above the main line indicates that an item can be
repeated.

 ┌ ┐───────────────────
55──REQUIRED_ITEM─ ───

6
┴─repeatable_item─ ──────────────────────────────5%

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

 ┌ ┐─,───────────────
55──REQUIRED_ITEM─ ───

6
┴─repeatable_item─ ──────────────────────────────5%

A repeat arrow above a stack indicates that you can specify more than one of
the choices in the stack.

Default keywords

IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the
syntax diagram, the default choices are underlined.

 ┌ ┐─default_choice──
55──REQUIRED_ITEM─ ──┼ ┼───────────────── ──────────────────────────────5%
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

xvi Debug Tool User's Guide and Reference

 Before you begin debugging

Chapter 1. Before you begin debugging

Debug Tool is a program-testing and analysis aid that helps you examine, monitor,
and control the execution of programs written in C/C++, COBOL, or PL/I on
OS/390, MVS or VM. Debuggable applications can include other languages, but
Debug Tool does not debug those portions of your application. In this book, MVS
refers to both MVS and OS/390.

This chapter provides an overview of the terminology used by Debug Tool and
some helpful hints you should consider before beginning.

Debug Tool debugging environments
Debug Tool provides several debugging environments. The number of platforms
and languages supported by Debug Tool has necessitated that certain terms and
conventions be adopted for use throughout this manual to reduce possible conflict
between references to the different systems.

The terms full-screen mode, line mode, and batch mode are used to describe the
types of debugging sessions or interfaces Debug Tool provides. Included in the
following sections are definitions of these terms, as well as a discussion of the plat-
forms supported by Debug Tool.

Debug Tool sessions
Full-Screen Session Debug Tool provides an interactive full-screen interface on a

3270 device. The full-screen interface is made up of
session panel windows containing information about your
debugging session.

Line-Mode Session Enter Debug Tool commands on the command line and
receive debugging information, one line at a time, while you
are programming.

Batch-Mode Session Debug Tool command files provide a mechanism to prede-
fine series of Debug Tool commands to be performed on an
executing batch application. Neither terminal input nor user
interaction is available for batch debugging of a batch appli-
cation.

Full-screen and line-mode sessions are both interactive types of sessions.

Full-screen session interface
Debug Tool provides:

� A Source window in which to view your program source or listing

� A Log window, which records commands and other interactions between Debug
Tool and your program

� A Monitor window in which to monitor changes in your program

You can adjust the sizes of the windows with the cursor, and change the relative
locations of the windows by typing your preferences on a template.

 Copyright IBM Corp. 1995, 1998 1

 Before you begin debugging

Figure 1 on page 2 shows the three windows of Debug Tool.

à ð
 COBOL LOCATION: MULTCU :> 75.1
 Command ═══> Scroll ═══> PAGE

 MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 1 OF 2

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ TOP OF MONITOR \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 ððð1 1 ð1 MULTCU:>PROGRAM-USHORT-BIN ððððð

 ððð2 2 ð1 MULTCU:>PROGRAM-SSHORT-BIN +ððððð

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ BOTTOM OF MONITOR \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 SOURCE: MULTCU ---1----+----2----+----3----+----4----+----5----+ LINE: 66 OF 85

 7ð PROCEDURE DIVISION. .

 71 \\ .

 72 \ THIS IS THE MAIN PROGRAM AREA. This program only displays .

 73 \ text. .

 74 \\ .

75 DISPLAY "MULTCU COBOL SOURCE STARTED." UPON CONSOLE. .

76 MOVE 25 TO PROGRAM-USHORT-BIN. .

77 MOVE –25 TO PROGRAM-SSHORT-BIN. .

 78 PERFORM TEST-9ðð. .

 79 PERFORM TEST-1ððð. .

8ð DISPLAY "MULTCU COBOL SOURCE ENDED." UPON CONSOLE. .

 LOG ð----+----1----+----2----+----3----+----4----+----5----+----6 LINE: 6 OF 14

 ððð7 MONITOR

 ððð8 LIST PROGRAM-USHORT-BIN ;

 ððð9 MONITOR

 ðð1ð LIST PROGRAM-SSHORT-BIN ;

 ðð11 AT 75 ;

 ðð12 AT 77 ;

 ðð13 AT 79 ;

 ðð14 GO ;

á ñ

Figure 1. Debug Tool Windows

For an explanation of all the windows, see Chapter 5, “Using the Debug Tool
interfaces” on page 84.

Denoting environmental differences
Certain aspects of Debug Tool usage can differ, not only across platforms but from
system to system and from subsystem to subsystem. When this occurs, differ-
ences are marked in the text in the following manner:

For MVS Only : MVS-specific information.

Special language-specific information about accomplishing a task or using a partic-
ular procedure might also be marked the same way. More extensive differences
are usually discussed in separate sections.

 Terminology
Because of differing terminology among the various languages supported by Debug
Tool, as well as differing terminology between platforms, a group of common terms
has been established. Table 1 on page 3 lists these terms and their equivalency
in each language.

2 Debug Tool User's Guide and Reference

 Before you begin debugging

Table 1. Terminology

Debug Tool
Term

C/C++ Equivalent COBOL Equivalent PL/I Equivalent

Compile Unit C/C++ source file Program or Class Program

Block Function or Compound
Statement

Program, Nested
Program, Method or
PERFORM Group of
Statements

Block

Label Label Paragraph Name or
Section Name

Label

Planning to run your program with Debug Tool
Before you can test your program using Debug Tool, you need to plan how you
want to conduct your debugging session.

� Do you want to compile your program with hooks?

Hooks are instructions inserted in a program by a compiler at compile time.
Using hooks allows you to set breakpoints that instruct Debug Tool to gain
control at selected points during program run time.

You can choose where to place the hooks. For example, you can place them
at statements, or only at entry to and exit from blocks.

For more information on placing hooks and accessing symbol tables, see
Chapter 2, “Preparing to debug your program” on page 5.

� Do you want to reference variables during your Debug Tool session?

If yes, you need to instruct the compiler to create a symbol table. The symbol
table contains descriptions of variables, their attributes, and their location in
storage. These descriptions are used by Debug Tool when referencing vari-
ables.

For more information on placing hooks and accessing symbol tables, see
Chapter 2, “Preparing to debug your program” on page 5.

� Do you want full debugging capability or smaller application size and higher
performance?

Removing hooks, statement tables, or symbol tables can increase your applica-
tion's performance and/or decrease its size. See Appendix B, “Using Debug
Tool in a production mode” on page 344 for a complete discussion.

� Do you need to reduce data set I/O?

The source (for C/C++) and the source listing (for COBOL and PL/I) data sets
should be defined with a suitable block size to minimize data set I/O when
using Debug Tool. Use a block size that is as large as possible in your envi-
ronment.

� When do you want to start Debug Tool and when do you want it to gain
control?

There are a variety of ways to invoke Debug Tool, as well as many options for
allowing it to gain control of your test program.

 Chapter 1. Before you begin debugging 3

 Before you begin debugging

To invoke Debug Tool, you can use the run-time TEST option. This option gives
you the choice of invoking Debug Tool either before you run your application, at
the occurrence of an HLL condition while your application is running, or at the
occurrence of an attention interrupt. Also, Language Environment, as well as
certain HLLs, provides a run-time service you can call while your program is
executing, at the location of your choice.

After Debug Tool is invoked, it gains control of your program and suspends
execution to allow you to take such actions as checking the value of a variable
or examining the contents of storage.

� Do you want to use Debug Tool interactively, in line mode, or in batch mode?

Refer to “Debug Tool sessions” on page 1 to determine how you want to use
Debug Tool when debugging your application.

4 Debug Tool User's Guide and Reference

 Compiling a C program with TEST

Chapter 2. Preparing to debug your program

This chapter describes how to prepare your programs for debugging with Debug
Tool. It discusses how to compile your programs using the TEST compile-time
option to furnish Debug Tool with the necessary debugging information.

Information for using the TEST option with each language compiler and debugging
multilanguage programs is discussed separately in the following sections:

Compiling your C program with the compile-time TEST option
Compiling your C++ program with the compile-time TEST option
Compiling your COBOL program with the compile-time TEST option
Compiling your PL/I program with the compile-time TEST option
Debugging multilanguage programs

Compiling a C program with the compile-time TEST option
Before testing your C program with Debug Tool, you must compile it with the C
compile-time TEST option, as described below. This option causes the compiler to
retain information about your application program that Debug Tool uses.

The TEST suboptions BLOCK, LINE, and PATH regulate the points where the compiler
inserts program hooks. When you set breakpoints, they are associated with the
hooks which are used to instruct Debug Tool where to gain control of your program.

The symbol table suboption SYM regulates the inclusion of symbol tables into the
object output of the compiler. Debug Tool uses the symbol tables to obtain infor-
mation about the variables in the program.

When using the C compile-time TEST option, be aware that:

� The C compile-time TEST option generates entry and exit hooks for functions.

� The C compile-time TEST option implicitly specifies the GONUMBER option, which
causes the compiler to generate line number tables corresponding to the input
source file. You can explicitly remove this option by specifying NOGONUMBER.

� Programs compiled with both the TEST and either OPT(1) or OPT(2) options do
not have line hooks, block hooks, path hooks, or a symbol table generated,
regardless of the TEST suboptions specified. Only function entry and exit hooks
are generated for optimized programs.

� You can specify any number of TEST suboptions, including conflicting sub-
options (for example, both PATH and NOPATH). The last suboptions specified
take effect. For example, if you specify TEST(BLOCK, NOBLOCK, BLOCK, NOLINE,

LINE), what takes effect is TEST(BLOCK, LINE) since BLOCK and LINE are speci-
fied last.

� No duplicate hooks are generated even if two similar TEST suboptions are spec-
ified. For example, if you specify TEST(BLOCK, PATH), the BLOCK suboption
causes the generation of entry and exit hooks. The PATH suboption also
causes the generation of entry and exit hooks. However, only one hook is gen-
erated at each entry and exit.

See OS/390 C/C++ User's Guide for more information on the compile-time TEST
option.

 Copyright IBM Corp. 1995, 1998 5

 Compiling a C program with TEST

You can specify any combination of the C TEST suboptions in any order. The
default suboptions are BLOCK, LINE, PATH, and SYM.

The syntax for the C compile-time TEST option is:

 ┌ ┐─NOTEST────────────────────────
55─ ──┴ ┴ ─TEST─ ──┬ ┬───────────────────── ───────────────────────────────────5%
 │ │┌ ┐─,─────────
 │ ││ │┌ ┐─BLOCK───
 │ ││ │├ ┤─LINE────
 │ ││ │├ ┤─PATH────
 │ ││ │├ ┤─SYM─────
 └ ┘ ─(─ ───

6
┴┼ ┼─NOBLOCK─ ─)─

 ├ ┤─NOLINE──
 ├ ┤─NOPATH──
 ├ ┤─NOSYM───
 ├ ┤─ALL─────
 └ ┘─NONE────

The compile-time TEST suboptions control the generation of symbol tables and
program hooks Debug Tool needs to debug your programs. The choices you make
when compiling your program affect the amount of Debug Tool function available
during your debugging session. When a program is under development, you
should compile the program with TEST(ALL) to get the full capability of Debug Tool.

The following list explains what is produced by each option and suboption and how
Debug Tool uses them when debugging your program:

TEST

Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The extent of the information provided depends on which of
the following suboptions are selected.

The following restrictions apply when using TEST:

� The maximum number of lines in a single source file cannot exceed
131,072.

� The maximum number of include files which have executable statements
cannot exceed 1024.

If you do exceed these limits, the results from Debug Tool are undefined. Also,
a Language Environment dump generated from a program compiled with the
TEST option yields incorrect line numbers and source file information.

NOTEST

Specifies that no debugging information is to be generated. That is, no state-
ment hooks or path hooks are compiled into your program, no dictionary tables
are created, and Debug Tool does not have access to any symbol information.

� You cannot STEP through program statements. You can suspend execution
of the program only at the initialization of the main compile unit.

� You cannot examine or use any program variables.
� You can LIST storage and registers.
� You cannot use the Debug Tool command GOTO.

6 Debug Tool User's Guide and Reference

 Compiling a C program with TEST

BLOCK

Inserts only block entry and exit hooks into your program's object output. A
block is any number of data definitions, declarations, or statements
enclosed within a single set of braces. BLOCK also creates entry and exit
hooks for nested blocks. If SYM is enabled, symbol tables are generated for
variables local to these nested blocks.

� You can only gain control at entry and exit of blocks.

� Issuing a command such as STEP causes your program to run, until it
reaches the exit point.

NOBLOCK

Prevents symbol information and entry and exit hooks from being gener-
ated for nested blocks.

LINE

Hooks are generated at most executable statements. Hooks are not gener-
ated for:

� Lines that identify blocks (lines containing braces)
 � Null statements
 � Labels

NOLINE

Suppresses the generation of statement (line number) hooks.

PATH

Hooks are generated at all path points.

� This option does not influence the generation of entry and exit hooks
for nested blocks. The BLOCK suboption must be specified if such
hooks are desired.

� Debug Tool can gain control only at path points and block entry and
exit points. If you attempt to STEP through your program, Debug Tool
gains control only at statements that coincide with path points, giving
the appearance that not all statements are executed.

� The Debug Tool command GOTO is valid only for statements and labels
coinciding with path points.

NOPATH

No path hooks are generated.

SYM

Generates symbol tables in the program's object output that gives Debug
Tool access to variables and other symbol information.

� You can reference all program variables by name, allowing you to
examine them or use them in expressions.

� You can use the Debug Tool command GOTO to branch to a label (para-
graph or section name).

NOSYM

Suppresses the generation of symbol tables. Debug Tool does not have
access to any symbol information.

� You cannot reference program variables by name.

 Chapter 2. Preparing to debug your program 7

 Compiling a C program with TEST

� You cannot use commands such as LIST or DESCRIBE to access a vari-
able or expression.

� You cannot use commands such as CALL or GOTO to branch to another
label (paragraph or section name).

ALL

Block and line hooks are inserted and a symbol table is generated. Hooks
are generated at all statements, all path points (if-then-else, calls, and so
on), and at all function entry and exit points.

ALL is equivalent to TEST(LINE, BLOCK, PATH, SYM).

NONE

Generates all compiled-in hooks only at function entry and exit points.
Block and line hooks are not inserted, and the symbol tables is suppressed.

TEST(NONE) is equivalent to TEST(NOLINE, NOBLOCK, NOPATH, NOSYM).

Placing compiled-in hooks for functions and nested blocks
The following rules apply to the placement of compiled-in hooks for getting in and
out of functions and nested blocks:

� The hook for function entry is placed before any initialization or statements for
the function.

� The hook for function exit is placed just before actual function return.

� The hook for nested block entry is placed before any statements or initialization
for the block.

� The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points
The following rules apply to the placement of compiled-in hooks for statements and
path points:

� Label hooks are placed before the code and all other statement or path point
hooks for the statement.

� The statement hook is placed before the code and path point hook for the
statement.

� A path point hook for a statement is placed before the code for the statement.

Using #pragma to specify compile-time TEST option
The compile-time TEST/NOTEST option can be specified either when you invoke your
program or directly in your program, using a #pragma.

This #pragma must appear before any executable code in your program.

If you link together two or more compile units with differing #pragmas, the options
specified with the first compile unit are honored. With multiple enclaves, the
options specified with the first enclave (or compile unit) invoked in each new
process are honored.

If you specify options on the command line and in a #pragma, any options entered
on the command line override those specified in the #pragma unless you specify
NOEXECOPS. Specifying NOEXECOPS, either in a #pragma or with the compile-time
EXECOPS option, prevents any command line options from taking effect.

8 Debug Tool User's Guide and Reference

 Compiling a C++ program with TEST

The following example generates symbol table information, symbol information for
nested blocks, and line number hooks:

#pragma options (test(SYM,BLOCK,LINE))

This is equivalent to TEST(SYM,BLOCK,LINE,PATH). The default PATH means that the
PATH breakpoint will be triggered for the program containing the following statement:

#pragma options(test)

You can also use a #pragma to specify run-time options. This is explained, with
examples, in “Specifying run-time TEST option with #pragma runopts in C and C++”
on page 39.

For more information about #pragma options, refer to OS/390 C/C++ Language Ref-
erence.

Compiling a C++ program with the compile-time TEST option
Before testing your C++ program with Debug Tool, you must compile it with the
C++ compile-time TEST option, as described below. This option causes the com-
piler to retain information about your application program that Debug Tool uses.
See “Compiling a C program with the compile-time TEST option” on page 5 for an
explanation of the debug information generated by TEST(ALL).

 ┌ ┐─NOTEST─
55─ ──┴ ┴─TEST─── ──5%

The following list explains what is produced by each option and how Debug Tool
uses them when debugging your program:

NOTEST

Specifies that no debugging information is to be generated. That is, no state-
ment hooks or path hooks are compiled into your program, no dictionary tables
are created, and Debug Tool does not have access to any symbol information.

� You cannot STEP through program statements. You can suspend execution
of the program only at the initialization of the main compile unit.

� You cannot examine or use any program variables.
� You can LIST storage and registers.
� You cannot use the Debug Tool command GOTO.

TEST

Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The following restrictions apply when using the TEST option

� The maximum number of lines in a single source file cannot exceed
131,072.

� The maximum number of include files which have executable statements
cannot exceed 1024.

If you do exceed these limits, the results from Debug Tool are undefined. Also,
a Language Environment dump generated from a program compiled with the
TEST option yields incorrect line numbers and source file information.

 Chapter 2. Preparing to debug your program 9

 Compiling a COBOL program with TEST

Placing compiled-in hooks for functions and nested blocks
The following rules apply to the placement of compiled-in entry and exit hooks for
functions and nested blocks:

� The hook for function entry is placed before any initialization or statements for
the function.

� The hook for function exit is placed just before actual function return.

� The hook for nested block entry is placed before any statements or initialization
for the block.

� The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points
The following rules apply to the placement of compiled-in hooks for statements and
path points:

� Label hooks are placed before the code and all other statement or path point
hooks for the statement.

� The statement hook is placed before the code and path point hook for the
statement.

� A path point hook for a statement is placed before the code for the statement.

Compiling a COBOL program with the compile-time TEST option
When you compile with the TEST option, the compiler creates the dictionary tables
that Debug Tool uses to obtain information about program variables, and inserts
program hooks at selected points in your program. Your source is not modified.
These points can be at the entrances and exits of blocks, at statement boundaries,
and at points in the program where program flow might change between statement
boundaries (called path points), such as before and after a CALL statement. Using
these hooks, you can set breakpoints to instruct Debug Tool to gain control of your
program at selected points during its execution.

When using the COBOL compile-time TEST option, be aware that:

� If you specify NUMBER with TEST, make sure the sequence fields in your source
code all contain numeric characters.

� Usually, when you specify TEST, the compile-time options NOOPTIMIZE and
OBJECT automatically go into effect, preventing you from debugging optimized
programs. However, TEST(NONE, SYM) does not conflict with OPT, allowing
limited debugging of optimized programs. See Appendix B, “Using Debug Tool
in a production mode” on page 344 for more information on debugging pro-
duction programs.

� The compile-time TEST option and the run-time DEBUG option are mutually exclu-
sive, with DEBUG taking precedence. If you specify both the WITH DEBUGGING

MODE clause in your SOURCE-COMPUTER paragraph and the USE FOR DEBUGGING

statement in your code, TEST is deactivated. The compile-time TEST option
appears in the list of options, but a diagnostic message is issued telling you
that because of the conflict, TEST is not in effect.

The syntax for the COBOL compile-time TEST option is:

10 Debug Tool User's Guide and Reference

 Compiling a COBOL program with TEST

 ┌ ┐─NOTEST──────────────────────────────────────
 ├ ┤─NOTES───────────────────────────────────────
 │ │┌ ┐─(ALL, SYM)────────────────────
55─ ──┴ ┴ ──┬ ┬─TEST─ ──┼ ┼─────────────────────────────── ─────────────────────5%
 └ ┘─TES── └ ┘ ─(─ ──┬ ┬─ALL─── ─,─ ──┬ ┬─SYM─── ─)─
 ├ ┤─BLOCK─ └ ┘─NOSYM─
 ├ ┤─NONE──
 ├ ┤─PATH──
 └ ┘─STMT──

The compile-time TEST suboptions control the production of such debugging aids as
dictionary tables and program hooks that Debug Tool needs to debug your
program. The choices you make when compiling your program can affect the
amount of Debug Tool function available during your debugging session. When a
program is under development, compile the program with TEST(ALL) to get the full
capability of Debug Tool. The following list explains each option and suboption and
the capabilities of Debug Tool when your program is compiled using these options.

NOTEST

Specifies that no debugging information is to be generated, that is, no state-
ment hooks or path hooks are compiled into your program, no dictionary tables
are created, and Debug Tool does not have access to any symbol information.
Using NOTEST produces the following results:

� You cannot STEP through program statements.

� You can suspend execution of the program only at the initialization of the
main compile unit.

� You can include calls to CEETEST in your program to allow you to suspend
program execution and issue Debug Tool commands.

� You cannot examine or use any program variables.

� You can LIST storage and registers.

� The source listing produced by the compiler cannot be used; therefore, no
listing is available during a debugging session.

� Because a statement table is not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY location.

TEST

Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The extent of the information provided depends on which of
the following suboptions are selected.

ALL

| Generates all compiled-in hooks, which includes all statement, path, date
| processing, and program entry and exit hooks.

| � The COBOL compiler only generates compiled-in hooks for date proc-
| essing statements when either the DATEPROC(FLAG) or
| DATEPROC(NOFLAG) compile-time option is specified. A date processing
| statement is any statement that references a date field, or any EVAL-
| UATE or SEARCH statement WHEN phrase that references a date
| field.

� You can set breakpoints at all statements and path points, and STEP
through your program.

 Chapter 2. Preparing to debug your program 11

 Compiling a COBOL program with TEST

� Debug Tool can gain control of the program at all statements, path
| points, date processing statements, labels, and block entry and exit

points, allowing you to enter Debug Tool commands.

� Branching to statements and labels using the Debug Tool command
GOTO is allowed.

BLOCK

Hooks are inserted at all block entry and exit points.

� Debug Tool gains control at entry and exit of your program, methods,
nested programs, and PERFORM group of statements.

� Debug Tool can be explicitly invoked at any point with a call to CEETEST.

� Issuing a command such as STEP causes your program to run until it
reaches the next entry or exit point.

� GOTO can be used to branch to statements that coincide with block entry
and exit points.

NONE

No hooks are inserted in the program.

� The GOTO command is valid for some statements and labels coinciding
with path points.

� A call to CEETEST can be used at any point to invoke Debug Tool.

PATH

Hooks are inserted at all path points.

� Debug Tool can gain control only at path points and block entry and
exit points. If you attempt to STEP through your program, Debug Tool
gains control only at statements that coincide with path points, giving
the appearance that not all statements are executed.

� A call to CEETEST can be used at any point to invoke Debug Tool.

� The Debug Tool command GOTO is valid for all statements and labels
coinciding with path points.

STMT

| Hooks are inserted at every statement and label, at every date processing
| statement, and at all entry and exit points.

| � The COBOL compiler only generates compiled-in hooks for date proc-
| essing statements when either the DATEPROC(FLAG) or
| DATEPROC(NOFLAG) compile-time option is specified. A date processing
| statement is any statement that references a date field, or any EVAL-
| UATE or SEARCH statement WHEN phrase that references a date
| field.

� You can set breakpoints at all statements and STEP through your
program.

� Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

� Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

12 Debug Tool User's Guide and Reference

 Compiling a PL/I program with TEST

SYM

Generates dictionary tables in the program's object output (including the
symbol table), that gives Debug Tool access to variables and other symbol
information.

� You can reference all program variables by name, which allows you to
examine them or use them in expressions.

� SYM is required to support labels (paragraph or section names) as GOTO
targets.

NOSYM

Suppresses the generation of dictionary tables. Debug Tool does not have
access to any symbol information. Using NOSYM produces the following
results:

� You cannot reference program variables by name.

� You cannot use commands such as LIST a variable or expression con-
taining a variable, or DESCRIBE a variable name.

� You cannot use commands such as CALL variable to branch to another
program, or GOTO to branch to another label (paragraph or section
name).

Specifying TEST with no suboptions is equivalent to TEST(ALL, SYM).

See the COBOL Language Reference publications for more information about the
compile-time TEST option.

Note: To be able to view your source code while debugging in interactive mode,
you must direct the listing to a nontemporary file that is available during the
debugging session.

During a debugging session, Debug Tool displays the first file it finds named
userid.pgmname.list in the Source window. Use the SET SOURCE command
to associate your source listing with the program you are debugging. See
“SET SOURCE” on page 324 as well as “SET DEFAULT LISTINGS (MVS)”
on page 309 (for partitioned data sets).

Compiling a PL/I program with the compile-time TEST option
The PL/I compiler provides support for Debug Tool under control of the compile-
time TEST option and its suboptions for hook locations and symbol tables. The
hook location suboptions (BLOCK, STMT, PATH, ALL, and NONE) regulates the points at
which the compiler inserts hooks. These program hooks allow Debug Tool to gain
control at select points in a program during execution. The symbol table suboption
(SYM or NOSYM) controls the insertion of symbol tables into the program. Debug Tool
uses the symbol tables to obtain information about program variables.

The syntax for the PL/I compile-time TEST option is:

 Chapter 2. Preparing to debug your program 13

 Compiling a PL/I program with TEST

 ┌ ┐─NOTEST──────────────────────────────────────
 ├ ┤─NOTES───────────────────────────────────────
 │ │┌ ┐─(NONE, SYM)───────────────────
55─ ──┴ ┴ ──┬ ┬─TEST─ ──┼ ┼─────────────────────────────── ─────────────────────5%
 └ ┘─TES── └ ┘ ─(─ ──┬ ┬─ALL─── ─,─ ──┬ ┬─SYM─── ─)─
 ├ ┤─BLOCK─ └ ┘─NOSYM─
 ├ ┤─NONE──
 ├ ┤─PATH──
 └ ┘─STMT──

The choices you make when compiling your program can affect the amount of
Debug Tool function available during your debugging session. When a program is
under development, compile the program with TEST(ALL) to get the full capability of
Debug Tool. The following list explains each option and suboption and the capabili-
ties of Debug Tool when your program is compiled using these options:

NOTEST

Specifies that no debugging information is generated, that is, no statement
hooks or path hooks are compiled into your program, no dictionary tables are
created, and Debug Tool does not have access to any symbol information.
Using NOTEST produces the following results:

� You can LIST storage and registers.

� You can include calls to PLITEST or CEETEST in your program so you can
suspend running your program and issue Debug Tool commands.

� You cannot STEP through program statements. You can suspend running
your program only at the initialization of the main compile unit.

� You cannot examine or use any program variables.

� Because statement hooks are not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY LOCATION. A state-
ment table is available if compiled with STMT or GOSTMT.

TEST

Produces debugging information for Debug Tool to use during batch and inter-
active debugging. The extent of the information provided depends on which of
the following suboptions are selected:

ALL

Generates all compiled-in hooks, which includes all statement, path, and
program entry and exit hooks.

� You can set breakpoints at all statements and path points, and STEP

through your program.

� Debug Tool can gain control of the program at all statements, path
points, labels, and block entry and exit points, allowing you to enter
Debug Tool commands.

� Enables branching to statements and labels using the Debug Tool
command GOTO.

BLOCK

Hooks are inserted at all block entry and exit points.

� Enables Debug Tool to gain control at block boundaries: block entry
and block exit.

14 Debug Tool User's Guide and Reference

 Compiling a PL/I program with TEST

� You can gain control only at entry and exit of your program and all
entry and exit points of internal program blocks.

� A call to PLITEST or CEETEST can be used to invoke Debug Tool at any
point in your program.

� Issuing a command such as STEP causes your program to run until it
reaches the next block entry or exit point.

� Block hooks are not inserted into a NULL ON-unit or an ON-unit consisting
of a single GOTO statement.

NONES

No hooks are inserted in the program.

� A call to PLITEST or CEETEST can be used to invoke Debug Tool at any
point in your program.

PATH

Causes hooks to be inserted:

� Before the THEN part of an IF statement.

� Before the ELSE part of an IF statement.

� Before the first statement of all WHEN clauses of a SELECT-group.

� Before the OTHERWISE statement of a SELECT-group.

� At the end of a repetitive DO statement, just before the Do-group is to be
executed.

� At every CALL or function reference, both before and after control is
passed to the routine.

� Before the statement following a user label, excluding labeled FORMAT

statements. If a statement has multiple labels, only one hook is
inserted.

Specifying PATH also causes BLOCK hooks to be inserted.

STMT

Hooks are inserted before most executable statements and labels. STMT

also causes BLOCK hooks to be inserted.

� You can set breakpoints at all statements and STEP through your
program.

� Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

� Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

SYM

Generates a symbol table to be compiled into the program. The symbol
table is required for examining program variables or program control con-
stants by name.

� You can reference all program variables by name, which allows you to
examine them or use them in expressions.

� SYM is required to support labels as GOTO targets.

 Chapter 2. Preparing to debug your program 15

 Debugging multilanguage programs

NOSYM

Suppresses the generation of a symbol table. Debug Tool does not have
access to any symbol information which causes the following results:

� You cannot reference program variables by name.

� You cannot use commands such as LIST a variable or expression con-
taining a variable, or DESCRIBE a variable name.

� You cannot use commands such as CALL variable to branch to another
program, or GOTO to branch to another label (procedure or block name).

See the PL/I for MVS and VM Programming Guide for more information about the
compile-time TEST option.

Note: To be able to view your source code while debugging in interactive mode,
PL/I programs must be compiled using the PL/I compile-time SOURCE option.
You must also direct the listing to a nontemporary file that is available
during the debugging session.

During a debugging session, Debug Tool displays the first file it finds named
userid.pgmname.list in the Source window. Use the SET SOURCE command
to associate your source listing with the program you are debugging. See
“SET SOURCE” on page 324, as well as “SET DEFAULT LISTINGS
(MVS)” on page 309 (for partitioned data sets).

Compiling with TEST(STMT), TEST(PATH), or TEST(ALL) causes a statment number
table to be generated. If the compile-time STMT option is in effect, TEST causes
GOSTMT to apply. If the compile-time NUMBER option is in effect, TEST causes
GONUMBER to apply.

Debugging multilanguage programs
This section discusses strategies you can employ when debugging programs
written in more than one language.

The process of debugging multilanguage programs is simplified by the introduction
of Language Environment. Language Environment supports the creation of applica-
tion programs written in more than one HLL by providing a single environment to
run such programs using interlanguage communication (ILC).

When the need to debug a multilanguage program arises, you can find yourself
facing one of the following scenarios:

� You need to debug an application written in more than one language, where
each language is supported by Language Environment and can be debugged
by Debug Tool.

� You need to debug an application written in more than one language, where
not all of the languages are supported by Language Environment, nor can they
be debugged by Debug Tool.

When writing a multilanguage application, a number of special considerations arise
because you must work outside the scope of any single language. The Language
Environment initialization process establishes an environment tailored to the set of
HLLs constituting the main load module of your application program. This removes
the need to make explicit calls to manipulate the environment. Also, termination of

16 Debug Tool User's Guide and Reference

 Debugging multilanguage programs

the Language Environment environment is accomplished in an orderly fashion,
regardless of the mixture of HLLs present in the application.

Debugging an application fully supported by Language Environment
If you are debugging a program written in a combination of languages supported by
Language Environment and compiled by supported compilers, very little is required
in the way of special actions. Debug Tool normally recognizes a change in pro-
gramming languages and automatically switches to the correct language when a
breakpoint is reached. If desired, you can use the SET PROGRAMMING LANGUAGE

command to stay in the language you specify; however, you can only access vari-
ables defined in the currently set programming language. For details, see “SET
PROGRAMMING LANGUAGE” on page 319.

When defining session variables you want to access from compile units of different
languages, you must define them with compatible attributes. See “C/C++ compat-
ible attributes” on page 249, “COBOL compatible attributes” on page 252, or “PL/I
compatible attributes” on page 254 for a table showing compatible attributes for
variables declared in the supported languages.

For more information on creating multilanguage applications, see the OS/390 Lan-
guage Environment Programming Guide

Debugging an application partially supported by Language
Environment

Sometimes you might find yourself debugging applications that contain compile
units written in languages not supported by either Debug Tool or Language Envi-
ronment. For example, you can run programs containing mixtures of Assembler,
C/C++, COBOL, FORTRAN, and PL/I source code with Debug Tool. You can
invoke Debug Tool and perform testing only for the sections of a multilanguage
program written in a supported language and compiled with a Language
Environment-enabled compiler, or relink-edited to take advantage of Language
Environment library routines. If you are debugging a compile unit written in a sup-
ported language and the compile unit calls another unsupported language, a break-
point set with AT CALL is triggered. Debug Tool determines the name of the
compile unit, but little else. Your compile unit runs unhindered by Debug Tool.
When program execution returns to a compile unit of a known HLL, Debug Tool
once again gains control and execute commands.

 Chapter 2. Preparing to debug your program 17

 Using TEST

Chapter 3. Beginning a debugging session

This chapter explains how to begin a debugging session with Debug Tool. It
covers the run-time TEST option, which gives you several alternatives for beginning
a debugging session when specified during the invocation of your program.

Also covered are Language Environment callable services CEETEST and PLITEST,
and the C library function __ctest(). These can be inserted into your program to
govern the invocation of Debug Tool. The use of #pragma runopts to specify the
run-time TEST option in C programs is discussed in more detail.

For MVS Only : If your source or listing does not come up in Debug Tool when you
start it, press PF4 (LIST) with the cursor on the command line. This puts you in the
Source Identification panel. The Source Identification panel indicates the name of
the source or listing file that was intended to be used by Debug Tool. With this
name you can verify if the file exists or if you have authorization to access it. If
your file is stored at a different place, use the SET SOURCE command or type over
the Listing/Source file field with the new name to have Debug Tool search for the
source or listing there. The SET DEFAULT LISTINGS command provides another
method of finding your files provided they are stored to a PDS.

For C/C++ compile units, Debug Tool requires a file containing the source code.
By default, when Debug Tool encounters a new C/C++ compile unit, it looks for the
source code in a file whose name is the one that was used on the compile step.
For COBOL and PL/I compile units, Debug Tool requires a file containing the com-
piler listing. By default, when Debug Tool encounters a new VS COBOL II or PL/I
compile unit, it looks for the listing in a file named hlq.cuname.LIST. For
COBOL/370, COBOL for MVS, and COBOL for OS/390, Debug Tool looks for the
listing in a partitioned data set member named cuname.

When Debug Tool is invoked using one of the methods described in this chapter, it
interrupts the execution of your program to allow you to take appropriate actions.
Debug Tool returns control to your program at the point of its interruption as the
result of a GO or STEP command. You can also specify that control return to some
other point in your program with the GOTO or GO BYPASS command. You can even
specify that control be given to another program with the CALL command or a
C/C++ function invocation.

If Debug Tool gains control because of a program condition, when control is
returned to the program, the condition is raised in the program unless explicitly pre-
vented (see “GO command” on page 267).

Using the run-time TEST option
You can use the run-time TEST option to invoke Debug Tool and begin testing your
program. The simplest form of the TEST option is TEST with no suboption; however,
suboptions provide you with more flexibility. There are four suboptions available:

� test_level (determines what HLL conditions raised by your program will cause
Debug Tool to gain control)

18  Copyright IBM Corp. 1995, 1998

 Using TEST

� commands_file (determines which primary commands file is used as the initial
source of commands in the absence of, or as an alternative to, a terminal or
workstation)

� prompt_level (determines whether an initial commands list is unconditionally
executed during program initialization)

� preferences_file (specifies the session parameter and a file that you can use
to specify default settings for your debugging environment, such as customizing
the settings on the Debug Tool Profile panel)

Run-time TEST option syntax
You can specify any combination of the run-time TEST suboptions, but they must be
specified in the order presented. Any option or suboption referred to as "default" is
the IBM-supplied default, and might have been changed by your system adminis-
trator during installation. For examples of how to use TEST and each of its sub-
options, see page 27.

The syntax for this option is:

 Chapter 3. Beginning a debugging session 19

 Using TEST

 ┌ ┐─NOTEST─
55─ ──┴ ┴─TEST─── ──┬ ┬── ───────────5
 └ ┘ ─(─ ──┬ ┬──────────────── ─,─ ──┬ ┬─────────────────── ─,─
 └ ┘─┤ test_level ├─ └ ┘─┤ commands_file ├─

5─ ──┬ ┬── ─────────────────────5%
 └ ┘ ──┬ ┬────────────────── ─,─ ──┬ ┬────────────────────── ─)─
 └ ┘─┤ prompt_level ├─ └ ┘─┤ preferences_file ├─

test_level:
 ┌ ┐─ALL───
├─ ──┼ ┼─────── ───┤
 ├ ┤─ERROR─
 └ ┘─NONE──

commands_file:
 ┌ ┐─\────────────────────────
├─ ──┼ ┼────────────────────────── ──┤
 └ ┘─commands_file_designator─

prompt_level:
 ┌ ┐─PROMPT──────────────────────
├─ ──┼ ┼───────────────────────────── ───┤
 ├ ┤─NOPROMPT────────────────────
 ├ ┤─;───────────────────────────
 ├ ┤─\───────────────────────────
 │ │┌ ┐─;───────
 └ ┘ ──┬ ┬─"─── ───

6
┴─command─ ──┬ ┬─"─

 └ ┘─'───(1) └ ┘─'─

preferences_file:
 ┌ ┐ ─MFI:─ ──┬ ┬────────────── ─────────────────────────────────

│ │└ ┘──%terminal_id
├─ ──┼ ┼─── ───────────────────5
 ├ ┤ ─LU2:──
 │ │┌ ┐─APPC&────── ┌ ┐─%CODEDT─────
 ├ ┤ ──┼ ┼──────────── ─appc_workstation_id─ ──┼ ┼───────────── ─:─
 │ │└ ┘─VADAPPC&───(2) └ ┘─%session_id─
 │ │┌ ┐─%8ððð────
 └ ┘ ─VADTCPIP&───(2) ─tcpip_workstation_id─ ──┼ ┼────────── ─:──────
 └ ┘─%port_id─

 ┌ ┐─INSPPREF────────────────────
5─ ──┼ ┼───────────────────────────── ───┤
 ├ ┤─preferences_file_designator─
 └ ┘─\───────────────────────────

Notes:
1 Double quotes for MVS; single quotes for VM.
2 Supports only VisualAge COBOL programs.

NOTEST

Specifies that Debug Tool is not invoked at program initialization. However,
invoking Debug Tool is still possible through the use of CEETEST, PLITEST, or the
__ctest() function. In such a case, the suboptions specified with NOTEST are
used when Debug Tool is invoked.

TEST

Specifies that Debug Tool is given control according to its suboptions. The
TEST suboptions supplied will also be used if Debug Tool was invoked with
CEETEST, PLITEST, or __ctest().

test_level :

ALL (or blank)
Specifies that the occurrence of an attention interrupt, termination of your
program (either normally or through an ABEND), or any program or Language

20 Debug Tool User's Guide and Reference

 Using TEST

Environment condition of Severity 1 and above causes Debug Tool to gain
control, regardless of whether a breakpoint is defined for that type of condition.
If a condition occurs and a breakpoint exists for the condition, the commands
specified in the breakpoint are executed. If a condition occurs and a breakpoint
does not exist for that condition, or if an attention interrupt occurs, Debug Tool
does the following:

� In interactive mode, it reads commands from a commands file (if it exists)
or prompts you for commands

� In noninteractive mode, it reads commands from the commands file

For more information about attention interrupts, see “Requesting an attention
interrupt during interactive sessions” on page 135.

ERROR

Specifies that only the following conditions cause Debug Tool to gain control
without a user-defined breakpoint.

 � For C/C++:

– An attention interrupt
 – Program termination

– A predefined Language Environment condition of Severity 2 or above
– Any C/C++ condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

 � For COBOL:

– An attention interrupt
 – Program termination

– A predefined Language Environment condition of Severity 2 or above.

 � For PL/I:

– An attention interrupt, directed at either PL/I or Debug Tool
 – Program termination

– A predefined Language Environment condition of Severity 2 or above.

Language Environment conditions are described in the OS/390 Language
Environment Debugging Guide and Run-Time Messages.

If a breakpoint exists for one of the above conditions, commands specified in
the breakpoint are executed. If no commands are specified, Debug Tool reads
commands from a commands file or prompts you for them in interactive mode.

NONE

Specifies that Debug Tool gains control from a condition only if a breakpoint is
defined for that condition. If a breakpoint exists for the condition, the com-
mands specified in the breakpoint are executed. An attention interrupt does not
cause Debug Tool to gain control unless Debug Tool has previously been
invoked. For information about how to change the TEST level after you start
your session, see “SET TEST” on page 326.

commands_file :

\ (or blank)
Indicates that no commands file is supplied. The terminal, if available, is used
as the source of Debug Tool commands.

 Chapter 3. Beginning a debugging session 21

 Using TEST

commands_file_designator
Valid designation (ddname or data set for MVS, or filedef or file id for CMS) for
the primary commands file which is used instead of the terminal as initial
source of commands after the preferences file finishes running. If the desig-
nator might cause an ambiguity in the list of suboptions, enclose it in single or
double quotation marks to differentiate it from the remainder of the list. If you
are using a single ddname, no quotation marks are required.

The commands_file_designator has a maximum length of 80 characters.

If the specified ddname is longer than eight characters, it is automatically trun-
cated, but no error message is issued.

When the end of the file is reached, Debug Tool interactively prompts you for
commands until a QUIT command or the end of your application is reached.

The use of a primary commands file is required when debugging batch pro-
grams with a noninteracting interface, and this suboption enables you to specify
a source of commands when using Debug Tool in batch mode. It also allows
you to use a log file from one Debug Tool session as a source of commands in
a subsequent Debug Tool session to regression test your application.

When not using an interactive interface (for example, VisualAge COBOL work-
station), the primary commands file is required for batch debugging sessions. It
acts as a surrogate terminal. Debug Tool reads and executes commands from
it until either the file runs out of commands or your program finishes running.

If the end of the file is reached without encountering a QUIT command, Debug
Tool looks to your terminal, if available, for commands. If your terminal is not
available (if you are debugging in batch, for example), Debug Tool forces a GO
until the end of your program is reached.

Note: VisualAge COBOL does not support use of a commands file.

prompt_level :

PROMPT (or ; or blank)
Indicates that you want Debug Tool invoked immediately after Language Envi-
ronment initialization. Commands are read from the preferences file and then
any designated primary commands file. If neither file exists, commands are
read from your terminal or workstation.

NOPROMPT (or *)
Indicates that you do not want Debug Tool invoked immediately after Language
Environment initialization. Instead, your application begins running.

command
One or more valid Debug Tool commands. Debug Tool is invoked immediately
after program initialization, and then the command (or command string) is exe-
cuted. The command string can have a maximum length of 250 characters,
and should be enclosed in double quotation marks (MVS) or single quotation
marks (VM). Multiple commands must be separated by a semicolon.

Note: If you include a STEP or GO in your command string, none of the subse-
quent commands are processed. The command string operates like a
commands file. The VisualAge COBOL workstation interface does not
support commands file.

22 Debug Tool User's Guide and Reference

 Using TEST

preferences_file :

MFI

Specifies Debug Tool should be invoked in MFI mode, that is, you are using a
3270-type terminal for your debugging sessions.

terminal_id (for CICS only)
Specifies up to a four-character-length terminal id which receives Debug Tool
screen output during dual terminal session. The corresponding terminal should
be in service and acquired ready to receive Debug Tool-related I/O.

INSPPREF (or blank)
Debug Tool-supplied default preferences file ddname. Any preferences file that
is specified to Debug Tool becomes the first source of Debug Tool commands
after the debugger is invoked. It is often used to set up the Debug Tool envi-
ronment.

preferences_file_designator
Valid designation (ddname or data set for MVS, or filedef or file id for CMS)
specifying the preferences file to be used.

This file is read the first time Debug Tool is invoked, and must contain a
sequence of Debug Tool commands to be executed.

\ Specifies that no preferences file is supplied.

Note: INSPPREF and preferences_file_designator are not supported when
using the VisualAge COBOL workstation interface. * is always
assumed.

For Workstation Debugging Only :

Workstation debugging provides the advantage of a GUI interface between the
workstation and the host-based Debug Tool. It also provides important additional
function such as the ability to interactively debug batch processes. For example, a
COBOL batch job running in MVS/JES, or a COBOL CICS batch transaction, can
be interactively debugged via a TCP/IP connection to a workstation equipped with
VisualAge COBOL.

Currently there are two workstation products that interface with Debug Tool:
VisualAge COBOL and CODE/370. When you want to debug your host applica-
tions from your workstation, use one of the following protocols to communicate with
the host:

� If you have VisualAge COBOL installed on your OS/2 workstation, you can use
either APPC or TCP/IP to communicate with the host.

� If you have VisualAge COBOL installed on your Windows workstation, use
TCP/IP to communicate with the host.

� If you have CODE/370 installed on your OS/2 workstation, you can use either
APPC or LU2 to communicate with the host.

When this type of debugging is performed, the host application invokes Debug
Tool, which in turn invokes the workstation interface that you've designated in one
of the suboptions. The following suboptions are qualified as to which workstation
product they apply.

 Chapter 3. Beginning a debugging session 23

 Using TEST

LU2

Specifies you want to establish a Debug Tool session with a CODE/370 work-
station using an LU2 session to provide a GUI access.

APPC&

Specifies you want to establish a Debug Tool session with a workstation that
has been set up for APPC communications with the host. This suboption
applies only to workstations equipped with CODE/370 and configured for APPC
communications.

VADAPPC&

Specifies that Debug Tool is interfacing with an OS/2 workstation equipped with
VisualAge COBOL and configured for APPC communications with the host.
This suboption is valid only when you have installed and are using VisualAge
COBOL on your OS/2 workstation.

appc_workstation_id
A 1-to-8 character alphanumeric name defining your workstation at APPC con-
figuration time. This is the APPC name of the workstation which will display
your debug information. An example of this symbolic destination name would
be AJSMITH or DEPT87. If you do not define appc_workstation_id properly
when APPC is configured and your application is running in batch (for example,
JES), Debug Tool is not initiated. The batch program continues to run or termi-
nates, depending on its state when the debug session is attempted. If
appc_workstation_id is improperly defined and your application is running in the
TSO foreground, or in CICS when the task has a terminal associated with it, an
MFI session is created. This behavior is consistent for APPC sessions
attempted with workstations equipped with either VisualAge COBOL or
CODE/370.

%CODEDT

Default session_id for a CODE/370 workstation.

%session_id
Specifies a unique name of the application you want to debug. If you identify
your session with the same session_id as that of an existing session, an initial-
ization failure for the session being started will occur.

VADTCPIP&

Specifies that Debug Tool is interfacing with either an OS/2 or a Windows NT
workstation equipped with VisualAge COBOL and configured for TCP/IP com-
munications with the host. This suboption is valid only when you have installed
and are using VisualAge COBOL on your workstation.

tcpip_workstation_id
TCP/IP name of the workstation which will display your debug information.

%8ððð

Default port_id.

%port_id
Specifies a unique TCP/IP port on your workstation which is used by the
daemon program.

VisualAge COBOL only

24 Debug Tool User's Guide and Reference

 Using TEST

If you are using the VADTCPIP& suboption, consider the following possible errors:

� The tcpip_workstation_id or port_id parameters must be syntactically or
functionally correct. If they are not and you attempt an interactive session, an
MFI session will be allocated. For example, if you attempt a session from TSO
or CICS with incorrect parameters, you will receive an MFI session at your host
window. This error is noted in the MVS SDSF log as an allocation failure.

� If the tcpip_workstation_id or port_id parameters are not syntactically or
functionally correct, and you attempt an interactive batch session with Debug
Tool, Debug Tool will terminate and the batch application will continue to run as
though no debug session was ever attempted. This error occurs when, for
example, you run a JES batch job or CICS batch transaction. If the parameters
are incorrect, your program will continue to run as if you never attempted to
initialize Debug Tool. This error is noted in the MVS SDSF log as an allocation
failure.

� For TCP/IP sessions, the daemon must be started at the workstation before
you initialize Debug Tool. VisualAge COBOL documentation contains informa-
tion on using the daemon program.

End of VisualAge COBOL only

End of Workstation Parameters .

Other run-time TEST option considerations
When using the run-time TEST option, remember that:

� The Language Environment run-time options have the following order of pre-
cedence (from highest to lowest):

1. Installation options in the CEEDOPT file that were specified as
nonoverrideable with the NONOVR attribute.

2. Options specified by the Language Environment assembler user exit.
Debug Tool uses the DTCN transaction in the CICS environment and cus-
tomized Language Environment user exit EQADCCXT that is link-edited with
the application. For additional information see “Preparing and using DTCN
to invoke Debug Tool under CICS” on page 117.

3. Options specified at the invocation of your application, using the run-time
TEST option, unless accepting run-time options is disabled by Language
Environment (EXECOPS/NOEXECOPS).

4. Options specified within the source program (with #pragma or PLIXOPT) or
application options specified with CEEUOPT and link-edited with your appli-
cation.1

5. Option defaults specified at installation in CEEDOPT.

 6. IBM-supplied defaults.

Suboptions are processed in the following order:

1 If the object module for the source program is input to the linkage editor before the CEEUOPT object module, then these options
override CEEUOPT defaults. You can force the order in which objects modules are input by using linkage editor control state-
ments.

 Chapter 3. Beginning a debugging session 25

 Using TEST

1. Commands entered at the command line override any defaults or sub-
options specified at run time.

2. Commands executed from a preferences file override the command string
and any defaults or suboptions specified at run time.

3. Commands from a commands file override default suboptions, suboptions
specified at run time, commands in a command string, and commands in a
preferences file.

� In C, C++ or PL/I, you can define TEST with suboptions using a #pragma

runopts or PLIXOPT string, then specifying TEST with no suboptions at run time.
This causes the suboptions specified in the #pragma runopts or PLIXOPT string
to take effect.

� Some suboptions are disabled with NOTEST, but are still allowed. This means
you can start your program using the NOTEST option and then specify sub-
options you might want to take effect later in your debugging session. The
program begins to run without Debug Tool taking control.

To enable the suboptions you specified with NOTEST, invoke Debug Tool during
your program's run time using a library service call such as CEETEST, PLITEST,
or the __ctest() function.

� If the test level in effect causes Debug Tool to gain control at a condition or at
a particular program location, an implicit breakpoint with no associated action is
assumed. This occurs even though you have not previously defined a break-
point for that condition or location using an initial command string or a primary
commands file. Control is given to your terminal or to your primary commands
file.

� The primary commands file acts as a surrogate terminal. Once it is accessed
as a source of commands, it continues to act in this capacity until all com-
mands have been executed or Debug Tool has ended. This differs from the
USE file in that, if a USE file contains a command that returns control to the
program (such as STEP or GO), all subsequent commands are discarded.
However, USE files invoked from within a primary commands file take on the
characteristics of the primary commands file and can be executed until com-
plete.

� In batch mode, when end-of-file is reached in your commands file, a GO

command is forced at each request for a command until the program termi-
nates. If another command is requested after program termination, a QUIT
command is forced.

� If Debug Tool is invoked during program initialization, invocation occurs before
the main prolog has completed. At that time, no program blocks are active and
references to variables in the main procedure cannot be made, compile units
cannot be called, and GOTO cannot be used. However, references to static vari-
ables can be made.

If you enter STEP at this point, before entering any other commands, both
program and Language Environment initialization will complete and give you
access to all variables. You can also enter all valid commands.

� If Debug Tool is invoked while your program is running (for example, using a
CEETEST call), it might not be able to find all compile units associated with your
application. Compile units located in load modules that are not currently active
are not known to Debug Tool, even if they were run prior to Debug Tool's
initialization.

26 Debug Tool User's Guide and Reference

 Using TEST

Debug Tool also does not know about compile units that were not compiled
with the compile-time TEST option, even if they are active, nor does it know
about compile units written in unsupported languages.

For example, suppose load module mod1 contains compile units cu1 and cu2,
both compiled with the TEST option. The compile unit cu1 calls cux, contained
in load module mod2, which returns after it completes processing. The compile
unit cu2 contains a call to the CEETEST library service. When the call to CEETEST
initializes Debug Tool, only cu1 and cu2 are known to it. Debug Tool does not
recognize cux.

� The results of the execution of the initial commands list or commands file are
logged as comments in the session log. The session log can be used as a
commands file without having to edit out the results from a previous run.

� The initial command list, whether it consists of a command string included in
the run-time options or a primary commands file, can contain a USE command
to get commands from a secondary file. If invoked from the primary commands
file, a USE file takes on the characteristics of the primary commands file. See
“USE command” on page 336 for details.

� The initial command string is performed only once, when Debug Tool is first
initialized in the process.

� Commands in the preferences file are performed only once, when Debug Tool
is first initialized in the process.

� You can change the run-time TEST/NOTEST options at any time with the SET TEST

command. See “SET TEST” on page 326.

� The primary commands file is shared across multiple enclaves.

Run-time TEST option examples
The following examples of using the Run-Time TEST Option are provided to illustrate
run-time options available for your programs. They do not illustrate complete com-
mands. For more information on specifying run-time options, see “Invoking your
program for a debugging session” on page 29, and OS/390 Language Environment
Programming Guide.

 � NOTEST

Debug Tool is not invoked at program initialization. Note that a call to CEETEST,
PLITEST, or __ctest() causes Debug Tool to be invoked during the program's
execution.

 � TEST

Specifying TEST with no suboptions causes a check for other possible defi-
nitions of the suboption. For example, C and C++ allow default suboptions to
be selected at compile time using #pragma runopts. Similarly, PL/I offers the
PLIXOPT string. Language Environment provides the macro CEEXOPT. Using this
macro, you can specify installation and program-specific defaults. For more
information on using CEEXOPT, see OS/390 Language Environment Program-
ming Guide.

If no other definitions for the suboptions exist, the IBM-supplied default test
level is (ALL, \, PROMPT).

 � TEST(ALL,\,\,\)

 Chapter 3. Beginning a debugging session 27

 Invoking your program when starting a session

Debug Tool is not invoked initially; however, any condition or an attention in
your program causes Debug Tool to be invoked, as does a call to CEETEST,
PLITEST, or __ctest(). Neither a primary commands file nor preferences file is
used.

 � TEST(NONE,,\,\)

Debug Tool is not invoked initially and begins by running in a "production
mode", that is, with minimal effect on the processing of the program. However,
Debug Tool can be invoked using CEETEST, PLITEST, or __ctest().

 � TEST(ALL,test.scenario,PROMPT,prefer)

Debug Tool is invoked at the end of environment initialization, but before the
main program prolog has completed. The ddname prefer is processed as the
preferences file, and subsequent commands are found in data set
test.scenario. If all commands in the commands file are processed and you
issue a STEP command when prompted, or a STEP command is executed in the
commands file, the main block completes initialization (that is, its AUTOMATIC
storage is obtained and initial values are set). If Debug Tool is reentered later
for any reason, it continues to obtain commands from test.scenario repeating
this process until end-of-file is reached. At this point, commands are obtained
from your terminal.

 � TEST(ALL,,,MFI%Fððð:)

For CICS dual terminal and CICS batch, Debug Tool is invoked on the terminal
F000 at the end of the environment initialization.

� If you are working from a cooperative environment, that is, you are debugging
your host application from your workstation, the following examples apply:

TEST(,,,LU2:\) /\ Using LU2 suboption \/

TEST(,,,OSCAR:\) /\ Using APPC suboption \/

TEST(,,,APPC&OSCAR:\) /\ Using APPC suboption \/

TEST(,,,VADAPPC&OSCAR:\) /\ Using VADAPPC suboption \/

TEST(,,,VADTCPIP&ERNIE:\) /\ Using VADTCPIP suboption \/

TEST(,,,VADTCPIP&machine.somewhere.something.com:\)

TEST(,,,VADTCPIP&9.24.1ð4.79:\)

where OSCAR and ERNIE are workstation_ids.

Invoking your program when starting a debugging session
After you have decided what level of testing you want to employ during your debug-
ging session, you can invoke your program using the proper run-time TEST option.
If you are using Debug Tool, this requires no special procedures (although certain
considerations exist and are covered in “Invoking your program for a debugging
session” on page 29).

Invoking Debug Tool under CICS
To use Debug Tool under CICS, you need to ensure that you have completed all of
the required installation and configuration steps for CICS/ESA, Language Environ-
ment, and Debug Tool. See “Debugging CICS programs” on page 116 and the
appropriate language installation information.

You can invoke Debug Tool in three ways:

28 Debug Tool User's Guide and Reference

 Invoking your program when starting a session

� Single Terminal Mode . Debug Tool displays its screens on the same terminal
as the application. This can be set up using CEETEST, pragma, or CEEUOPT(TEST)

and using DTCN.

� Dual Terminal Mode . Debug Tool displays its screens on a different terminal
than the one used by the application. This can be set up with DTCN or CEDF.

 � Batch Mode

Debug Tool does not have a terminal, but uses a commands file for input and
writes output to the log. This can be set up using CEETEST, pragma, or
CEEUOPT(TEST).

See “Debugging CICS programs” on page 116 for more details.

Invoking your program for a debugging session
Invoking Debug Tool varies depending on the environment where you are debug-
ging your program. Before you begin your session, make sure all Debug Tool and
program libraries are available and that all necessary Debug Tool files, such as the
session log file, the primary commands file, the preferences file, and any desired
USE files are defined and created.

Invoking Debug Tool under MVS in TSO
To begin a debugging session, ensure your program has been compiled with the
compile-time TEST option, and take the following steps:

1. Make sure all Debug Tool data sets are available. This might involve defining
them as part of a STEPLIB library.

Note: High-level qualifiers and load library names will be specific to your
installation.

The installation options will determine whether or not this step is needed. See
the OS/390 Language Environment Programming Guide for more information.

2. Access all other data sets containing files your program needs.

3. If you want a session log file, allocate one. This is a file that keeps a record of
your debugging session, and can be used as a commands file during subse-
quent sessions. For more information on session log files, see “Using the
Session Log file to maintain a record of your session” on page 87.

4. Start your program with the run-time TEST option, specifying the appropriate
suboptions, or include a call to CEETEST, PLITEST, or __ctest() in the pro-
gram's source. For more information about these calls, see “Using alternative
Debug Tool invocation methods” on page 31.

After accessing all necessary data sets, the command line is used to define the
preferences file setup.pref and the session log file session.log as shown in the
following example:

ALLOCATE FILE(insppref) DATASET(setup.pref) REUSE

ALLOCATE FILE(insplog) DATASET(session.log) REUSE

CALL tstscrpt3 '/TEST'

No primary commands file is created. The run-time TEST option is entered from the
command line during invocation of the COBOL program tstscrpt3. Default run-
time suboptions are assumed, as well as the Language Environment default run-
time options for your installation.

 Chapter 3. Beginning a debugging session 29

 Invoking your program when starting a session

The following CLIST fragment shows how to define Debug Tool-related files and
invoke the C program prog1 with the run-time TEST option:

ALLOC FI(inspsafe) DA(debug.save) REUSE

ALLOC FI(insplog) DA(debug.log) REUSE

ALLOC FI(insppref) DA(debug.preferen) REUSE

CALL 'MYID.MYQUAL.LOAD(PROG1)' +

' TRAP(ON) TEST(,\,;,insppref)/'

Files include the session log file, debug.log; the preferences file, debug.preferen;
and the settings file, debug.save, a Debug Tool file that saves Debug Tool settings
for use in future debugging sessions. Its Debug Tool-supplied default ddname is
inspsafe. All necessary data sets must be available prior to invoking this CLIST.

For more information about Language Environment run-time options like TRAP(ON),
see OS/390 Language Environment Programming Guide.

Invoking your program from a terminal that works only in line mode results in a
line-mode session of Debug Tool. If you want to debug in line mode and you have
a 3270-compatible terminal that is capable of sustaining a full-screen session, you
must specify SET SCREEN OFF. You can specify this with the run-time TEST option by
including the command in a preferences file, or by specifying it as a command
string (for example, TEST(,\,"SET SCREEN OFF",insppref)). For more information
on line mode debugging, see “Using Debug Tool in line mode” on page 107.

Invoking Debug Tool under CMS
To begin a debugging session, ensure that you have compiled your program with
the compile-time TEST option and take the following steps:

1. Access the product minidisk where Debug Tool resides.

2. Access any other minidisks containing files your programs need.

3. Load any text decks your programs need. For example, to use PL/I, C,
COBOL and assembler on VM, the following MACLIB, TXTLIB and LOADLIB
definitions would be required:

GLOBAL MACLIB SCEEMAC OSMACRO

GLOBAL TXTLIB SCEELKED CMSLIB

GLOBAL LOADLIB SCEERUN

4. Create and define any Debug Tool commands files you need, such as a prefer-
ences file, a USE file, or a primary commands file.

5. Define the session log file. This is a file that keeps a record of your debugging
session, and can be used as a commands file during subsequent sessions.

6. Start your program with the run-time TEST option, specifying the appropriate
suboption.

Note: You can also include a call to CEETEST, PLITEST, or __ctest() in the
program's source.

After you access all necessary disks and load required text decks, the command
line is used to define the preferences file setup pref a and the session log file
seslog log a as shown in the following example:

30 Debug Tool User's Guide and Reference

 Using alternative invocation methods

FILEDEF insppref DISK setup pref a (LRECL 8ð RECFM F

FILEDEF insplog DISK seslog log a (LRECL 72 RECFM F

LOAD tstscrpt2

START \ TEST/

No primary commands file is created. The run-time TEST option is entered from the
command line during invocation of the C program tstscrpt2. Default suboptions
are assumed.

If you created a load module with GENMOD, enter:

FILEDEF insppref DISK setup pref a (LRECL 8ð RECFM F

FILEDEF insplog DISK seslog log a (LRECL 72 RECFM F

tstscrpt2 TEST/

The REXX EXEC shown below, called startup exec, is created to define all Debug
Tool-related files and invoke the COBOL program prog1 with the run-time TEST
option. prog1 must be a load module.

'FILEDEF insplog DISK dbg log a (LRECL 72 RECFM F'

'FILEDEF insppref DISK dbg pref a (LRECL 8ð RECFM F

'FILEDEF inspin DISK dbg cmds a (LRECL 72 RECFM F'

'FILEDEF inspsafe DISK dbg settings a (LRECL 8ð RECFM F'

'GENMOD prog1 '

'prog1 \ /TEST(,inspin,;,insppref)'

This assumes that the run-time CBLOPTS option was set to ON in the CEEDOPT or
CEEUOPT assembly programs containing defaults and user-defined Language
Environment options. See OS/390 Language Environment Programming Guide for
more information.

Files include the session log file, dbg log a, and dbg settings a, a Debug Tool file
that saves Debug Tool settings for use in future debugging sessions. Its Debug
Tool-supplied ddname is inspsafe. Also defined are two preallocated files: dbg
pref a (the Debug Tool preferences file) and dbg cmds a (the Debug Tool primary
commands file).

For more information about inspsafe, see “Customizing colors” on page 98 and
“Customizing settings” on page 99.

Using alternative Debug Tool invocation methods
Debug Tool can also be invoked directly from within your program using one of the
following methods:

� Language Environment provides the callable service CEETEST which is invoked
from Language Environment-enabled languages.

� For C or C++ programs, you can use a __ctest() function call or include a
#pragma runopts specification in your program.

Note: The __ctest() function is not supported in CICS.

� For PL/I programs, you can use a call to PLITEST or by including a PLIXOPT
string which specifies the correct run-time TEST suboptions to invoke Debug
Tool.

 Chapter 3. Beginning a debugging session 31

 Using alternative invocation methods

To invoke Debug Tool using these alternatives, you still need to be aware of the
TEST suboptions specified using NOTEST, CEEUOPT, or other "indirect" settings. See
“Other run-time TEST option considerations” on page 25 for more information.

Invoking Debug Tool with CEETEST
Using CEETEST, you can invoke Debug Tool from within your program and send it a
string of commands. If no command string is specified, or the command string is
insufficient, Debug Tool prompts you for commands from your terminal or reads
them from the commands file. In addition, you have the option of receiving a feed-
back code that tells you whether the invocation procedure was successful.

If you don't want to compile your program with hooks, you can use CEETEST calls to
invoke Debug Tool at strategic points in your program. If you decide to use this
method, you still need to compile your application so that symbolic information is
created.

Using CEETEST when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

 Usage notes

C/C++ Include leawi.h header file.

PL/I Include CEEIBMAW and CEEIBMCT. CEEIBMAW is in the Language Envi-
ronment SCEESAMP data set. See the example on page 35.

Batch and CICS Nonterminal Processes
We strongly recommend that you use feedback codes (fc) when using
CEETEST to initiate Debug Tool from a batch process or a CICS nonter-
minal task; otherwise, results are unpredictable.

The syntax for CEETEST is:

For C/C++

55──void──CEETEST──(─ ──┬ ┬──────────────────── ─,─ ──┬ ┬──── ─)───────────────5%
 └ ┘─string_of_commands─ └ ┘─fc─

For COBOL

55──CALL──"CEETEST"──USING──string_of_commands──,──fc────────────────────5%

For PL/I

55──CALL──CEETEST──(─ ──┬ ┬─\────────────────── ─,─ ──┬ ┬─\── ─)───────────────5%
 └ ┘─string_of_commands─ └ ┘─fc─

string_of_commands (input)
Halfword-length prefixed string containing a Debug Tool command list,
string_of_commands is optional.

If Debug Tool is available, the commands in the list are passed to the debugger
and carried out.

32 Debug Tool User's Guide and Reference

 Using alternative invocation methods

If the string_of_commands is omitted, Debug Tool will prompt for commands in
interactive mode.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service.

CEE000 Severity = 0
Msg_No = Not Applicable
Message = Service completed successfully

CEE2F2 Severity = 3
Msg_No = 2530
Message = A debugger was not available

Note: The CEE2F2 feedback code can also be obtained by MVS/JES batch
applications or CICS nonterminal tasks getting APPC allocation failures. For
example, either the Debug Tool environment was corrupted or the debug event
handler could not be loaded.

Language Environment provides a callable service called CEEDCOD to help you
decode the fields in the feedback code. Requesting the return of the feedback
code is recommended. See OS/390 Language Environment Programming Guide
for details.

For C/C++ and COBOL, if Debug Tool was invoked through CALL CEETEST the GOTO

command is only allowed after Debug Tool has returned control to your program via
STEP or GO.

The following examples show how to use CEETEST to invoke Debug Tool from each
language:

Examples of CEETEST function calls for C: In this example, a Null command
string is passed to Debug Tool and a pointer to the Language Environment feed-
back code is returned. If no other TEST run-time options have been compiled into
the program, the call to CEETEST invokes Debug Tool with all defaults in effect.
After it gains control, Debug Tool prompts you for commands.

#include <leawi.h>
#include <string.h>

#include <stdio.h>

int main(void) {

 _VSTRING commands;

 _FEEDBACK fc;

 strcpy(commands.string, "");

commands.length ═ strlen(commands.string);

 CEETEST(&commands, &fc);

}

In this example, a string of valid Debug Tool commands is passed to Debug Tool
and a pointer to Language Environment feedback code is returned. The call to
CEETEST invokes Debug Tool and the command string is processed. At statement
23, the values of x and y are displayed in the Log, and execution of the program
resumes. Barring further interrupts, Debug Tool regains control at program termi-

 Chapter 3. Beginning a debugging session 33

 Using alternative invocation methods

nation and prompts you for commands. The command LIST(z) is discarded when
the command GO is executed.

Note: If you include a STEP or GO in your command string, all commands after that
are not processed. The command string operates like a commands file.

#include <leawi.h>
#include <string.h>

#include <stdio.h>

int main(void) {

 _VSTRING commands;

 _FEEDBACK fc;

strcpy(commands.string, "AT LINE 23; {LIST(x); LIST(y);} GO; LIST(z)");

commands.length = strlen(commands.string);
...

 CEETEST(&commands, &fc);
...

}

In this example, a string of valid Debug Tool commands is passed to Debug Tool
and a pointer to the feedback code is returned. If the call to CEETEST fails, an
informational message is printed.

If the call to CEETEST succeeds, Debug Tool is invoked and the command string is
processed. At statement 3ð, the values of x and y are displayed in the Log, and
execution of the program resumes. Barring further interrupts, Debug Tool regains
control at program termination and prompts you for commands.

#include <leawi.h>
#include <string.h>

#include <stdio.h>

#define SUCCESS "\ð\ð\ð\ð"

int main (void) {

 int x,y,z;

 _VSTRING commands;

 _FEEDBACK fc;

strcpy(commands.string,"AT LINE 3ð { LIST(x); LIST(y); } GO;");

commands.length ═ strlen(commands.string);
...

 CEETEST(&commands,&fc);
...

if (memcmp(&fc,SUCCESS,4) ?═ ð) {

printf("CEETEST failed with message number %d\n",fc.tok_msgno);

 exit(2999);

 }

}

Examples of CEETEST calls for COBOL: A command string is passed to Debug
Tool at its invocation and the feedback code is returned. After it gains control,
Debug Tool becomes active and prompts you for commands or reads them from a
commands file.

For Debug Tool, remember to use the continuation character if your command
exceeds 72 characters. See “Continuation (full-screen and line mode)” on
page 195.

34 Debug Tool User's Guide and Reference

 Using alternative invocation methods

77 FC Picture x(12) Value ZEROES.

77 Debugger Picture x(7) Value 'CEETEST'.

ð1 Parms.

 AA Picture 99 Value 14.

BB Picture x(14) Value 'SET SCREEN ON;'.

CALL Debugger USING Parms FC.

A string of commands is passed to Debug Tool when it is invoked. After it gains
control, Debug Tool sets a breakpoint at statement 23, runs the LIST commands
and returns control to the program by running the GO command. The command
string is already defined and assigned to the variable COMMAND-STRING by the fol-
lowing declaration in the data division of your program:

ð1 COMMAND-STRING.

 ð5 AA Picture 99 Value 6ð.

ð5 BB Picture x(6ð) Value 'AT STATEMENT 23; LIST (x); LIST (y); GO;'.

In addition, the result of the call is returned in the feedback code, using a variable
defined as:

77 fc Picture x(12).

in the data division of your program. You are not prompted for commands.

CALL "CEETEST" USING COMMAND-STRING fc.

Examples of CEETEST calls for PL/I: Assuming all required declarations have
been made, no command string is passed to Debug Tool at its invocation and the
feedback code is returned. After it gains control, Debug Tool becomes active and
prompts you for commands or reads them from a commands file.

CALL CEETEST(\,\); /\ omit arguments \/

A command string is passed to Debug Tool at its invocation and the feedback code
is returned. After it gains control, Debug Tool becomes active and executes the
command string. Barring any further interruptions, the program runs to the
TERMINATION breakpoint, where Debug Tool prompts for further commands.

 Chapter 3. Beginning a debugging session 35

 Using alternative invocation methods

DCL ch char(5ð)

init('AT STATEMENT 1ð DO; LIST(x); LIST(y); END; GO;');

DCL 1 fb,

5 Severity Fixed bin(15),

 5 MsgNo Fixed bin(15),

 5 flags,

 8 Case bit(2),

 8 Sev bit(3),

 8 Ctrl bit(3),

 5 FacID Char(3),

5 I_S_info Fixed bin(31);

DCL CEETEST ENTRY (CHAR(\) VAR OPTIONAL,

 1 optional ,

254 real fixed bin(15), /\ MsgSev \/

254 real fixed bin(15), /\ MSGNUM \/

 254 /\ Flags \/,

 255 bit(2), /\ Flags_Case \/

255 bit(3), /\ Flags_Severity \/

 255 bit(3), /\ Flags_Control \/

 254 char(3), /\ Facility_ID \/

254 fixed bin(31)) /\ I_S_Info \/

 options(assembler) ;

CALL CEETEST(ch, fb);

This example assumes that you use predefined function prototypes and macros by
including CEEIBMAW, and predefined feedback code constants and macros by
including CEEIBMCT.

A command string is passed to Debug Tool which sets a breakpoint on every tenth
executed statement. Once a breakpoint is set, Debug Tool displays the current
location information and continues the execution. After the CEETEST call the feed-
back code is checked for proper execution.

Note: The feedback code returned is either CEE000 or CEE2F2. There is no way
to check the result of the execution of the command passed.

36 Debug Tool User's Guide and Reference

 Using alternative invocation methods

%INCLUDE CEEIBMAW;

%INCLUDE CEEIBMCT;

DCL ð1 FC FEEDBACK;

/\ if CEEIBMCT is NOT included, the following DECLARES need to be

provided: ---------- comment start -------------

Declare CEEIBMCT Character(8) Based;

Declare ADDR Builtin;

%DCL FBCHECK ENTRY;

%FBCHECK: PROC(fbtoken, condition) RETURNS(CHAR);

 DECLARE

 fbtoken CHAR;

 condition CHAR;

RETURN('(ADDR('||fbtoken||')–>CEEIBMCT ═ '||condition||')');

%END FBCHECK;

%ACT FBCHECK;

---------- comment end --------------- \/

Call CEETEST('AT Every 1ð STATEMENT \ Do; Q Loc; Go; End;'||

'List AT;', FC);

If ¬FBCHECK(FC, CEEððð)

Then Put Skip List('––––> ERROR! in CEETEST call', FC.MsgNo);

Invoking Debug Tool with PLITEST
For PL/I programs, the preferred method of invoking Debug Tool is to use the
built-in subroutine PLITEST. It can be used in exactly the same way as CEETEST,
except that you do not need to include CEEIBMAW or CEEIBMCT, or perform declara-
tions.

The syntax is:

55──CALL──PLITEST─ ──┬ ┬─────────────────────────────────── ─;──────────────5%
 └ ┘─(──character_string_expression──)─

character_string_expression
Specifies a list of Debug Tool commands. If necessary this is converted to a
fixed-length string.

Notes:

1. If Debug Tool executes a command in a CALL PLITEST command string that
causes control to return to the program (GO for example), any commands
remaining to be executed in the command string are discarded.

2. If you don't want to compile your program with hooks, you can use CALL
PLITEST statements as hooks and insert them at strategic points in your
program. If you decide to use this method, you still need to compile your appli-
cation so that symbolic information is created.

Examples of PLITEST calls for PL/I

CALL PLITEST;

No argument is passed to Debug Tool when it is invoked. After gaining control,
Debug Tool prompts you for commands.

CALL PLITEST('At statement 23 Do; List X; End; Go; List Y;');

 Chapter 3. Beginning a debugging session 37

 Using alternative invocation methods

A string of commands is passed to Debug Tool when it is invoked. After gaining
control, Debug Tool sets a breakpoint at statement 23, and returns control to the
program. You are not prompted for commands. In addition, the LIST Y; command
is discarded because of the execution of the GO command.

DCL ch Char(45) Init('At Statement 23 Do; List x; End;');

CALL PLITEST(ch);

Variable ch is declared as a character string and initialized as a string of com-
mands. The string of commands is passed to Debug Tool when it is invoked. After
it runs the commands, Debug Tool prompts you for more commands.

Invoking Debug Tool with the __ctest() function
You can also use the C/C++ library routine __ctest() or ctest() to invoke Debug
Tool. Add:

#include <ctest.h>

to your program to use the ctest() function.

Note: If you do not include ctest.h in your source or if you compile using the
option LANGLVL(ANSI), you must use __ctest() function.

The __ctest() function is not supported in CICS.

When a list of commands is specified with __ctest(), Debug Tool runs the com-
mands in that list. If you specify a null argument, Debug Tool gets commands by
reading from the supplied commands file or by prompting you. If control returns to
your application before all commands in the command list are run, the remainder of
the command list is ignored. Debug Tool will continue reading from the specified
commands file or prompt for more input.

If you do not want to compile your program with hooks, you can use __ctest()

function calls to invoke Debug Tool at strategic points in your program. If you
decide to use this method, you still need to compile your application so that sym-
bolic information is created.

Using __ctest() when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

The syntax for this option is:

55──int──__ctest───(1) ─(──char──\char_str_exp──)────────────────────────────5%

Note:
1 The syntax for ctest() and __ctest() is the same.

char_str_exp
Specifies a list of Debug Tool commands.

Examples of __ctest() calls for C/C++:

__ctest(NULL);

A null argument is passed to Debug Tool when it is invoked. After it gains control,
Debug Tool prompts you for commands (or reads commands from the primary
commands file, if specified).

38 Debug Tool User's Guide and Reference

 Using alternative invocation methods

__ctest("at line 23 {"

 " list x;"

 " list y;"

 "}"

 "go;"

 "list z;");

A string of commands is passed to Debug Tool when it is invoked. After it gains
control, Debug Tool sets a breakpoint at statement 23 and returns control to the
program. You are not prompted for commands. In this case, the command, LIST
z; is never executed because of the execution of the command GO.

char \ch = "at line 23 list x;";
...

__ctest(ch);

Variable ch is declared as a pointer to character string and initialized as a string of
commands. The string of commands is passed to Debug Tool when it is invoked.
After it runs the string of commands, Debug Tool prompts you for more commands.

#include <stdio.h>
#include <string.h>

char \ch ═ "at line 23 printf(\"x.y is %d\n\", x.y); go;";

char buffer[35.132];

strcpy(buffer, "at change x.y;");

__ctest(strcat(buffer, ch));

A string of commands is passed to Debug Tool when it is invoked. After Debug
Tool gains control, you are not prompted for commands. Debug Tool runs the
commands in the command string and returns control to the program by way of the
GO command.

Specifying run-time TEST option with #pragma runopts in C and C++
The run-time TEST option can be specified either when you invoke your program, or
directly in your source by using this #pragma:

#pragma runopts (test(suboption,suboption...))

This #pragma must appear before the first statement in your source file. For
example, if you specified the following in the source:

#pragma runopts (notest(all,\,prompt))

then entered TEST on the command line, the result would be

TEST(ALL,\,PROMPT).

TEST overrides the NOTEST option specified in the #pragma and, because TEST does
not contain any suboptions of its own, the suboptions ALL, \, and PROMPT remain in
effect.

If you specify NOEXECOPS, either by using a #pragma or with the compile-time
EXECOPS option, no command line run-time options take effect.

For more information on #pragma runopts, see OS/390 C/C++ User's Guide.

 Chapter 3. Beginning a debugging session 39

 Invoking your program with Debug Tool

Chapter 4. Debugging your programs in full-screen mode

The most common features of Debug Tool are described in this chapter to help you
get started using this tool to debug your programs. Language-specific examples
and explanations of the most common tasks are provided to help you quickly gain a
basic understanding of how to use Debug Tool.

The PF key definitions used in this chapter are the default settings.

Preparing for debugging
Before using Debug Tool you must compile at least one part of your program with
the compile-time TEST option. This inserts hooks, which are assembly instructions
that you can see in an assembly listing. The execution of these hooks enables
Debug Tool to gain control during program run time. A detailed description of the
compile-time TEST option for each language is provided in Chapter 2, “Preparing to
debug your program” on page 5.

The simplest way to compile your program while you are learning to use Debug
Tool is one of the following:

� for C and C++, compile your program with TEST
� for PL/I and COBOL, compile your program with TEST(ALL,SYM)

Link your program as usual, except for programs to be run under CICS where
member EQADCCXT must be included from the Debug Tool library.

Invoking your program with Debug Tool
Invoking your program with Debug Tool in one of the following environments is
described in detail in the appropriate sections in Chapter 7, “Using Debug Tool in
different modes and environments” on page 107.

 TSO
 IMS
 CICS
 DB2

This section includes some helpful hints to provide a simple path to help you learn
how to use Debug Tool.

One way to invoke Debug Tool is by using the Language Environment run-time
TEST option.

For TSO you need to include the Debug Tool library into your STEPLIB concat-
enation and invoke your program with the run-time TEST option as shown in the
following example for C, C++, and PL/I:

MYPROG TEST / prog arg list

For COBOL, invoke your program as follows:

MYPROG prog arg list / TEST

40  Copyright IBM Corp. 1995, 1998

 Basic tasks of Debug Tool

Contact your systems programmer if you do not know the name of the Debug Tool
library on your system.

For CICS, make sure Debug Tool is installed in your CICS region before you enter
DTCN to start the Debug Tool control transaction. Press PF4 to save the default
debugging profile. Press PF3 to exit from the DTCN transaction. Enter the name
of the transaction you want to debug.

If you build your application using the c89 or C++ OpenEdition Shell Utilities, do the
following steps:

1. Compile your source code as usual, but specify the –g option to generate
debugging information. The –g option is equivalent to the compile-time TEST

option under TSO or MVS batch. For example, to compile the C source file
fred.c from the u/mike/app directory, specify:

cd /u/mike/app

c89 –g –o "//PROJ.LOAD(FREAD)" fred.c

Note: The double quotes in the command-line above are required.

2. Set up your TSO environment, as described above.

3. Debug the program under TSO by entering the following:

FRED TEST ENVAR('PWD=/u/mike/app') /

Note: The single quotes in the command-line above are required.

ENVAR('PWS=/u/mike/app') sets the environment variable PWD to the path from
where the source files were compiled. Debug Tool uses this information to
determine from where it should read the source files.

If you are working in the MVS OpenEdition environment, you can put Debug Tool
into your STEPLIB and set up the Language Environment run-time TEST option
before invoking your program by writing a simple shell script as shown in the fol-
lowing example:

rundbg.sh - set up debug environment, and run program.

export STEPLIB═MVSID.TEST.LOAD:\

SYSID.DBGTOOL.SEQAMOD:SYSID.CEE18ð.SCEERUN

export _CEE_RUNTOPS═"TEST POSIX(ON)"

myprogram.exe

Ending a debug session
When you have finished debugging your program, you can either press PF3 (QUIT)
or enter QUIT on the command line to end your Debug Tool session.

Basic tasks of Debug Tool
This section describes how you interface to Debug Tool and describes how to navi-
gate through the windows provided by Debug Tool. It also describes how to navi-
gate through a debugging session and how to find help if you need it.

 Chapter 4. Debugging your programs in full-screen mode 41

 Basic tasks of Debug Tool

Debug Tool interface
Debug Tool has a command line for issuing commands and three windows:

The SOURCE window views your source code
The LOG window records your commands with Debug Tool's response
The MONITOR window continuously displays the value of monitored variables
and other items depending on the command used.

Saving your log file for future use
To get a record of how many times each line of your code was executed, take the
following steps:

1. Allocate the INSPLOG ddname if you want to keep a permanent record of the
results. Under CICS, instead of allocating the INSPLOG ddname, you must
issue the command:

SET LOG ON FILE fileid

where fileid is the data set name where LOG file output is written.

2. Issue the command:

SET FREQUENCY ON;

After you have entered the SET FREQUENCY ON command, your source window is
updated to show the current frequency count. Remember that this command
starts the statistic gathering to display the actual count, so if your application
has already executed a section of code, the data for these executed statements
will not be available.

If you want statement counts for the entire program, issue:

GO ;

LIST FREQUENCY \ ;

which lists the number of times each statement was run. When you quit, the
results are written to the LOG file. You can issue the LIST FREQUENCY \ at any
time, but it will only display the frequency count for the currently active compile
unit.

 Help
You can find help by either pressing PF1 or entering a question mark (?) on the
command line. This action lists all Debug Tool commands in the LOG window.
Putting a question mark after a partial command displays a list of possible subcom-
mands. For example, enter on the command line:

?

WINDOW ?

WINDOW CLOSE ?

WINDOW CLOSE SOURCE

Now reopen the SOURCE window with:

WINDOW OPEN SOURCE

to see the results.

42 Debug Tool User's Guide and Reference

 Basic tasks of Debug Tool

 Window control
The relative layout of the SOURCE, MONITOR and LOG windows can be changed
with the PANEL LAYOUT command. When you are displaying the windows you can
resize the windows by typing WINDOW SIZE on the command line, moving the cursor
to the new intersection point and then pressing ENTER.

 Finding text
To find a string within a window, place the string to be searched for in double
quotes (single quotes for a PL/I string) on the command line without pressing
ENTER, move the cursor into the window to be searched, then press PF5 (FIND).
Pressing PF5 will do repeat finds of the same string in the window where the cursor
resides.

 Scrolling
If the cursor is on the command line, you can page the SOURCE window up by
pressing PF7 and down by pressing PF8. To page through other windows, place
the cursor in the desired window and press PF7(UP) or PF8 (DOWN).

You can toggle one of the SOURCE, LOG, or MONITOR windows to full screen
(temporarily not displaying the others) by moving the cursor into the window you
want to zoom and pressing PF10(ZOOM). Another PF10 will toggle back. PF11(ZOOM
LOG) will toggle the LOG window the same way without the cursor needing to be in
the LOG window.

You can scroll to an absolute line of the source file displayed in the SOURCE
window by using the SCROLL command. For example, your source file is in the
SOURCE window and you want to see line 188. To get there, enter the following
command:

SCROLL TO 188

Changing source files
To change the code being viewed in the SOURCE window, you can overtype the
name after SOURCE: on the top line of the SOURCE window with the desired
name. This only works if the CU is already known to Debug Tool You might want
to issue the LIST NAMES CUS command first to determine which CUs are known.

Alternately you can enter the command:

LIST NAMES CUS

and a list of Compilation Units will be written to the LOG window, as shown in the
following example:

USERID.MFISTART.C(CALC)

USERID.MFISTART.C(PUSHPOP)

USERID.MFISTART.C(READTOKN)

You can overtype/insert characters on one of these lines in the LOG window and
press enter to display the modified text on the command line, for example:

SET QUALIFY CU "USERID.MFISTART.C(READTOKN)"

and then press ENTER to issue the command. Overtyping of a line in the LOG
and issuing them as commands is a way to save keystrokes and errors in long
commands.

 Chapter 4. Debugging your programs in full-screen mode 43

 Basic tasks of Debug Tool

Pressing PF4 (LIST) with the cursor on the command line brings up the Source
Identification Panel, where associations are made between source listings or source
files shown in the Source Window and their compile units. Overtype the
Listings/Source File field with the new name.

For C/C++ Only: For C/C++ compile units, Debug Tool requires a file containing
the source code. By default, when Debug Tool encounters a new C/C++ compile
unit, it looks for the source code in a file whose name is the one that was used in
the compile step.

For COBOL and PL/I Only: For COBOL and PL/I compile units, Debug Tool
requires a file containing the compiler listing. By default, when Debug Tool
encounters a new VS COBOL II or PL/I compile unit, it looks for the listing in a file
named hlq.cuname.LIST. For COBOL/370, COBOL for MVS, and COBOL for
OS/390, the Debug Tool looks for the listing in a partitioned data set member
named cuname.

Displaying the halted location
After displaying different source files and scrolling, you can go back to the halted
execution point by entering the following command:

SET QUALIFY RESET

Setting a line breakpoint
Pressing PF6(AT/CLEAR) when the cursor is over a particular executable line in the
SOURCE window sets or clears a line breakpoint for that line. You can temporarily
'turn them off' with DISABLE and back on with ENABLE.

Stepping through or running your program.
When Debug Tool comes up, none of your program has run yet (including C++
constructors and static object initialization).

Pressing PF2(STEP) runs your program, halting on the next hook encountered. If
you compiled with TEST for C or C++, or TEST(ALL,SYM) for COBOL or PL/I, STEP

performs one statement.

Pressing PF9(GO) runs your program until a breakpoint is reached, the program
ends, or a condition is raised.

Note: A condition being raised is determined by the setting of the run-time TEST
suboption test_level.

The command STEP OVER runs the called function without stepping into it. If you
accidentally step into a function when you meant to step over it, issue the STEP
RETURN command which steps to the return point (just after the call point).

Displaying a variable's value
To LIST the contents of a single variable, move the cursor to the variable name and
press PF4(LIST). The value of the variable is displayed in the LOG window.

44 Debug Tool User's Guide and Reference

 Using a C program for Debug Tool session

Continuously displaying a variable's value
To continuously display or monitor a variables value, you can issue most LIST com-
mands preceded by the word MONITOR. For example, enter:

MONITOR LIST num ;

and the output for this command is continuously displayed in the MONITOR
window. The MONITOR command makes it easy to watch values while stepping
through your program.

Setting a PF key
Suppose you want to set PF1 to be the STEP OVER command with the message
STEPOVER appearing under the PF1 key. You do it by entering:

SET PF1 "STEPOVER" = STEP OVER;

Error numbers for messages in the LOG window
When an error message shows up in the LOG window, you can also get the
message ID number to show up as

EQA18ð7E The command element d is ambiguous.

instead of

The command element d is ambiguous.

by modifying your profile. Use the PANEL PROFILE command and set Show
message ID numbers to YES by overtyping.

For error message descriptions see Appendix E, “Debug Tool Messages” on
page 355.

Finding a renamed source or Listing file using Debug Tool
At compile time, the source or listing files might have had different names than they
do now.

Pressing PF4 (LIST) with the cursor on the command line brings up the Source
Identification Panel, where associations are made between compile listings or
source files shown in the Source Window and their compile units. Overtype the
Listing/Source file field with the new name. If you need to do this repeatedly, note
the SET SOURCE ON commands generated in the LOG window. You can save these
commands in a file and reissue them with the USE command for future invocations
of Debug Tool.

Using a C program to demonstrate a Debug Tool session
This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your C applications by using an example C
program (CALC) to demonstrate how they're used.

The CALC program is referred to in the following C Tasks section. It is a simple
calculator which reads its input from a character buffer. If integers are read they
are pushed on a stack. If one of the operators + − * / is read, the top two elements
are popped off the stack, the operation is performed on them and the result is
pushed on the stack. The = operator writes out the value of the top element of the
stack to a buffer.

 Chapter 4. Debugging your programs in full-screen mode 45

 Using a C program for Debug Tool session

/\----- FILE CALC.H --\/

/\ \/

/\ Header file for CALC.C PUSHPOP.C READTOKN.C \/

/\ a simple calculator \/

/\--\/

typedef enum toks {

 T_INTEGER,

 T_PLUS,

 T_TIMES,

 T_MINUS,

 T_DIVIDE,

 T_EQUALS,

 T_STOP

} Token;

Token read_token(char buf[]);

typedef struct int_link {

struct int_link \ next;

 int i;

} IntLink;

typedef struct int_stack {

IntLink \ top;

} IntStack;

extern void push(IntStack \, int);

extern int pop(IntStack \);

46 Debug Tool User's Guide and Reference

 Using a C program for Debug Tool session

/\----- FILE CALC.C --\/

/\ \/

/\ A simple calculator which does operations on integers which \/

/\ are pushed and popped on a stack \/

/\--\/

#include <stdio.h>

#include <stdlib.h>

#include "calc.h"

IntStack stack ═ { ð };

main()

{

 Token tok;

 char word[1ðð];

 char buf_out[1ðð];

 int num;

 for(;;)

 {

 tok═read_token(word);

 switch(tok)

 {

 case T_STOP:

 break;

 case T_INTEGER:

num ═ atoi(word);

push(&stack,num); /\ .CALC1/ statement \/
 break;

 case T_PLUS:

push(&stack, pop(&stack)+pop(&stack));

 break;

 case T_MINUS:

num ═ pop(&stack);

 push(&stack, num-pop(&stack));

 break;

 case T_TIMES:

push(&stack, pop(&stack)\pop(&stack));

 break;

 case T_DIVIDE:

num ═ pop(&stack);

push(&stack, num/pop(&stack)); /& .CALC2/ statement \/
 break;

 case T_EQUALS:

num ═ pop(&stack);

sprintf(buf_out,"═ %d ",num);

 push(&stack,num);

 break;

 }

 if (tok══T_STOP)

 break;

 }

 return ð;

}

 Chapter 4. Debugging your programs in full-screen mode 47

 Using a C program for Debug Tool session

/\----- FILE PUSHPOP.C ---\/

/\ \/

/\ A push and pop function for a stack of integers \/

/\--\/

#include <stdlib.h>

#include "calc.h"

/\--\/

/\ input: stk - stack of integers \/

/\ num - value to push on the stack \/

/\ action: get a link to hold the pushed value, push link on stack \/

/\ \/

extern void push(IntStack \ stk, int num)

{

IntLink \ ptr;

ptr ═ (IntLink \) malloc(sizeof(IntLink)); /\ .PUSHPOP1/ \/

ptr–>i ═ num; /\ .PUSHPOP2/ statement \/
ptr–>next ═ stk–>top;

 stk–>top ═ ptr;

}

/\--\/

/\ return: int value popped from stack \/

/\ action: pops top element from stack and gets return value from it \/

/\--\/

extern int pop(IntStack \ stk)

{

IntLink \ ptr;

 int num;

 ptr ═ stk–>top;

 num ═ ptr–>i;

stk–>top ═ ptr–>next;

 free(ptr);

 return num;

}

48 Debug Tool User's Guide and Reference

 Using a C program for Debug Tool session

/\----- FILE READTOKN.C --\/

/\ \/

/\ A function to read input and tokenize it for a simple calculator \/

/\--\/

#include <ctype.h>

#include <stdio.h>

#include "calc.h"

/\--\/

/\ action: get next input char, update index for next call \/

/\ return: next input char \/

/\--\/

static char nextchar(void)

{

/\--\/

/\ input action: \/

/\ 2 push 2 on stack \/

/\ 18 push 18 \/

/\ + pop 2, pop 18, add, push result (2ð) \/

/\ ═ output value on the top of the stack (2ð) \/

/\ 5 push 5 \/

/\ / pop 5, pop 2ð, divide, push result (4) \/

/\ ═ output value on the top of the stack (4) \/

/\--\/

char \ buf_in ═ "2 18 + ═ 5 / ═ ";

static int index; /\ starts at ð \/

 char ret;

ret ═ buf_in[index];

 ++index;

 return ret;

}

/\--\/

/\ output: buf - null terminated token \/

/\ return: token type \/

/\ action: reads chars through nextchar() and tokenizes them \/

/\--\/

Token read_token(char buf[])

{

 int i;

 char c;

/\ skip leading white space \/

 for(c═nextchar();

 isspace(c);

 c═nextchar())

 ;

buf[ð] ═ c; /\ get ready to return single char e.g."+" \/

buf[1] ═ ð;

 switch(c)

 {

case '+' : return T_PLUS;

case '– : return T_MINUS;

case '\' : return T_TIMES;

case '/' : return T_DIVIDE;

case '═' : return T_EQUALS;

 default:

i ═ ð;

while (isdigit(c)) {

buf[i++] ═ c;

c ═ nextchar();

 }

buf[i] ═ ð;

 if (i══ð)

 return T_STOP;

 else

 return T_INTEGER;

 }

}

 Chapter 4. Debugging your programs in full-screen mode 49

 C tasks

 C tasks
The following sections identify typical tasks you might want to perform while using
Debug Tool with your C program and explanations on how to accomplish these
tasks. The CALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain functions are called
To halt just before read_token is called, issue the command:

AT CALL read_token ;

To halt just after read_token is called, issue the command:

AT ENTRY read_token ;

To take advantage of either of the above actions, you must compile your program
with the compile-time TEST option.

Modifying the value of a variable
To LIST the contents of a single variable, move the cursor to the variable name
and press PF4(LIST). The value is displayed in the LOG window. This is equiv-
alent to entering LIST TITLED variable on the command line. For instance, run the
CALC program to the statement labeled .CALC1/. Move the cursor over num and
press PF4(LIST). The following appears in the LOG window:

LIST (num) ;

num ═ 2

To modify the value of num to 22, overtype the num = 2 line to num = 22, press
ENTER to put it on the command line, and press ENTER again to issue the
command.

You can enter most C expressions on the command line.

Now step into the call to push() by pressing PF2(STEP) and step until the statement
labeled PUSHPOP2 is reached. To view the attributes of variable ptr, issue the
Debug Tool command:

DESCRIBE ATTRIBUTES \ptr;

The result in the LOG window is:

ATTRIBUTES for \ ptr

struct int_link {

struct int_link \next;

 int i;

 }

You can use this action as a simple browser for structures and unions.

You can list all the values of the members of the structure pointed to by ptr with the
command:

LIST \ptr ;

with results in the LOG window appearing something like this:

LIST \ ptr ;

(\ ptr).next ═ ðxð

(\ ptr).i ═ ð

50 Debug Tool User's Guide and Reference

 C tasks

You can change the value of a structure member by issuing the assignment as a
command as in the following example:

(\ ptr).i = 33 ;;

Stopping on a line only if a condition is true
Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering GO. For example, in main you want to stop
at T_DIVIDE only if the divisor is 0 (before the exception occurs). Set the breakpoint
like this:

AT 39 { if(num != ð) GO; }

Line 39 is the statement labeled .CALC2/. The command will cause Debug Tool to
stop at line 39. If the value of num is not 0, the program will continue. The
command causes Debug Tool to stop on line 39 only if the value of num is 0.

Debugging when only a few parts are compiled with TEST
Suppose you want to set a breakpoint at entry to function push() in file
PUSHPOP.C. PUSHPOP.C has been compiled with TEST but the other files have
not. Debug Tool comes up with an empty SOURCE window. To display the com-
pilation units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are known
to Debug Tool. Depending on the compiler you are using, or if
"USERID.MFISTART.C(PUSHPOP)" is fetched later on by the application, this compile
unit might not be known to Debug Tool. If it is displayed, enter:

SET QUALIFY CU "USERID.MFISTART.C(PUSHPOP)"

AT ENTRY push;

GO ;

or

AT ENTRY "USERID.MFISTART.C(PUSHPOP)":>push
GO;

If it is not displayed, set an appearance breakpoint as follows:

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" AT ENTRY push; GO;

The only purpose for this APPEARANCE breakpoint is to gain control the first time a
function in the PUSHPOP compilation unit is run. When that happens, you can set
a breakpoint at entry to push() like this:

AT ENTRY push;

Capturing output to stdout
To redirect stdout to the LOG window, issue the following command:

SET INTERCEPT ON FILE stdout ;

With this set, you will capture not only stdout from your program, but also from
interactive function calls. For example, you can interactively call printf on the
command line to display a null terminated string by entering:

 Chapter 4. Debugging your programs in full-screen mode 51

 C tasks

printf(sptr);

You might find this easier than using LIST STORAGE.

Invoking interactive function calls
You can invoke a library function (such as strlen) or one of the program functions
interactively by calling it on the command line. In the next example, we call push()
interactively to push one more value on the stack just before a value is popped off.

AT CALL pop ;

GO ;

push(77);

GO ;

The calculator will produce different results than before because of the additional
value pushed on the stack.

Displaying raw storage
A char \ variable ptr can point to a piece of storage containing printable charac-
ters. To display the first 20 characters enter:

LIST STORAGE(\ptr,2ð)

If the string is null terminated, you can also use an interactive function call on the
command line,as in:

puts(ptr) ;

Debugging a DLL
Build PUSHPOP.C as a DLL, exporting push() and pop(). Build CALC.C and
READTOKN.C as the program which imports push() and pop() from the DLL
named PUSHPOP. When the application CALC starts the DLL, PUSHPOP will not
be known to Debug Tool. Use the AT APPEARANCE breakpoint to gain control in the
DLL the first time code in that compilation unit appears, as shown in the following
example:

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;

GO ;

The only purpose of this APPEARANCE breakpoint is to gain control the first time a
function in the PUSHPOP compilation unit is run. When this happens, you can set
breakpoints in PUSHPOP.

Getting a function traceback
Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;

For example, if you run the CALC example with the commands:

AT ENTRY read_token ;

GO ;

LIST CALLS ;

the LOG will contain something like:

At ENTRY in C function "USERID.MFISTART.C(READTOKN)" :> read_token.
From LINE 18 in C function "USERID.MFISTART.C(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

52 Debug Tool User's Guide and Reference

 C tasks

Tracing the run-time path for code compiled with TEST
To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file and USE them when
Debug Tool initially displays your program. Assuming you have a data set
USERID.DTUSE(TRACE) that contains the following Debug Tool commands:

int indent;

indent ═ ð;

SET INTERCEPT ON FILE stdout;

AT ENTRY \ { \

 ++indent; \

if (indent < ð) indent ═ ð; \

printf("%\.s>%s\n", indent, " ", %block); \

 GO; \

}

AT EXIT \ {\

if (indent < ð) indent ═ ð; \

printf("%\.s<%s\n", indent, " ", %block); \

 --indent; \

 GO; \

}

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the use file will be
displayed in the log window.

int foo(int i, int j) {

 return i+j;

}

int main(void) {

 return foo(1,2);

}

The following trace in the LOG window is displayed after running the sample
program, with the Use file as a source of input for Debug Tool commands:

>main
 >foo

 <foo

<main

If you do not want to create the Use file, you can enter the commands through the
command line, and the same effect is achieved.

Finding unexpected storage overwrite errors
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example where
function set_i changes more than the caller expects it to change.

 Chapter 4. Debugging your programs in full-screen mode 53

 C tasks

struct s { int i; int j;};

struct s a ═ { ð, ð };

/\ function sets only field i \/

void set_i(struct s \ p, int k)

{

p–>i ═ k;

p–>j ═ k; /\ error, it unexpectedly sets field j also \/

}

main() {

 set_i(&a,123);

}

Find the address of a with the command

LIST &(a.j) ;

Suppose the result is ðx7ð42Að4. To set a breakpoint which watches for a change
in storage values starting at that address for the next 4 bytes, issue the command:

AT CHANGE %STORAGE(ðx7ð42Að4,4)

When the program is run, Debug Tool will halt if the value in this storage changes.

Finding uninitialized storage errors
To help find your uninitialized storage errors, run you program with the Language
Environment run-time TEST and STORAGE options. In the following example:

TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the heap.
For example, storage allocated through malloc() is filled with the byte 0xFD. If you
see this byte repeated through storage, it is likely uninitialized heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by calling free() might be filled
with the byte 0xFB. If you see this byte repeated through storage, it is likely
storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated through storage, it is likely uninitial-
ized auto storage. The values chosen here are odd and large, to maximize early
problem detection. For example, if you attempt to branch to an odd address you
will get an exception immediately.

As an example of uninitialized heap storage, run program CALC with the run-time
STORAGE option as STORAGE(FD,FB,F9) to the line labeled PUSHPOP2 and issue the
command:

LIST \ptr ;

You will see the byte fill for uninitialized heap storage as the following example
shows:

LIST \ ptr ;

(\ ptr).next ═ ðxFDFDFDFD

(\ ptr).i ═ –33686ð19

54 Debug Tool User's Guide and Reference

 Using a C++ program for Debug Tool session

Setting a breakpoint to halt before calling a NULL function
Calling an undefined function or calling a function through a function pointer which
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:

AT CALL ð

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

Using a C++ program to demonstrate a Debug Tool session
This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your C++ applications by using an example C++
program (CALC) to demonstrate how they're used.

The CALC program is referred to in the following C++ Tasks section. It is a simple
calculator which reads its input from a character buffer. If integers are read they
are pushed on a stack. If one of the operators + − * / is read, the top two elements
are popped off the stack, the operation is performed on them and the result is
pushed on the stack. The = operator writes out the value of the top element of the
stack to a buffer.

/\----- FILE CALC.HPP --\/

/\ \/

/\ Header file for CALC.CPP PUSHPOP.CPP READTOKN.CPP \/

/\ a simple calculator \/

/\--\/

typedef enum toks {

 T_INTEGER,

 T_PLUS,

 T_TIMES,

 T_MINUS,

 T_DIVIDE,

 T_EQUALS,

 T_STOP,

} Token;

extern "C" Token read_token(char buf[]);

class IntLink {

 private::

 int i;

IntLink \ next;

 public:

 IntLink();

 ˜IntLink();

 int get_i();

void set_i(int j);

IntLink \ get_next();

void set_next(IntLink \ d);

};

class IntStack {

 private:

IntLink \ top;

 public:

 IntStack();

 ˜IntStack();

 void push(int);

 int pop();

};

 Chapter 4. Debugging your programs in full-screen mode 55

 Using a C++ program for Debug Tool session

/\----- FILE CALC.CPP --\/

/\ \/

/\ A simple calculator which does operations on integers which \/

/\ are pushed and popped on a stack \/

/\--\/

#include <stdio.h>

#include <stdlib.h>

#include "calc.hpp"

IntStack stack;

int main()

{

 Token tok;

 char word[1ðð];

 char buf_out[1ðð];

 int num;

 for(;;)

 {

 tok═read_token(word);

 switch(tok)

 {

 case T_STOP:

 break;

 case T_INTEGER:

num ═ atoi(word);

stack.push(num); /\ .CALC1/ statement \/
 break;

 case T_PLUS:

 stack.push(stack.pop()+stack.pop());

 break;

 case T_MINUS:

num + stack.pop();

 stack.push(num-stack.pop());

 break;

 case T_TIMES:

 stack.push(stack.pop()\stack.pop());

 break;

 case T_DIVIDE:

num ═ stack.pop();

stack.push(num/stack.pop()); /\ .CALC2/ statement \/

 break;

 case T_EQUALS:

num ═ stack.pop();

sprintf(buf_out,"═ %d ",num);

 stack.push(num);

 break;

 }

 if (tok══T_STOP)

 break;

 }

 return ð;

}

56 Debug Tool User's Guide and Reference

 Using a C++ program for Debug Tool session

/\----- FILE: PUSHPOP.CPP --\/

/\ \/

/\ Push and pop functions for a stack of integers \/

/\--\/

#include <stdio.h>

#include <stdlib.h>

#include "calc.hpp"

/\--\/

/\ input: num - value to push on the stack \/

/\ action: get a link to hold the pushed value, push link on stack \/

/\--\/

void IntStack::push(int num) {

IntLink \ ptr;

ptr ═ new IntLink;

 ptr–>set_i(num);

 ptr–>set_next(top);

top ═ ptr;

}

/\--\/

/\ return: int value popped from stack (ð if stack is empty) \/

/\ action: pops top element from stack and get return value from it \/

/\--\/

int IntStack::pop() {

IntLink \ ptr;

 int num;

ptr ═ top;

num ═ ptr–>get_i();

top ═ ptr–>get_next();

 delete ptr;

 return num;

}

IntStack::IntStack() {

top ═ ð;

}

IntStack::˜IntStack() {

 while(top)

 pop();

}

IntLink::IntLink() { /\ constructor leaves elements unassigned \/

}

IntLink::˜IntLink() {

}

void IntLink::set_i(int j) {

i ═ j;

}

int IntLink::get_i() {

 return i;

}

void IntLink::set_next(IntLink \ p) {

next ═ p;

}

IntLink \ IntLink::get_next() {

 return next;

}

 Chapter 4. Debugging your programs in full-screen mode 57

 Using a C++ program for Debug Tool session

/\----- FILE READTOKN.CPP --\/

/\ \/

/\ A function to read input and tokenize it for a simple calculator \/

/\--\/

#include <ctype.h>

#include <stdio.h>

#include "calc.hpp"

/\--\/

/\ action: get next input char, update index for next call \/

/\ return: next input char \/

/\--\/

static char nextchar(void)

{

 /\ input action

 \ ----- ------

\ 2 push 2 on stack

 \ 18 push 18

\ + pop 2, pop 18, add, push result (2ð)

\ ═ output value on the top of the stack (2ð)

 \ 5 push 5

\ / pop 5, pop 2ð, divide, push result (4)

\ ═ output value on the top of the stack (4)

 \/

char \ buf_in ═ "2 18 + ═ 5 / ═ ";

static int index; /\ starts at ð \/

 char ret;

ret ═ buf_in[index];

 ++index;

 return ret;

}

/\--\/

/\ output: buf - null terminated token \/

/\ return: token type \/

/\ action: reads chars through nextchar() and tokenizes them \/

/\--\/

extern "C"

Token read_token(char buf[])

{

 int i;

 char c;

/\ skip leading white space \/

 for(c═nextchar();

 isspace(c);

 c=nextchar())

 ;

buf[ð] ═ c; /

\ get ready to return single char e.g. "+" \/

buf[1] ═ ð;

 switch(c)

 {

case '═' : return T_PLUS;

case '–' : return T_MINUS;

case '\' : return T_TIMES;

case '/' : return T_DIVIDE;

case '═' : return T_EQUALS;

 default:

i ═ ð;

while (isdigit(c)) {

buf[i++] ═ c;

c ═ nextchar();

 }

buf[i] ═ ð;

 if (i══ð)

 return T_STOP;

 else

 return T_INTEGER;

 }

}

58 Debug Tool User's Guide and Reference

 C++ tasks

 C++ tasks
The following sections identify typical tasks you might want to perform while using
Debug Tool with your C++ program and explanations on how to accomplish these
tasks. The CALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain functions are called
You need to include the C++ signature along with the function name to set an AT
ENTRY or AT CALL breakpoint for a C++ function.

To facilitate entering the breakpoint, you can display PUSHPOP.CPP in the source
window by overtyping the name of the file on the top line of the source window.
This makes PUSHPOP.CPP your currently qualified program. You can then issue
the command;

LIST NAMES

which displays the names of all the blocks and variables for the currently qualified
program. Debug Tool displays the following in the LOG window:

IntStack::˜IntStack()

IntStack::IntStack()

IntLink::get_i()

IntLink::get_next()

IntLink::˜IntLink()

IntLink::set_i(int)

IntLink::set_next(IntLink\)

IntLink::IntLink()

Now you can save some strokes by inserting the command next to the block name.

To halt just before IntStack::push(int) is called, insert AT CALL next to the func-
tion signature, and by pressing the enter key, the entire command will be placed in
the command line. Now, with AT CALL IntStack::push(int) ; in the command
line, you can enter the command:

AT CALL IntStack::push(int) ;

To halt just after IntStack::push(int) is called, issue the command:

AT ENTRY IntStack::push(int) ;

in the same way as the AT CALL command.

To be able to halt, the file with the calling code must be compiled with the compile-
time TEST option.

Modifying the value of a variable
To LIST the contents of a single variable, move the cursor to the variable name and
press PF4(LIST). The value is displayed in the LOG window. This is equivalent to
entering LIST TITLED variable on the command line.

For example, run the CALC program and step into the first call of function
IntStack::push(int) until just after the IntLink has been allocated.

LIST TITLED;

will display in the LOG window all the variables that are valid for the current
context. Below is the output from the command:

 Chapter 4. Debugging your programs in full-screen mode 59

 C++ tasks

this = ðx7ð427ð8

ptr ═ ðx7ð42Aðð

num ═ 2

To modify the value of num to 22, overtype the num = 2 line to be num = 22, press
ENTER to put it on the command line and press ENTER again to issue the
command.

You can enter most C++ expressions on the command line.

To view the attributes of variable ptr in IntStack::push(int) issue the Debug Tool
command:

DESCRIBE ATTRIBUTES \ptr;

The result in the LOG window is:

ATTRIBUTES for \ ptr

class IntLink {

signed int i;

struct IntLink \next;

 }

So for most classes, structures, and unions, this can act as a simple browser.

You can list all the values of the data members of the class object pointed to by
ptr with the command:

LIST \ptr ;

with results in the LOG window similar to:

LIST \ ptr ;

(\ ptr).next ═ ðxð

(\ ptr).i ═ ð

You can change the value of data member of a class object by issuing the assign-
ment as a command as in this example:

(\ ptr).i = 33 ;

Stopping on a line only if a condition is true
Often a particular part of your program works fine for the first few thousand times,
but fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering GO. For example, in main you want to stop
in T_DIVIDE only if the divisor is 0 (before the exception occurs). Set the breakpoint
like this:

AT 39 { if(num != ð) GO; }

Line 39 is the statement labeled .CALC2/. The command causes Debug Tool to
stop at line 39. If the value of num is not 0, the program will continue. Debug Tool
stops on line 39 only if num is 0.

Viewing and modifying data members of the this pointer
If you step into a class method, for example, one for class IntLink, the command:

LIST TITLED ;

responds with a list which includes this. With the command:

DESCRIBE ATTRIBUTES \this ;

60 Debug Tool User's Guide and Reference

 C++ tasks

you will see the types of the data elements pointed to by the this pointer. With the
command:

LIST \this ;

you will list the data member of the object pointed to and see something like:

 LIST \ this ;

(\ this).i ═ 4

(\ this).next ═ ðxð

in the LOG window. To modify element i, enter either the command:

i = 2ðð1;

or, if you have ambiguity (for example, you also have an auto variable named i),
enter:

(\ this).i = 2ðð1 ;

Debugging when only a few parts are compiled with TEST
Suppose you want to set a breakpoint at entry to function IntStack::push(int) in
the file PUSHPOP.CPP. PUSHPOP.CPP has been compiled with TEST but the
other files have not. Debug Tool comes up with an empty SOURCE window. To
display the compilation units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are known
to Debug Tool.

Depending on the compiler you are using, or if USERID.MFISTART.CPP(PUSHPOP) is
fetched later on by the application, this compile unit might or might not be known to
Debug Tool, and the PDS member PUSHPOP might or might not be displayed. If it
is displayed, enter:

SET QUALIFY CU "USERID.MFISTART.CPP(PUSHPOP)"

AT ENTRY IntStack::push(int) ;

GO ;

or

AT ENTRY "USERID.MFISTART.CPP(PUSHPOP)":>push
GO

If it is not displayed, you need to set an appearance breakpoint as follows:

AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" AT ENTRY push; GO;

The only purpose of this APPEARANCE breakpoint is to gain control the first time a
function in the PUSHPOP compilation unit is run. When that happens you can, for
example, set a breakpoint at entry to IntStack::push(int) as follows:

AT ENTRY IntStack::push(int) ;

 Chapter 4. Debugging your programs in full-screen mode 61

 C++ tasks

Capturing output to stdout
To redirect stdout to the LOG window, issue the following command:

SET INTERCEPT ON FILE stdout ;

With this set you will not only capture stdout from your program, but also from
interactive function calls. For example, you can interactively use cout on the
command line to display a null terminated string by entering:

cout << sptr ;

You might find this easier than using LIST STORAGE.

Note: SET INTERCEPT is not supported under CICS.

Invoking interactive function calls
You can invoke a library function (such as strlen) or one of the programs functions
interactively by calling it on the command line. The same is true of C linkage func-
tions such as read_token. You cannot call C++ linkage functions interactively.

In the example below, we call read_token interactively.

AT CALL read_token;

GO;

read_token(word);

The calculator produces different results than before because of the additional
token removed from input.

Displaying raw storage
A char \ variable ptr can point to a piece of storage containing printable charac-
ters. To display the first 20 characters, enter;

LIST STORAGE(\ptr,2ð)

If the string is null terminated, you can also use an interactive function call on the
command line as shown in this example:

puts(ptr) ;

Debugging a DLL
Build PUSHPOP.CPP as a DLL, exporting IntStack::push(int) and IntStack::pop().
Build CALC.CPP and READTOKN.CPP as the program which imports
IntStack::push(int) and IntStack::pop() from the DLL named PUSHPOP. When the
application CALC starts, the DLL PUSHPOP is not known to Debug Tool. Use the
AT APPEARANCE breakpoint, as shown in the following example, to gain control in the
DLL the first time code in that compile unit appears.

AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;

GO ;

The only purpose of this APPEARANCE breakpoint is to gain control the first time a
function in the PUSHPOP compilation unit is run. When this happens, you can set
breakpoints in PUSHPOP.

62 Debug Tool User's Guide and Reference

 C++ tasks

Getting a function traceback
Often when you get close to a programming error, you want to know how you got
into that situation, especially what the traceback of calling functions is. To get this
information, issue the command:

LIST CALLS ;

For example, if you run the CALC example with the following commands:

AT ENTRY read_token ;

GO ;

LIST CALLS ;

the LOG window will contain something like:

At ENTRY in C function "USERID.MFISTART.CPP(READTOKN)" :> read_token.
From LINE 18 in C function "USERID.MFISTART.CPP(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

Getting a run-time frequency count
To get a record of how many times each line of your code is executed, take the
following steps:

1. Allocate the INSPLOG ddname if you want to keep a permanent record of the
results. Under CICS, instead of allocating the INSPLOG ddname, issue the
following command:

SET LOG ON FILE fileid

where fileid is the data set name of where LOG file output is written.

2. Issue the command:

SET FREQUENCY ON;

After you have entered the SET FREQUENCY ON command, your source window is
updated to show the current frequency count. One thing to keep in mind is that
the command actually starts the statistic gathering to display the actual count.
If your application has already executed a section of code, the data for those
previously executed statements won't be available.

If you want statement counts for the entire program, issue the following
commands:

GO ;

LIST FREQUENCY \ ;

which list the number of times each statement was run. When you quit, the
results are written to the LOG file. At any time, you can issue the LIST
FREQUENCY \; but it will only display the frequency count for the currently active
compile unit.

Tracing the run-time path for code compiled with TEST
To trace a program showing the entry and exit of that program without requiring
any changes to it, place the following Debug Tool commands, shown in the
example below, in a file and USE them when Debug Tool initially displays your
program. Assume you have a data set that contains USERID.DTUSE(TRACE) and
contains the following Debug Tool commands:

 Chapter 4. Debugging your programs in full-screen mode 63

 C++ tasks

int indent;

indent ═ ð;

SET INTERCEPT ON FILE stdout;

AT ENTRY \ { \

 ++indent; \

if (indent < ð) indent ═ ð; \

printf("%\.s>%s\n", indent, " ", %block); \

 GO; \

}

AT EXIT \ {\

if (indent < ð) indent ═ ð; \

printf("%\.s<%s\n", indent, " ", %block); \

 --indent; \

 GO; \

}

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the use file is dis-
played in the log window:

int foo(int i, int j) {

 return i+j;

}

int main(void) {

 return foo(1,2);

}

The following trace in the LOG window is displayed after running the sample
program, using the use file as a source of input for Debug Tool commands:

>main
 >foo(int,int)

 <foo(int,int)

<main

If you do not want to create the use file, you can enter the commands through the
command line, and the same effect will be achieved.

Finding unexpected storage overwrite errors
During program run time, some storage might unexpectedly change its value and
you would like to find out when and where this happened. Consider this simple
example where function set_i changes more than the caller expects it to change.

struct s { int i; int j;};

struct s a ═ { ð, ð };

/\ function sets only field i \/

void set_i(struct s \ p, int k)

{

p–>i ═ k;

p–>j ═ k; /\ error, it unexpectedly sets field j also \/

}

main() {

 set_i(&a,123);

}

Find the address of a with the command:

64 Debug Tool User's Guide and Reference

 C++ tasks

LIST &(a.j) ;

Suppose the result is ðx7ð42Að4. To set a breakpoint which watches for a change
in storage values, starting at that address for the next 4 bytes, issue the command:

AT CHANGE %STORAGE(ðx7ð42Að4,4)

When the program is run, Debug Tool will halt if the value in this storage changes.

Finding uninitialized storage errors
To help find your uninitialized storage errors, run your program with the Language
Environment run-time TEST and STORAGE options. In the following example:

TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the heap.
For example. storage allocated through operator new is filled with the byte ðxFD. If
you see this byte repeated throughout storage, it is likely uninitialized heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by the operator delete might be
filled with the byte ðxFB. If you see this byte repeated throughout storage, it is
likely storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated throughout storage, it is likely that it
is uninitialized auto storage. The values chosen here are odd and large, to maxi-
mize early problem detection. For example, if you attempt to branch to an odd
address, you will get an exception immediately.

As an example of uninitialized heap storage, run program CALC, with the run-time
STORAGE option as STORAGE(FD,FB,F9), to the line labeled PUSHPOP2 and issue
the command:

LIST \ptr ;

You will see the byte fill for uninitialized heap storage as the following example
shows:

 LIST \ ptr ;

(\ ptr).next ═ ðxFDFDFDFD

(\ ptr).i ═ –33686ð19

Setting a breakpoint to halt before calling a NULL function
Calling an undefined function or calling a function through a function pointer which
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:

AT CALL ð

When Debug Tool stops at this breakpoint, you can bypass the call by entering the
GO BYPASS command. This command allows you to continue your debugging
session without raising a condition.

 Chapter 4. Debugging your programs in full-screen mode 65

 Using a COBOL program for Debug Tool session

Using a COBOL program to demonstrate a Debug Tool session
This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your COBOL applications by using an example
COBOL program (COBCALC) to demonstrate how they're used.

The COBCALC program is referred to in “COBOL tasks” on page 70. It is a simple
program which calls two subprograms to calculate a loan payment amount and the
future value of a series of cash flows. Several COBOL intrinsic functions are uti-
lized.

 \\

 \ COBCALC \

 \ \

\ A simple program which allows financial functions to \

\ be performed using intrinsic functions. \

 \ \

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBCALC.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ð1 PARM-1.

 ð5 CALL-FEEDBACK PIC XX.

 ð1 FIELDS.

 ð5 INPUT-1 PIC X(1ð).

 ð1 INPUT-BUFFER-FIELDS.

 ð5 BUFFER-PTR PIC 9.

 ð5 BUFFER-DATA.

 1ð FILLER PIC X(1ð) VALUE "LOAN".

 1ð FILLER PIC X(1ð) VALUE "PVALUE".

 1ð FILLER PIC X(1ð) VALUE "pvalue".

 1ð FILLER PIC X(1ð) VALUE "END".

 ð5 BUFFER-ARRAY REDEFINES BUFFER-DATA

OCCURS 4 TIMES

 PIC X(1ð).

 PROCEDURE DIVISION.

DISPLAY "CALC Begins." UPON CONSOLE.

MOVE 1 TO BUFFER-PTR.

MOVE SPACES TO INPUT-1.

\ Keep processing data until END requested

PERFORM ACCEPT-INPUT UNTIL INPUT-1 EQUAL TO "END".

\ END requested

DISPLAY "CALC Ends." UPON CONSOLE.

 GOBACK.

\ End of program.

Figure 2 (Part 1 of 2). Sample COBOL Program - Main Program COBCALC

66 Debug Tool User's Guide and Reference

 Using a COBOL program for Debug Tool session

 \

\ Accept input data from buffer

 \

 ACCEPT-INPUT.

MOVE BUFFER-ARRAY (BUFFER-PTR) TO INPUT-1.

ADD 1 BUFFER-PTR GIVING BUFFER-PTR.

\ Allow input data to be in UPPER or lower case

EVALUATE FUNCTION UPPER-CASE(INPUT-1) .CALC1/
 WHEN "END"

MOVE "END" TO INPUT-1

 WHEN "LOAN"

 PERFORM CALCULATE-LOAN

 WHEN "PVALUE"

 PERFORM CALCULATE-VALUE

 WHEN OTHER

DISPLAY "Invalid input: " INPUT-1

 END-EVALUATE.

 \

\ Calculate Loan via CALL to subprogram

 \

 CALCULATE-LOAN.

CALL "COBLOAN" USING CALL-FEEDBACK.

IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN

DISPLAY "Call to COBLOAN Unsuccessful.".

 \

\ Calculate Present Value via CALL to subprogram

 \

 CALCULATE-VALUE.

CALL "COBVALU" USING CALL-FEEDBACK.

IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN

DISPLAY "Call to COBVALU Unsuccessful.".

Figure 2 (Part 2 of 2). Sample COBOL Program - Main Program COBCALC

 \\

 \ COBLOAN \

 \ \

\ A simple subprogram which calculates payment amount \

\ for a loan. \

 \ \

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBLOAN.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

Figure 3 (Part 1 of 2). Sample COBOL Program - Subroutine COBLOAN

 Chapter 4. Debugging your programs in full-screen mode 67

 Using a COBOL program for Debug Tool session

 WORKING-STORAGE SECTION.

 ð1 FIELDS.

 ð5 INPUT-1 PIC X(26).

ð5 PAYMENT PIC S9(9)V99 USAGE COMP.

ð5 PAYMENT-OUT PIC $$$$,$$$,$$9.99 USAGE DISPLAY.

ð5 LOAN-AMOUNT PIC S9(7)V99 USAGE COMP.

 ð5 LOAN-AMOUNT-IN PIC X(16).

 ð5 INTEREST-IN PIC X(5).

ð5 INTEREST PIC S9(3)V99 USAGE COMP.

ð5 NO-OF-PERIODS-IN PIC X(3).

ð5 NO-OF-PERIODS PIC 99 USAGE COMP.

 ð5 OUTPUT-LINE PIC X(79).

 LINKAGE SECTION.

 ð1 PARM-1.

 ð5 CALL-FEEDBACK PIC XX.

PROCEDURE DIVISION USING PARM-1.

MOVE "NO" TO CALL-FEEDBACK.

MOVE "3ðððð .ð9 24 " TO INPUT-1.

UNSTRING INPUT-1 DELIMITED BY ALL " "

INTO LOAN-AMOUNT-IN INTEREST-IN NO-OF-PERIODS-IN.

\ Convert to numeric values

COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL(LOAN-AMOUNT-IN).

COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).

COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).

\ Calculate annuity amount required

COMPUTE PAYMENT = LOAN-AMOUNT \

FUNCTION ANNUITY((INTEREST / 12) NO-OF-PERIODS).

\ Make it presentable

MOVE SPACES TO OUTPUT-LINE

MOVE PAYMENT TO PAYMENT-OUT.

STRING "COBLOAN:_Repayment_amount_for_a_" NO-OF-PERIODS-IN

 "_month_loan_of_" LOAN-AMOUNT-IN

"_at_" INTEREST-IN "_interest_is:_"

DELIMITED BY SPACES

 INTO OUTPUT-LINE.

INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.

DISPLAY OUTPUT-LINE PAYMENT-OUT.

MOVE "OK" TO CALL-FEEDBACK.

 GOBACK.

Figure 3 (Part 2 of 2). Sample COBOL Program - Subroutine COBLOAN

 \\

 \ COBVALU \

 \ \

\ A simple subprogram which calculates present value \

\ for a series of cash flows. \

 \ \

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBVALU.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

Figure 4 (Part 1 of 2). Sample COBOL Program - Subroutine COBVALU

68 Debug Tool User's Guide and Reference

 Using a COBOL program for Debug Tool session

 WORKING-STORAGE SECTION.

 ð1 CHAR-DATA.

 ð5 INPUT-1 PIC X(1ð).

ð5 PAYMENT-OUT PIC $$$$,$$$,$$9.99 USAGE DISPLAY.

 ð5 INTEREST-IN PIC X(5).

ð5 NO-OF-PERIODS-IN PIC X(3).

ð5 INPUT-BUFFER PIC X(1ð) VALUE "5ð69837544".

 ð5 BUFFER-ARRAY REDEFINES INPUT-BUFFER

OCCURS 5 TIMES

 PIC XX.

 ð5 OUTPUT-LINE PIC X(79).

 ð1 NUM-DATA.

ð5 PAYMENT PIC S9(9)V99 USAGE COMP.

ð5 INTEREST PIC S9(3)V99 USAGE COMP.

ð5 COUNTER PIC 99 USAGE COMP.

ð5 NO-OF-PERIODS PIC 99 USAGE COMP.

ð5 VALUE-AMOUNT OCCURS 99 PIC S9(7)V99 COMP.

 LINKAGE SECTION.

 ð1 PARM-1.

ð5 CALL-FEEDBACK PIC XX.

PROCEDURE DIVISION USING PARM-1.

MOVE "NO" TO CALL-FEEDBACK.

MOVE ".12 5 " TO INPUT-1.

UNSTRING INPUT-1 DELIMITED BY "," OR ALL " " .VALU1/
INTO INTEREST-IN NO-OF-PERIODS-IN.

\ Convert to numeric values

COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN). .VALU2/
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).

\ Get cash flows

PERFORM GET-AMOUNTS VARYING COUNTER FROM 1 BY 1 UNTIL

COUNTER IS GREATER THAN NO-OF-PERIODS.

\ Calculate present value

COMPUTE PAYMENT =

FUNCTION PRESENT-VALUE(INTEREST VALUE-AMOUNT(ALL)). .VALU3/
\ Make it presentable

MOVE PAYMENT TO PAYMENT-OUT.

 STRING "COBVALU:_Present_value_for_rate_of_"

 INTEREST-IN "_given_amounts_"

BUFFER-ARRAY (1) ",_"

BUFFER-ARRAY (2) ",_"

BUFFER-ARRAY (3) ",_"

BUFFER-ARRAY (4) ",_"

BUFFER-ARRAY (5) "_is:_"

DELIMITED BY SPACES

 INTO OUTPUT-LINE.

INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.

DISPLAY OUTPUT-LINE PAYMENT-OUT.

MOVE "OK" TO CALL-FEEDBACK.

 GOBACK.

 \

\ Get cash flows for each period

 \

 GET-AMOUNTS.

MOVE BUFFER-ARRAY (COUNTER) TO INPUT-1.

COMPUTE VALUE-AMOUNT (COUNTER) = FUNCTION NUMVAL(INPUT-1).

Figure 4 (Part 2 of 2). Sample COBOL Program - Subroutine COBVALU

 Chapter 4. Debugging your programs in full-screen mode 69

 COBOL tasks

 COBOL tasks
The following sections identify typical tasks you might want to perform while using
Debug Tool with your COBOL program and explain how to accomplish these tasks.
The COBCALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain routines are called
To halt just before COBLOAN is called, issue the command:

AT CALL COBLOAN ;

If the CU COBVALU is known to Debug Tool (that is, it has previously been called), to
halt just after COBVALU is called, issue the command:

AT ENTRY COBVALU ;

If the CU COBVALU is not known to Debug Tool (that is, it has not previously been
called), to halt just before COBVALU is entered the first time, issue the command:

AT APPEARANCE COBVALU ;

You can display a list of all compile units that are known to Debug Tool by entering
the command:

LIST NAMES CUS ;

The Debug Tool log displays something similar to:

 LIST NAMES CUS ;

The following CUs are known in \:

COBCALC

COBLOAN

COBVALU

Additionally, you can combine the breakpoints as follows:

AT APPEARANCE COBVALU AT ENTRY COBVALU ; GO ;

The purpose for the APPEARANCE breakpoint is to gain control the first time the
COBVALU compile unit is run.

To take advantage of either AT ENTRY or AT APPEARANCE, you must compile
the routine (COBVALU in the above example) program with the TEST option.

Note: If you have many breakpoints set in your program, you can issue the
command:

QUERY LOCATION

to indicate where in your program execution has been interrupted. The
Debug Tool Log will display something similar to:

QUERY LOCATION ;

You were prompted because STEP ended.

The program is currently entering block COBVALU.

Modifying the value of a variable
To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press LIST (PF4). (Remember that
Debug Tool starts after program initialization but before symbolic COBOL or static
C++ variables have been initialized, so you cannot view or modify the contents of
variables until you have performed a step or run.) The value is displayed in the
Log window. This is equivalent to entering LIST TITLED variable on the command

70 Debug Tool User's Guide and Reference

 COBOL tasks

line. For instance, run the COBCALC program to the statement labeled .CALC1/.
To run to the statement labeled .CALC1/, enter AT 46 ; GO ; on the Debug Tool
command line. Move the cursor over INPUT-1 and press LIST (PF4). The following
appears in the Log window:

 LIST (INPUT-1) ;

INPUT-1 = 'LOAN '

To modify the value of INPUT-1, enter on the command line:

MOVE 'pvalue' to INPUT-1 ;

You can enter most COBOL expressions on the command line.

Now step into the call to COBVALU by pressing STEP (PF2) and step until the state-
ment labeled .VALU2/ is reached. To view the attributes of the variable INTEREST,
issue the Debug Tool command:

DESCRIBE ATTRIBUTES INTEREST ;

The result in the Log window is:

ATTRIBUTES FOR INTEREST

ITS LENGTH IS 4

ITS ADDRESS IS ððð11DC8

 ð2 COBVALU:>INTEREST S999V99 COMP

You can use this action as a simple browser for group items and data hierarchies.
For example, you can list all the values of the elementary items for the
CHAR-DATA group with the command:

LIST CHAR-DATA ;

with results in the Log window appearing something like this:

 LIST CHAR-DATA ;

ð2 COBVALU:>INPUT-1 of ð1 COBVALU:>CHAR-DATA = '.12 5 '

Invalid data for ð2 COBVALU:>PAYMENT-OUT of ð1 COBVALU:>CHAR-DATA is found.

ð2 COBVALU:>INTEREST-IN of ð1 COBVALU:>CHAR-DATA = '.12 '

ð2 COBVALU:>NO-OF-PERIODS-IN of ð1 COBVALU:>CHAR-DATA = '5 '

ð2 COBVALU:>INPUT-BUFFER of ð1 COBVALU:>CHAR-DATA = '5ð69837544'

SUB(1) of ð2 COBVALU:>BUFFER-ARRAY of ð1 COBVALU:>CHAR-DATA = '5ð'

SUB(2) of ð2 COBVALU:>BUFFER-ARRAY of ð1 COBVALU:>CHAR-DATA = '69'

SUB(3) of ð2 COBVALU:>BUFFER-ARRAY of ð1 COBVALU:>CHAR-DATA = '83'

SUB(4) of ð2 COBVALU:>BUFFER-ARRAY of ð1 COBVALU:>CHAR-DATA = '75'

SUB(5) of ð2 COBVALU:>BUFFER-ARRAY of ð1 COBVALU:>CHAR-DATA = '44'

Note: If you use the LIST command to list the contents of an uninitialized variable,
or a variable that contains invalid data, Debug Tool will display INVALID DATA.

Stopping on a line only if a condition is true
Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering GO. For example, in COBVALU you want
to stop at the calculation of present value only if the discount rate is less than or
equal to -1 (before the exception occurs). First run COBCALC, step into
COBVALU, and stop at the statement labeled .VALU1/. To accomplish this, issue
these Debug Tool commands at the start of COBCALC:

AT 67 ; GO ;

CLEAR AT 67 ; STEP 4 ;

Now set the breakpoint like this:

 Chapter 4. Debugging your programs in full-screen mode 71

 COBOL tasks

AT 44 IF INTEREST > -1 THEN GO ; END-IF ;

Line 44 is the statement labeled .VALU3/. The command causes Debug Tool to
stop at line 44. If the value of INTEREST is greater than -1, the program con-
tinues. The command causes Debug Tool to remain on line 44 only if the value of
INTEREST is less than or equal to -1.

To force the discount rate to be negative, enter the Debug Tool command:

MOVE '-2 5' TO INPUT-1 ;

Run the program by issuing the GO command. Debug Tool will halt the program at
line 44. Display the contents of INTEREST by issuing the LIST INTEREST

command. To view the effect of this breakpoint when the discount rate is positive,
begin a new debug session and repeat the Debug Tool commands shown in this
section. However, do not issue the MOVE '-2 5' TO INPUT-1 command. The
program execution will not be stopped at line 44 and the program will run to com-
pletion.

Debugging when only a few parts are compiled with TEST
Suppose you want to set a breakpoint at entry to COBVALU. COBVALU has been
compiled with TEST but the other programs have not. Debug Tool comes up with
an empty Source window. You can use the LIST NAMES CUS command to determine
if the COBVALU compile unit is known to Debug Tool and then set the appropriate
breakpoint using either the AT APPEARANCE or AT ENTRY command. See also
“Setting a breakpoint to halt when certain routines are called” on page 70 for more
information on setting breakpoints.

Instead of setting a breakpoint at entry to COBVALU in this example, you could
issue a STEP command when Debug Tool initially displays the empty Source
window. Debug Tool runs the program until it reaches the entry for the first routine
compiled with TEST, COBVALU in this case.

Capturing I/O to the system console
To redirect output normally appearing on the System Console to your Debug Tool
terminal, enter the following command:

SET INTERCEPT ON CONSOLE ;

For example, if you run COBCALC and issue the Debug Tool SET INTERCEPT ON

CONSOLE command, followed by the STEP 3 command, you will see the following
output displayed in the Debug Tool Log:

SET INTERCEPT ON CONSOLE ;

STEP 3 ;

CONSOLE : CALC Begins.

The CALC Begins. phrase is displayed by the statement DISPLAY "CALC Begins."

UPON CONSOLE in COBCALC.

The SET INTERCEPT ON CONSOLE command not only captures output to the System
Console, but also allows you to input data from your Debug Tool terminal instead of
the System Console by using the Debug Tool INPUT command. For example, if the
next COBOL statement executed is ACCEPT INPUT-DATA FROM CONSOLE, the following
message appears in the Debug Tool Log:

72 Debug Tool User's Guide and Reference

 COBOL tasks

CONSOLE : IGZððððI AWAITING REPLY.

The program is waiting for input from CONSOLE.

Use the INPUT command to enter 114 characters for the intercepted

fixed-format file.

Continue execution by replying to the input request by entering the following Debug
Tool command:

INPUT some data ;

Note: Whenever Debug Tool intercepts System Console I/O, and for the duration
of the intercept, the display in the Source window is empty and the Location
field in the session panel header at the top of the screen shows Unknown.

Displaying raw storage
You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 12 characters of BUFFER-DATA
enter:

LIST STORAGE(BUFFER-DATA,12)

Getting a routine traceback
Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling routines is. To get
this information, issue the command:

LIST CALLS ;

For example, if you run the COBCALC example with the commands:

AT APPEARANCE COBVALU AT ENTRY COBVALU;

GO;

GO;

LIST CALLS;

the log contains something like:

 AT APPEARANCE COBVALU

AT ENTRY COBVALU ;

 GO ;

 GO ;

 LIST CALLS ;

At ENTRY in COBOL program COBVALU.

From LINE 67.1 in COBOL program COBCALC.

which shows the traceback of callers.

Tracing the run-time path for code compiled with TEST
To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file or data set and USE
them when Debug Tool initially displays your program. Assuming you have a PDS
member, USERID.DT.COMMANDS(COBCALC), that contains the following Debug
Tool commands:

 Chapter 4. Debugging your programs in full-screen mode 73

 COBOL tasks

\ Commands in a COBOL USE file must be coded in columns 8-72.

\ If necessary, commands can be continued by coding a '-' in

\ column 7 of the continuation line.

 ð1 LEVEL PIC 99 USAGE COMP;

 MOVE 1 TO LEVEL;

 AT ENTRY \ PERFORM;

COMPUTE LEVEL = LEVEL + 1;

LIST ("Entry:", LEVEL, %CU);

 GO;

 END-PERFORM;

 AT EXIT \ PERFORM;

LIST ("Exit:", LEVEL);

COMPUTE LEVEL = LEVEL - 1;

 GO;

 END-PERFORM;

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DT.COMMANDS(COBCALC)

If, after executing the USE file, you run COBCALC, the following trace (or some-
thing similar) is displayed in the Log window:

ENTRY:

LEVEL = ðððð2

%CU = COBCALC

ENTRY:

LEVEL = ðððð3

%CU = COBLOAN

EXIT:

LEVEL = ðððð3

ENTRY:

LEVEL = ðððð3

%CU = COBVALU

EXIT:

LEVEL = ðððð3

ENTRY:

LEVEL = ðððð3

%CU = COBVALU

EXIT:

LEVEL = ðððð3

EXIT:

LEVEL = ðððð2

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Finding unexpected storage overwrite errors
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example where
the program changes more than the caller expects it to change.

74 Debug Tool User's Guide and Reference

 Using a PL/I Program to Demonstrate Debug Tool

ð5 FIELD-1 OCCURS 2 TIMES

 PIC X(8).

 ð5 FIELD-2 PIC X(8).

 PROCEDURE DIVISION.

\ (An invalid index value is set)

MOVE 3 TO PTR.

MOVE "TOO MUCH" TO FIELD-1(PTR).

Find the address of FIELD-2 with the command:

DESCRIBE ATTRIBUTES FIELD-2

Suppose the result is X'0000F559'. To set a breakpoint which watches for a
change in storage values starting at that address for the next 8 bytes, issue the
command:

AT CHANGE %STORAGE(H'ððððF559',8)

When the program is run, Debug Tool will halt if the value in this storage changes.

Setting a breakpoint to halt before calling an invalid program
Calling an undefined program is a severe error. If you have developed a main
program which calls a subprogram which doesn't exist, you can cause Debug Tool
to halt just before such a call. For example, if the subprogram NOTYET doesn't
exist you can set the breakpoint:

AT CALL (NOTYET)

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

Using a PL/I program to demonstrate a Debug Tool session
This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your PL/I applications by using an example PL/I
program (PLICALC) to demonstrate how they're used.

The PLICALC program is referred to in “PL/I tasks” on page 79. It is a simple
calculator which reads its input from a character buffer. If integers are read, they
are pushed on a stack. If one of the operators + - * / is read, the top two elements
are popped off the stack, the operation is performed on them and the result is
pushed on the stack. The = operator writes out the value of the top element of the
stack to a buffer.

Before running PLICALC, you need to allocate SYSPRINT to the terminal. For
MVS under TSO, enter the following command:

ALLOC FI(SYSPRINT) DA(\)

For VM, enter the following command:

FILEDEF SYSPRINT TERMINAL

 Chapter 4. Debugging your programs in full-screen mode 75

 Using a PL/I Program to Demonstrate Debug Tool

 plicalc: proc options(main);

 /\--\/

 /\ \/

 /\ A simple calculator which does operations on integers which \/

 /\ are pushed and popped on a stack \/

 /\ \/

 /\--\/

 dcl index builtin;

 dcl length builtin;

 dcl substr builtin;

 /\ \/

 dcl 1 stack,

2 stkptr fixed bin(15,ð) init(ð),

2 stknum(5ð) fixed bin(31,ð);

 dcl 1 bufin,

2 bufptr fixed bin(15,ð) init(ð),

2 bufchr char (1ðð) varying;

 dcl 1 tok char (1ðð) varying;

 dcl 1 tstop char(1) init ('s');

 dcl 1 ndx fixed bin(15,ð);

 dcl num fixed bin(31,ð);

 dcl i fixed bin(31,ð);

 dcl push entry external;

 dcl pop entry returns (fixed bin(31,ð)) external;

 dcl readtok entry returns (char (1ðð) varying) external;

 /\--\/

 /\ input action: \/

 /\ 2 push 2 on stack \/

 /\ 18 push 18 \/

 /\ + pop 2, pop 18, add, push result (2ð) \/

 /\ = output value on the top of the stack (2ð) \/

 /\ 5 push 5 \/

 /\ / pop 5, pop 2ð, divide, push result (4) \/

 /\ = output value on the top of the stack (4) \/

 /\--\/

 bufchr = '2 18 + = 5 / =';

 do while (tok ¬= tstop);

tok = readtok(bufin); /\ get next 'token' \/

 select (tok);

 when (tstop)

 leave;

when ('+') do;

num = pop(stack);

call push(stack,num); /\ .CALC1/ statement \/

 end;

when ('-') do;

num = pop(stack);

 call push(stack,pop(stack)-num);

 end;

Figure 5 (Part 1 of 2). Sample PL/I Program - Main Program PLICALC

76 Debug Tool User's Guide and Reference

 Using a PL/I Program to Demonstrate Debug Tool

 when ('\')

 call push(stack,pop(stack)\pop(stack));

when ('/') do;

num = pop(stack);

call push(stack,pop(stack)/num); /\ .CALC2/ statement \/

 end;

when ('=') do;

num = pop(stack);

put list ('PLICALC: ', num) skip;

 call push(stack,num);

 end;

otherwise do;/\ must be an integer \/

num = atoi(tok);

 call push(stack,num);

 end;

 end;

 end;

 return;

Figure 5 (Part 2 of 2). Sample PL/I Program - Main Program PLICALC

 atoi: procedure(tok) returns (fixed bin(31,ð));

 /\--\/

 /\ \/

 /\ convert character string to number \/

 /\ (note: string validated by readtok) \/

 /\ \/

 /\--\/

dcl 1 tok char (1ðð) varying;

dcl 1 num fixed bin (31,ð);

dcl 1 j fixed bin(15,ð);

num = ð;

do j = 1 to length(tok);

num = (1ð \ num) + (index('ð123456789',substr(tok,j,1))-1);

 end;

 return (num);

 end atoi;

 end plicalc;

Figure 6. Sample PL/I Program - TOK Function

 push: procedure(stack,num);

 /\--\/

 /\ \/

 /\ a simple push function for a stack of integers \/

 /\ \/

 /\--\/

 dcl 1 stack connected,

2 stkptr fixed bin(15,ð),

2 stknum(5ð) fixed bin(31,ð);

 dcl num fixed bin(31,ð);

 stkptr = stkptr + 1;

 stknum(stkptr) = num; /\ .PUSH1/ statement \/

 return;

 end push;

Figure 7. Sample PL/I Program - PUSH Function

 Chapter 4. Debugging your programs in full-screen mode 77

 Using a PL/I Program to Demonstrate Debug Tool

 pop: procedure(stack) returns (fixed bin(31,ð));

 /\--\/

 /\ \/

 /\ a simple pop function for a stack of integers \/

 /\ \/

 /\--\/

 dcl 1 stack connected,

2 stkptr fixed bin(15,ð),

2 stknum(5ð) fixed bin(31,ð);

 stkptr = stkptr - 1;

 return (stknum(stkptr+1));

 end pop;

Figure 8. Sample PL/I Program - POP Function

 readtok: procedure(bufin) returns (char (1ðð) varying);

 /\--\/

 /\ \/

 /\ a function to read input and tokenize it for a simple calculator \/

 /\ \/

 /\ action: get next input char, update index for next call \/

 /\ return: next input char(s) \/

 /\--\/

 dcl length builtin;

 dcl substr builtin;

 dcl verify builtin;

 dcl 1 bufin connected,

2 bufptr fixed bin(15,ð),

2 bufchr char (1ðð) varying;

 dcl 1 tok char (1ðð) varying;

 dcl 1 tstop char(1) init ('s');

 dcl 1 j fixed bin(15,ð);

/\ start of processing \/

 if bufptr > length(bufchr) then do;

tok = tstop;

return (tok);

 end;

 bufptr = bufptr + 1;

 do while (substr(bufchr,bufptr,1) = ' ');

bufptr = bufptr + 1;

if bufptr > length(bufchr) then do;

tok = tstop;

return (tok);

 end;

 end;

Figure 9 (Part 1 of 2). Sample PL/I Program - READTOK Function

78 Debug Tool User's Guide and Reference

 PL/I tasks

 tok = substr(bufchr,bufptr,1); /\ get ready to return single char \/

 select (tok);

 when ('+','-','/','\','=')

bufptr = bufptr;

otherwise do; /\ possibly an integer \/

tok = '';

do j = bufptr to length(bufchr);

if verify(substr(bufchr,j,1),'ð123456789') ¬= ð then

 leave;

 end;

if j > bufptr then do;

j = j - 1;

tok = substr(bufchr,bufptr,(j-bufptr+1));

bufptr = j;

 end;

 else

tok = tstop;

 end;

 end;

 return (tok);

 end readtok;

Figure 9 (Part 2 of 2). Sample PL/I Program - READTOK Function

 PL/I tasks
The following sections identify typical tasks you might want to perform while using
Debug Tool with your PL/I program and explain how to accomplish these tasks.
The PLICALC program is used to demonstrate some of these actions.

Setting a breakpoint to halt when certain functions are called
To halt just before READTOK is called, issue the command:

AT CALL READTOK ;

To halt just after READTOK is called, issue the command:

AT ENTRY READTOK ;

To take advantage of the AT ENTRY command, you must compile your program with
the TEST option.

Note: If you have many breakpoints set in your program, you can issue the
command:

QUERY LOCATION

to indicate where in your program execution has been interrupted. The
Debug Tool Log will display something similar to:

 QUERY LOCATION ;

You are executing commands in the ENTRY READTOK breakpoint.

The program is currently entering blocvk READTOK.

 Chapter 4. Debugging your programs in full-screen mode 79

 PL/I tasks

Modifying the value of a variable
To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press LIST (PF4). The value is displayed
in the Log window. This is equivalent to entering LIST TITLED variable on the
command line. For instance, run the PLICALC program to the statement labeled
.CALC1/. To run to the statement labeled .CALC1/, enter AT 22 ; GO ; on the
Debug Tool command line. Move the cursor over NUM and press LIST (PF4). The
following appears in the Log window:

 LIST NUM ;

NUM = 18

To modify the value of NUM to 22, overtype the NUM = 18 line to NUM = 22, press
Enter to put it on the command line, and press Enter again to issue the command.

You can enter most PL/I expressions on the command line.

Now step into the call to PUSH by pressing STEP (PF2) and step until the state-
ment labeled .PUSH1/ is reached. To view the attributes of variable STKNUM,
issue the Debug Tool command:

DESCRIBE ATTRIBUTES STKNUM;

The result in the Log window is:

 ATTRIBUTES FOR STKNUM

ITS ADDRESS IS ððð3944C AND ITS LENGTH IS 2ðð

PUSH : STACK.STKNUM(5ð) FIXED BINARY(31,ð) REAL PARAMETER

ITS ADDRESS IS ððð3944C AND ITS LENGTH IS 4

You can list all the values of the members of the structure pointed to by STACK
with the command:

LIST STACK;

with results in the Log window appearing something like this:

 LIST STACK ;

STACK.STKPTR = 2

STACK.STKNUM(1) = 2

STACK.STKNUM(2) = 18

STACK.STKNUM(3) = 233864

 ...

STACK.STKNUM(5ð) = 1216ð4

You can change the value of a structure member by issuing the assignment as a
command as in the following example:

STKNUM(STKPTR) = 33;

Stopping on a line only if a condition is true
Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering GO. For example, in PLICALC you want to
stop at the division selection only if the divisor is 0 (before the exception occurs).
Set the breakpoint like this:

AT 31 DO; IF NUM ¬= ð THEN GO; END;

80 Debug Tool User's Guide and Reference

 PL/I tasks

Line 31 is the statement labeled .CALC2/. The command will cause Debug Tool to
stop at line 31. If the value of NUM is not 0, the program will continue. The
command causes Debug Tool to stop on line 31 only if the value of NUM is 0.

Debugging when only a few parts are compiled with TEST
Suppose you want to set a breakpoint at entry to subroutine PUSH. PUSH has
been compiled with TEST, but the other files have not. Debug Tool comes up with
an empty Source window. To display the compilation units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are known
to Debug Tool. If PUSH is fetched later on by the application, this compile unit
might not be known to Debug Tool. If it is displayed, enter:

SET QUALIFY CU PUSH

AT ENTRY PUSH;

GO ;

If it is not displayed, set an appearance breakpoint as follows:

AT APPEARANCE PUSH ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE PUSH AT ENTRY PUSH; GO;

The only purpose for this APPEARANCE breakpoint is to gain control the first time a
function in the PUSH compilation unit is run. When that happens, you can set a
breakpoint at entry to PUSH like this:

AT ENTRY PUSH;

Displaying raw storage
You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 30 characters of STACK enter:

LIST STORAGE(STACK,3ð)

Getting a function traceback
Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;

For example, if you run the CALC example with the commands:

AT ENTRY READTOK ;

GO ;

LIST CALLS ;

the log will contain something like:

At ENTRY IN PL/I subroutine READTOK.

From LINE 17.1 IN PL/I subroutine PLICALC.

which shows the traceback of callers.

 Chapter 4. Debugging your programs in full-screen mode 81

 PL/I tasks

Tracing the run-time path for code compiled with TEST
To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file or data set and USE
them when Debug Tool initially displays your program. Assuming you have a PDS
member, USERID.DT.COMMANDS(PLICALL), that contains the following Debug
Tool commands:

DCL LVLSTR CHARACTER (5ð) ;

DCL LVL FIXED BINARY (15) ;

LVL = ð ;

AT ENTRY \

 DO ;

LVLSTR = ' ' ;

LVL = LVL + 1 ;

SUBSTR (LVLSTR, LVL, 1) = '>' ;

SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;

LIST UNTITLED (LVLSTR) ;

 GO ;

 END ;

AT EXIT \

 DO ;

SUBSTR (LVLSTR, LVL, 1) = '<' ;

SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;

LIST UNTITLED (LVLSTR) ;

LVL = LVL - 1 ;

 GO ;

 END ;

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DT.COMMANDS(PLICALL)

If, after executing the USE file, you run the following program sequence:

 PLICALL: PROC OPTIONS(MAIN);

 ...

CALL PLISUB ;

 ...

 END PLICALL;

 PLISUB: PROCEDURE;

 ...

CALL PLISUB1 ;

 ...

 END PLISUB;

 PLISUB1: PROCEDURE;

 ...

CALL PLISUB2 ;

 ...

 END PLISUB1;

 PLISUB2: PROCEDURE;

 ...

 END PLISUB2;

the following trace (or something similar) is displayed in the Log window:

82 Debug Tool User's Guide and Reference

 PL/I tasks

'>PLICALL '

' >PLISUB '

' >PLISUB1 '

' >PLISUB2 '

' <PLISUB2 '

' <PLISUB1 '

' <PLISUB '

'<PLICALL '

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Finding unexpected storage overwrite errors
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider the following
example where the program changes more than the caller expects it to change.

2 FIELD1(2) CHAR(8);

2 FIELD2 CHAR(8);

 CTR = 3; /\ an invalid index value is set \/

 FIELD1(CTR) = 'TOO MUCH';

Find the address of FIELD2 with the command:

DESCRIBE ATTRIBUTES FIELD2

Suppose the result is X'00521D42'. To set a breakpoint which watches for a
change in storage values starting at that address for the next 8 bytes, issue the
command:

AT CHANGE %STORAGE('ðð521D42'px,8)

When the program is run, Debug Tool will halt if the value in this storage changes.

Setting a breakpoint to halt before calling an undefined program
Calling an undefined program or function is a severe error. To halt just before such
a call is run, set this breakpoint:

AT CALL ð

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

 Chapter 4. Debugging your programs in full-screen mode 83

 Customizing Debug Tool

Chapter 5. Using the Debug Tool interfaces

This chapter describes how you interface to Debug Tool and helps you understand
and navigate through the windows provided. It covers customizing your display,
choosing Debug Tool settings to adjust your debugging environment, entering com-
mands on the command line, and getting help.

Customizing Debug Tool for your environment
Debug Tool provides its own full-screen support to supply you with a full-screen,
interactive session for debugging your application. You can configure the screen
into as many as three windows, using all three of them to view simultaneously:

� Source window - Contains either the source file (for C/C++) or the source
listing (for COBOL and PL/I)

� Monitor window - Contains the changing values of variables

� Log window - Contains a log of your interactions with Debug Tool

See Figure 12 on page 86 for an example of a Debug Tool screen containing all
three windows.

Using the Debug Tool Session Panel
After you invoke your program, execution of Debug Tool begins, depending on the
specified suboptions of the run-time TEST option. If Debug Tool gains control (for
example, because of __ctest() or CALL CEETEST statements, or because TEST(ALL)
is specified) and prompts you for input, the Debug Tool Session panel appears.
This panel is similar to the one shown in Figure 12 on page 86, and you use it to
accomplish most of your tasks and communications with Debug Tool.

The Debug Tool Session panel contains a header field with information about the
program you are debugging, and can also contain up to three windows: a Monitor
window, a Log window, and a Source window, in any combination. The following
sections explain what these windows are for, how to use them, how to move from
one to another (navigate), and how to arrange their appearance and content.

Session Panel header fields
Figure 10 and Figure 11 on page 85 show two examples. The first is a header for
a program under MVS/TSO, and the second is a header for a program under CMS.
Descriptions of the specific areas follow the figures.

à ð
 C .1/ LOCATION: MYID.SOURCE(TSTPGM1):>248 .2/
Command ═══> .3/ SCROLL ═══> PAGE .4/
 .5/

Figure 10. Session Panel Header Fields for a C Program under TSO

84  Copyright IBM Corp. 1995, 1998

 Session Panel windows

à ð
COBOL .1/ LOCATION: XYZPROG::>SUBR:>188 .2/
Command ═══> .3/ SCROLL ═══> PAGE .4/
 .5/

Figure 11. Session Panel Header Fields for a COBOL Program under CMS

.1/ C/C++, COBOL , or PL/I:

The name of the current programming language. This is not necessarily the
programming language of what appears in the source window.

Note: Debug Tool does not differentiate between C and C++ programs, so if
there is a C++ program in the source window, only C will be displayed in this
field.

 .2/ LOCATION :

The program unit name and statement where execution is suspended. (It is
usually in the form of compilation unit:>nnnnnn.) In the first example, execution
in MYID.SOURCE(TSTPGM1) is suspended at line 248. In the second example,
execution in XYZPROG is suspended at XYZPROG::>SUBR:>118, or line 118 of
subroutine SUBR.

 .3/ COMMAND:

The input area for the next Debug Tool command. You can enter any valid
Debug Tool command here.

 .4/ SCROLL:

The number of lines or columns you want to scroll when you enter a scroll
command without an amount specified. You can set the display on or off using
the SET SCROLL DISPLAY command. Modify the scroll amount with the SET

DEFAULT SCROLL command.

The value in this field is the operand applied to the SCROLL UP, SCROLL DOWN,
SCROLL LEFT, and SCROLL RIGHT scrolling commands. The scrolling commands
can be used to scroll by increments of n lines, half a page, a full page, to the
top or bottom of the data, to the limit of the data, to the left or right by specified
amounts, or to the position of the cursor.

.5/ Message areas :

Display information and error messages in the space immediately below the
command line.

Session Panel windows
Figure 12 on page 86 shows the entire Debug Tool session panel, including the
session panel header and the default configuration for the Source window, the Log
window, and the Monitor window.

 Chapter 5. Using the Debug Tool interfaces 85

 Session Panel windows

à ð
 COBOL LOCATION: IBTUFS4 :> 1ðð.1
 Command ═══> Scroll ═══> PAGE

 MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 1 OF 3

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ TOP OF MONITOR \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 ððð1 1 77 IBTUFS4:>VARBL2 21

 ððð2 2 77 IBTUFS4:>VARBL1 11 .3/
 ððð3 3 77 IBTUFS4:>X 1

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ BOTTOM OF MONITOR \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 SOURCE: IBTUFS4 --1----+----2----+----3----+----4----+----5---- LINE: 98 OF 118

98 ADD 1 TO VARBL1 .

99 .1/ ADD 1 TO VARBL2 .

1ðð CALL "SUBPRO1" USING BY CONTENT PARAM1 .

1ð1 ADD 1 TO X .

 1ð2 END-PERFORM. .

 LOG ð----+----1----+----2----+----3----+----4----+----5----+---- LINE: 13 OF 19

 ðð13 The command element MONITOR is invalid.

 ðð14 MONITOR

 ðð15 LIST VARBL2 ;

 ðð16 MONITOR .2/
 ðð17 LIST VARBL1 ;

 ðð18 MONITOR

 ðð19 LIST X ;

á ñ

Figure 12. Session Panel with Opened Monitor, Source, and Log Windows

Source window (1)
The Source window displays the source file or source listing. The Source window
has four parts: the header area, the prefix area, the source display area, and the
suffix area.

Header Area: The header area identifies the window and shows the compilation
unit name. It also shows the current position of the source or listing.

Prefix Area: The prefix area appears in the leftmost eight columns of the source
window, and contains statement numbers or line numbers you can use when refer-
ring to the statements in your program. You can use the prefix area to set, display,
and remove breakpoints with the prefix commands AT, CLEAR, ENABLE, DISABLE,
QUERY, and SHOW. For more on prefix commands, see “Using prefix commands” on
page 91.

Source Display Area: The source display area shows the source code (for a C/C++
program), or the source listing (for a COBOL or PL/I program) for the currently
qualified program unit. The source display is usually shown with the current state-
ment highlighted (if the statement can be found).

Suffix Area: The suffix area is a narrow, variable-width column at the right of the
screen. Debug Tool uses the suffix area for displaying frequency counts. It is only
as wide as the largest count it must display.

The suffix area is optional, and you can turn it on with SET SUFFIX ON, while SET
SUFFIX OFF removes it from the screen. You can also set it on or off with the
Source Listing Suffix field in the Profile Settings Panel. More information on the
Profile Settings Panel is included in “Customizing settings” on page 99.

86 Debug Tool User's Guide and Reference

 Session Panel windows

Monitor window (3)
Use the Monitor window to continuously display output from the MONITOR LIST,
MONITOR QUERY, and MONITOR DESCRIBE commands. This window is first opened
when you enter a monitor command; its contents are refreshed whenever Debug
Tool receives control and after every Debug Tool command that can affect the
display.

When you issue a MONITOR command, it is assigned a reference number between 1
and 99, and added to the monitor list. You can specify the monitor number;
however, you must either replace an existing monitor number, thus redefining the
referenced command, or use the next sequential number.

While the MONITOR command can generate an unlimited amount of output, bounded
only by your storage capacity, the Monitor window can display a maximum of only
1000 scrollable lines of output.

If a window is not wide enough to show all the output it contains, you can either
issue SCROLL RIGHT (to scroll the window to the right) or ZOOM (to make it fill the
screen).

The labeled header line for each window contains a scale and a line counter. If
you scroll a window horizontally, the scale also scrolls so it indicates the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window verti-
cally, the line counter reflects the top line number currently displayed in that
window.

Log window (2)
This window records and displays your interactions with Debug Tool. All com-
mands that are valid in line mode, and their responses, are automatically appended
to the Log window except the full-screen commands PANEL, FIND, CURSER, RETRIEVE,
SCROLL, WINDOW, and IMMEDIATE, and the QUERY and SHOW prefix commands. If SET
INTERCEPT ON is in effect for a file, that file's output also appears in the Log window.
You can optionally exclude STEP and GO commands from the log by specifying SET
ECHO OFF. Commands that can be used with IMMEDIATE, such as the SCROLL and
WINDOW commands, are excluded from the Log window. The default for the number
of log lines retained for display is 1000 lines, but you can specify a different value
with SET LOG KEEP n, where n is the number of lines you want to keep.

The maximum length is determined by the amount of storage available.

Using the Session Log file to maintain a record of your session
Debug Tool can record your commands and their generated output in a session log
file. This allows you to record your session and use the file as a reference to help
you analyze your session strategy. You can also use the log file as a command
input file at a later session by specifying it as your primary commands file. This is
a convenient method of reproducing debugging sessions or resuming interrupted
sessions.

The following appear as comments (preceded by an asterisk {*} in column 7 for
COBOL programs, and enclosed in /* */ for C/C++ or PL/I programs):

� All command output

 Chapter 5. Using the Debug Tool interfaces 87

 Session Panel windows

� Commands from USE files
� Commands specified on a __ctest() function call
� Commands specified on a CALL CEETEST statement
� Commands specified on a CALL PLITEST statement
� Commands specified in the run-time TEST command string suboption

 � QUIT commands
� Debug Tool messages about the program execution (intercepted console mes-

sages, exceptions, etc.)

The default ddname associated with the Debug Tool session log file is INSPLOG.
If you do not allocate a file with ddname INSPLOG, no default log file is created.

Creating the Log file
To create the log file in Debug Tool, allocate a ddname INSPLOG in the CLIST,
JCL, or exec you use to run your program. This ddname must have a logical
record length greater than or equal to 32 and less than or equal to 256. If the
LRECL is outside these limits, Debug Tool issues a message and does not create
a log file. On MVS, the log file must be a sequential data set. The record format
and blocksize have no restrictions.

For COBOL only , if you want to subsequently use the session log file as a com-
mands file, make the LRECL less than or equal to 72. Debug Tool ignores every-
thing after column 72 for file input during a COBOL debugging session.

Note: Under CICS, SET LOG OFF is the default. To start the log, you must issue:
SET LOG ON FILE TSTPINE.DT.LOG;.

Make sure the default of SET LOG ON is still in effect. If you have issued SET LOG

OFF, output to the log file is suppressed. If Debug Tool is never given control, the
log file is not created.

When the default log file (INSPLOG) is created during initialization, any existing file
with the same name will be overwritten. However, entering the SET LOG ON FILE

xxx command will append the log output to the existing file.

If a log file was not created for your session, you can create one with the SET LOG

command by entering:

SET LOG ON FILE logddn;

This creates the log file LOGDDN, after you allocate a file to ddname LOGDDN.

Note: Do not use MVS partitioned data sets to store session logs.

At any time during your session, you can stop information from being sent to a log
file by entering:

SET LOG OFF;

To resume use of the log file, enter:

SET LOG ON;

The log file is active for the entire Debug Tool session.

Debug Tool keeps a log file in all modes of operation: line mode, full-screen mode
and batch mode.

88 Debug Tool User's Guide and Reference

 Entering commands

Entering commands in a Debug Tool session
You can enter a command or modify what is on the session panel in seven areas.
These areas are indicated in Figure 13.

à ð
 C LOCATION: "ICFSSCU1" :> 89
 Command ═══> .1/ Scroll ═══> PAGE .2/
 MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 1 OF 2

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ TOP OF MONITOR \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 ððð1 1 VARBL1 1ð

 ððð2 2 VARBL2 2ð

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ BOTTOM OF MONITOR \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 SOURCE: ICFSSCU1 -.3/--+----2----+----3----+----4----+----5----+ LINE: 81 OF 96
 81 main() .

 82 { .

83 int VARBL1 ═ 1ð; .

 .4/ 84 int VARBL2 ═ 2ð; .

85 int R ═ 1; .

 86 .5/ .

87 printf("––– IBFSSCC1 : BEGIN\n"); .

 88 do { .

 89 VARBL1++; .

 9ð printf("INSIDE PERFORM\n"); .

91 VARBL2 ═ VARBL2 – 2; .

 92 R++; .

 LOG .6/--+----1----+----2----+----3----+----4----+----5----+----6 LINE: 7 OF 15
 ððð7 STEP ;

 ððð8 AT 87 ;

 ððð9 MONITOR

 ðð1ð LIST VARBL1 ;

 ðð11 MONITOR

 ðð12 LIST VARBL2 ;

 ðð13 GO ; .7/
 ðð14 STEP ;

 ðð15 STEP ;

á ñ

Figure 13. Session Panel with Command Areas Indicated

.1/ Command line : You can enter any valid Debug Tool command on the
command line.

.2/ Scroll area : You can redefine the default amount you want to scroll by
typing the desired value over the value currently displayed.

.3/ Compile unit name area : You can change the qualification by typing the
desired qualification over the value currently displayed. For example, to
change the current qualification from ICFSSCU1, as shown in the Source window
header, to ICFSSCU2, type ICCFSSCU2 over ICFSSCU1 and press ENTER.

.4/ Prefix area : You can enter only Debug Tool prefix commands in the prefix
area, located in the left margin of the Source window.

.5/ Source window : You can modify any lines in the Source window and place
them on the command line.

.6/ Window id area : You can change your window configuration by typing the
name of the window you want to display over the name of the window that is
currently being displayed.

.7/ Log window : You can modify any lines in the log and have Debug Tool
place them on the command line.

 Chapter 5. Using the Debug Tool interfaces 89

 Entering commands

For information about retrieving and modifying commands, see “Retrieving lines
from the Session log and Source windows” on page 92.

 Command sequencing
If you enter commands in more than one valid input area on the session panel and
press ENTER, the input areas are processed in the following order of precedence:

 1. Prefix area
| 2. Command line

3. Compile unit name area
 4. Scroll area

5. Window id area
 6. Source/Log window

Using the command line
You can type any Debug Tool command in this field, as well as any CMS or TSO
command that is prefixed by SYSTEM, CMS, or TSO. Commands can be up to 48
SBCS characters or 23 DBCS characters in length. If you need to enter a lengthy
command, Debug Tool provides a command continuation character, the SBCS
hyphen (-). When the current programming language is C/C++, you can also use
the back slash (\) as a continuation character.

Debug Tool also provides automatic continuation if your command is not complete;
for example, if it was begun with a left brace ({) that has not been matched by a
right brace (}). If you do need to continue your command, Debug Tool provides a
MORE ===> prompt that is equivalent to another command line. You can continue
to request additional command lines with continuation characters until you complete
your command.

Issuing system commands
During your Debug Tool session you can still access your base operating system
using the SYSTEM command. The string following the SYSTEM command is passed on
to your operating system. You can communicate with CMS in a CMS environment,
or TSO in a TSO environment. For example, if you want to see a CMS filelist while
in a debugging session, enter SYSTEM FILELIST;.

For CMS Only : If you enter SYSTEM without a system command, you enter CMS
subset mode. To return to Debug Tool, enter RETURN.

For TSO Only :

� A command is required after the SYSTEM keyword. Do not enter any required
parameters. Debug Tool prompts you.

� If you are debugging in batch and need system services, you can include com-
mands and their requisite parameters in a CLIST and substitute the CLIST
name in place of the command.

� If you want to enter several TSO commands, you can include them in a USE
file, a procedure, or other commands list. Or you can enter:

SYSTEM ISPF;

This invokes ISPF and displays an ISPF panel on your host emulator screen
that you can use to issue commands.

90 Debug Tool User's Guide and Reference

For CICS Only : The SYSTEM command is not supported.

The SYSTEM command has two synonyms: CMS for the CMS environment, and TSO
for the TSO environment. Truncation of the CMS and TSO commands is not allowed.

Using prefix commands
Certain commands, known as prefix commands, can be typed over the prefix area
in the Source window, and then processed by pressing ENTER. These
commands—AT, CLEAR, DISABLE, ENABLE, QUERY, and SHOW—pertain only to the line
or lines of code before which they are typed. For example, the AT command typed
in the prefix area of a specific line sets a statement breakpoint only at that line.

You can use prefix commands to specify the particular verb or statement in the line
where you want the command to apply. For example, AT typed in the prefix area
before a line sets a statement breakpoint at the first relative statement in that line,
while AT 3 sets a statement breakpoint at the third relative statement in that line.
Typing DISABLE 3 in the prefix area and pressing ENTER disables that breakpoint.

Using cursor commands
Certain commands are sensitive to the position of the cursor. These commands,
called cursor-sensitive commands, include all those that contain the keyword
CURSOR (such as AT CURSOR, DESCRIBE CURSOR, LIST CURSOR, SCROLL...CURSOR, and
WINDOW...CURSOR).

To enter a cursor-sensitive command, type it on the command line, position the
cursor at the location in your Source window where you want the command to take
effect (for example, at the beginning of a statement or at a verb), and press
ENTER.

You can also issue cursor-sensitive commands by assigning them to PF keys.

Note: Do not confuse cursor-sensitive commands with the CURSOR command,
which returns the cursor to its last saved position.

Using Program Function (PF) keys to enter commands
The cursor commands, as well as other full-screen tasks, can be issued more
quickly by assigning PF keys to them than by typing them on the command line.
You can issue the WINDOW CLOSE, LIST, CURSOR, SCROLL TO, DESCRIBE ATTRIBUTES,
RETRIEVE, FIND, WINDOW SIZE, and the scrolling commands—SCROLL UP, DOWN, LEFT,
and RIGHT this way. Using PF keys makes tasks convenient and easy.

Defining PF keys
To define your PF keys, use the SET PFKEY command. For example, to define PF
key 8 as SCROLL DOWN PAGE, issue SET PF8 'Down' = SCROLL DOWN PAGE ;. The
string set apart by single quotations ('Down' in this instance) is the label that
appears next to PF8 when you SET KEYS ON and your PF key definitions are dis-
played at the bottom of your screen.

 Chapter 5. Using the Debug Tool interfaces 91

 Abbreviating commands
When you issue Debug Tool commands, you can abbreviate most keywords.
Usually, you need enter only enough characters in a command keyword to uniquely
specify it. You can even use an abbreviation that is the same as a variable in your
program. Debug Tool gives precedence to abbreviations of commands over vari-
able names.

However, you cannot truncate keywords reserved for other programming lan-
guages, system keywords such as CMS and TSO, or special case keywords such as
CALL, COMMENT, END, FILE (in the SET INTERCEPT and SET LOG commands), GOTO,
INPUT, LISTINGS (in the SET DEFAULT LISTINGS command), or USE.

PROCEDURE can be abbreviated only as PROC, and SYSTEM can be abbreviated only as
SYS.

 Retrieving commands
You can retrieve the last command you entered by entering RETRIEVE; on the
command line. The retrieved command is displayed on the command line, and can
be issued by pressing ENTER again. You can modify retrieved commands before
you reissue them.

Repeated executions of the RETRIEVE command scrolls through previous commands
in reverse order; that is, the last command entered is displayed first, then the
command previous to that, then the command previous to that, for as long as you
continue to press ENTER.

To make the use of this command more convenient, assign RETRIEVE to a PF key
using the SET PFKEY command. Press the RETRIEVE PF key to display the retrieved
command on the command line. If a retrieved command is too long to fit in the
command line, only its last line is displayed.

Retrieving lines from the Session log and Source windows
You can retrieve lines from your session Log and Source windows and use them as
new commands.

To retrieve a line, move the cursor to the desired line, modify it (for example, delete
any comment characters) and press ENTER. The input line appears on the
command line. You can further modify the command; then press ENTER to issue
it.

Creating EQUATES and using string substitution
You can define a symbol to represent a long character string. For example, if you
have a long command that you do not want to retype several times, you can use
the SET EQUATE command to equate the command to a short symbol. Afterwards,
Debug Tool treats the symbol as though it were the command. The following
examples show various settings for using EQUATEs:

� SET EQUATE info = "abc, def(h+1)";

Sets the symbol info to the string, "abc, def(h+1)".

� CLEAR EQUATE (info);

Disassociates the symbol and the string. This example clears info.

92 Debug Tool User's Guide and Reference

 Navigating through windows

� CLEAR EQUATE;

If you do not specify what symbol to clear, all symbols created by SET EQUATE

are cleared.

If a symbol created by a SET EQUATE command is the same as a keyword or
keyword abbreviation in an HLL, the symbol takes precedence. If the symbol is
already defined, the new definition replaces the old. Operands of certain com-
mands are for environments other than the standard Debug Tool environment,and
are not scanned for symbol substitution. For a complete list of these operands, see
“SET EQUATE” on page 311.

Navigating through Debug Tool Session Panel windows
You can navigate in any of the windows using the CURSOR command and the
scrolling commands: SCROLL UP, DOWN, LEFT, RIGHT, TO, NEXT, TOP, and BOTTOM. You
can also search for character strings using the FIND command, which scrolls you
automatically to the specified string.

The window acted upon by any of these commands is determined by one of
several factors. If you specify a window name when entering the command, that
window is acted upon. If the command is cursor-oriented, the window containing
the cursor is acted upon. If you do not specify a window name and the cursor is
not in any of the windows, the window acted upon is determined by the settings of
Default window and Default scroll amount under the Profile Settings Panel. For
more information on these settings, see “Customizing settings” on page 99.

Moving the cursor
To move the cursor back and forth quickly from the Monitor, Source, or Log window
to the command line, use the CURSOR command. This command, and several other
cursor-oriented commands, are highly effective when assigned to PF keys. (For
details on how to assign commands to PF keys, see “Using Program Function (PF)
keys to enter commands” on page 91.) After assigning the CURSOR command to a
PF key, move the cursor by pressing that PF key. If the cursor is not on the
command line when you issue the CURSOR command, it goes there. To return it to
its previous position, press the CURSOR PF key again.

Scrolling the windows
You can scroll any of the windows vertically and horizontally by issuing the SCROLL
UP, DOWN, LEFT, and RIGHT commands (the SCROLL keyword is optional). You can
use the command line to specify which window to scroll. For example, to scroll the
monitor window up 5 lines, enter SCROLL UP 5 MONITOR;.

Alternately, you can use the position of the cursor to indicate the window you want
to scroll; if the cursor is in a window, that window is scrolled. If you do not specify
the window, the default window (determined by the setting of the DEFAULT WINDOW

command) is scrolled.

 Chapter 5. Using the Debug Tool interfaces 93

 Navigating through windows

Positioning lines at the top of windows
If you want to display a selected line at the top of a window, issue the SCROLL TO

command. Use the statement numbers shown in the window prefix areas. Type
the line number on the command line, move the cursor to the selected window, and
press the SCROLL TO PF key. Or, type SCROLL TO n (where n is a line number) on
the command line and press ENTER. For example, to bring line 345 to the top of
the window, enter SCROLL TO 345; on the command line. The selected window is
scrolled vertically so that your specified line is displayed at the top of that window.

Searching for a character or character string
To search the Log, Source, or Monitor window for a given character or graphic
string while you are engaged in a full-screen Debug Tool session, issue the FIND
command. The following list provides you with examples of using the FIND

command:

� If you want to search your listing for the variable var1, and the cursor is already
in the Source window, issue the following command:

FIND "var1";

– If the cursor is not in the Source window, enter:

FIND "var1" SOURCE;

– If var1 is in the Log or Monitor window, enter:

FIND "var1" LOG

or

FIND "var1" MONITOR

If var1 is found but not visible in the Source window, the window scrolls forward
vertically and horizontally in order to display it. When Debug Tool locates and
displays it, var1 is highlighted and the cursor is placed at the variable. The
search wraps around so if the window is positioned past the last occurrence,
the first occurrence in the listing or source file is found.

� If you want to search the Source window for the next occurrence of var1, just
enter:

FIND

You do not need to provide the variable name, because the Debug Tool
remembers the string you last searched for. Again, the Source window is
scrolled forward, var1 is highlighted, and the cursor points to the variable.

You can think of the FIND command as a cursor-sensitive command, and you
can conveniently issue it if you first assign it to a PF key.

� Assume you have assigned FIND to a PF key and want to search for the vari-
able var1 in the Source window. All you need to do is type "var1" or 'var1'

on the command line, move the cursor to the Source window, and press the
FIND PF key. The window scrolls forward and displays the occurrence of var1.

If you do not place the cursor in a selected window or specify a window on the
command line, the FIND command searches the window specified with the SET
DEFAULT WINDOW command or the Default window entry in your Profile Settings
Panel.

94 Debug Tool User's Guide and Reference

 Customizing your session

If you are searching for strings with trigraphs in them, the trigraphs or their equiv-
alents can be used as input, and Debug Tool matches them to trigraphs or their
equivalents.

Customizing your session
You have several options for customizing your session. For example, you can
resize and rearrange windows, close selected windows, change session parame-
ters, and change session panel colors. This section explains how to customize
your session using these options.

The window acted upon as you customize your session is determined by one of
several factors. If you specify a window name (for example, WINDOW OPEN MONITOR

to open the Monitor window), that window is acted upon. If the command is cursor-
oriented, such as the WINDOW SIZE command, the window containing the cursor is
acted upon. If you do not specify a window name and the cursor is not in any of
the windows, the window acted upon is determined by the setting of Default
window under the Profile Settings Panel. For information on the settings included
in that panel, see “Customizing settings” on page 99.

Changing Session Panel window layout
You can change window placements on the session panel during your session by
using the PANEL LAYOUT command. The PANEL keyword is optional. When you
issue this command, you are presented with a configuration panel as shown in
Figure 14. The configuration panel displays six possible ways you can change
your Debug Tool session panel window placements.

à ð
Window Layout Selection Panel

 Command ═══>

.1/ .2/ .3/
 1 .-----------. 2 .-----------. 3 .-----------. Legend:

 | M | | _ | _ | | _ |

 |-----------| | | | | | L - Log

| S | |-----------| |-----------| M - Monitor

|-----------| | _ | | _ | _ | S - Source

 | L | | | | | |

'-----------' '-----------' '-----------' To reassign the

 Source, Monitor,

.4/ .5/ .6/
4 .-----------. 5 .-----------. 6 .-----------. and Log windows,

| _ | _ | _ | | _ | _ | | _ | _ | type over the

| | | | | | | | | | current settings

| | | | |-----| | | |-----| or underscores

| | | | | _ | | | | _ | with L, M, or S.

| | | | | | | | | |

'-----------' '-----------' '-----------'

 Enter QUIT to return with current settings saved.

CANCEL to return without current settings saved.

á ñ

Figure 14. Window Layout Selection Panel. The default configuration is shown as option 1.

Initially, the session panel looks like the default window configuration shown as
.1/in Figure 14.

 Chapter 5. Using the Debug Tool interfaces 95

 Customizing your session

To change the window placements for your Debug Tool session, select a configura-
tion example and move the cursor to your selected example. Type the desired
window letters—L for LOG, M for MONITOR, and S for SOURCE—over the under-
scores; then press ENTER. In Figure 14, configuration .1/ is the chosen config-
uration.

You can select only one configuration at a time. Also, only one of each type of
window can be visible at a time on your session panel. For example, you cannot
assign the session log to be visible in more than one window.

After you reassign the window placements, issue the END command or press the
END PF key to save the changes and return to the session display.

Opening and closing Session Panel windows
To open and close any of the windows on the Debug Tool session panel, issue the
WINDOW OPEN and WINDOW CLOSE commands. For example, if you want to open the
monitor window, enter:

WINDOW OPEN MONITOR;

You can also issue the WINDOW CLOSE command by typing it on the command line,
placing the cursor in the desired window (or by specifying the name of the window
as an operand of the WINDOW CLOSE command), and pressing ENTER. When you
close one or two specified windows, the remaining windows occupy the full area of
the screen. For example, to close the Source window from the command line,
enter:

WINDOW CLOSE SOURCE;

The WINDOW CLOSE command can be assigned to a PF key. For details, see “Using
Program Function (PF) keys to enter commands” on page 91.

If you want to monitor the values of selected variables as they change during your
Debug Tool session, the Monitor window must be open. If it is closed, open it as
described above. The Monitor window fills in the available space indicated by your
selected configuration.

If at anytime during your session you open a window and the contents assigned to
it are not available, the window is empty.

Sizing Session Panel windows
In addition to configuring, opening, and closing the Debug Tool session panel
windows, you can control the relative sizes of these windows by using the WINDOW
SIZE command. You can either explicitly specify the number of rows or columns
you want the window to contain (as appropriate for the window configuration) or
use the WINDOW SIZE command with the cursor. The WINDOW keyword is optional.
For example, to explicitly change the Source window from 10 rows deep to 12 rows
deep, enter:

WINDOW SIZE 12 SOURCE

By positioning the cursor at the point on the screen where you want the window
boundary and issuing the WINDOW SIZE command, you can adjust the relative sizes
of windows with great flexibility. For instance, assume only the Source and Log

96 Debug Tool User's Guide and Reference

 Customizing your session

windows are open and you want to enlarge the size of the Source window before
you step through your program. Enter:

WINDOW SIZE SOURCE;

on the command line, move the cursor to the desired row, and press ENTER. The
boundary of the Source window moves to the cursor position.

WINDOW SIZE can be assigned to a PF key. For details, see “Using Program Func-
tion (PF) keys to enter commands” on page 91.

During your session, if you modify the relative sizes of your windows using the
cursor you can restore them to the default sizes by entering:

PANEL LAYOUT RESET;

 Intersecting windows
To change the size of any intersecting windows (in configurations.2/, .3/, .5/, and
.6/, shown in Figure 14) type:

WINDOW SIZE;

on the command line, move the cursor to where you want the windows to intersect,
and press ENTER. The windows are resized according to the new point of inter-
section.

 Horizontal windows
To change the size of the upper two horizontal windows (in configuration .1/,
shown in Figure 14), use the WINDOW SIZE command as above, either moving the
cursor below the window intersection to increase the top window and decrease the
middle one, or moving it above the intersection to increase the middle window and
decrease the top one.

Similarly, you can change the size of the middle and bottom windows.

 Vertical windows
To change the size of the left and middle windows (in configuration.4/, shown in
Figure 14), use the WINDOW SIZE command, either moving the cursor to the left of
the window intersection to increase the middle window and decrease the left one,
or moving it to the right of the intersection to increase the left window and decrease
the middle one.

Zooming a window
The WINDOW ZOOM command specifies that the indicated window be expanded to fill
the screen. This function allows you to view more data, reducing the amount of
scrolling needed.

If the specified window is already zoomed and you specify ZOOM again, the currently
defined window configuration is restored.

 Chapter 5. Using the Debug Tool interfaces 97

 Customizing your session

 Customizing colors
You can change the color and highlighting on your session panel to distinguish the
fields on the panel. Consider highlighting such areas as the current line in the
Source window, the prefix area, and the statement identifiers where breakpoints
have been set.

To change the color, intensity, or highlighting of various fields of the session panel
on a color terminal, use the PANEL COLORS command. When you issue this
command, the panel shown in Figure 15 appears.

The usable color attributes are determined by the type of terminal you are using. If
you have a monochrome terminal, you can still use highlighting and intensity attri-
butes to distinguish fields.

à ð
Color Selection Panel

 Command ═══>

 Color Highlight Intensity

 Title : field headers TURQ NONE HIGH

 output fields GREEN NONE LOW Valid Color:

 Monitor: contents TURQ REVERSE LOW White Yellow Blue

line numbers TURQ REVERSE LOW Turq Green Pink Red

 Source : listing area WHITE REVERSE LOW

prefix area TURQ REVERSE LOW Valid Intensity:

 suffix area YELLOW REVERSE LOW High Low

 current line RED REVERSE HIGH

breakpoints GREEN NONE LOW Valid Highlight:

 Log : program output TURQ NONE HIGH None Reverse

test input YELLOW NONE LOW Underline Blink

test output GREEN NONE HIGH

line numbers BLUE REVERSE HIGH Color and Highlight

Command line WHITE NONE HIGH are valid only with

Window headers GREEN REVERSE HIGH color terminals.

Tofeof delimiter BLUE REVERSE HIGH

 Search target RED NONE HIGH

 Enter QUIT to return with current settings saved.

CANCEL to return without current settings saved.

á ñ

Figure 15. Color Selection Panel with Default Settings

Initially, the session panel areas and fields have the default color and attribute
values shown in Figure 15.

To change the color and attribute settings for your Debug Tool session, enter the
desired colors or attributes over the existing values of the fields you want to
change. The changes you make are saved when you enter QUIT.

You can also change the colors or intensity of selected areas by issuing the equiv-
alent SET COLOR command from the command line. Either specify the fields explic-
itly, or use the cursor to indicate what you want to change. Changing a color or
highlight with the equivalent SET command changes the value on the Color
Selection Panel.

Settings remain in effect for the entire debug session.

To preserve any changes you make to the default color fields, specify a file before
you begin your session using the ddname inspsafe and the dsname or fileid of

98 Debug Tool User's Guide and Reference

 Customizing your session

your choice. Debug Tool recognizes any file with this ddname as the file where it
saves session panel settings for use during subsequent sessions. If you do not
allocate this file before your session, Debug Tool begins the next debugging
session with the values shown in Figure 15.

 Customizing settings
The PANEL PROFILE command displays the Profile Settings Panel, which contains
profile settings that affect the way Debug Tool runs. This panel is shown in
Figure 16 with the IBM-supplied initial settings. You can change the settings by
either typing over them with the desired values, or by issuing the appropriate SET
command from the command line or from within a commands file.

à ð
Profile Settings Panel

 Command ═══>

 Current Setting

Change Test Granularity STATEMENT (All,Blk,Line,Path,Stmt)

DBCS characters NO (Yes or No)

Default Listing PDS name(MVS only)

Default scroll amount PAGE (Page,Half,Max,Csr,Data,int)

 Default window SOURCE (Log,Monitor,Source)

Execute commands YES (Yes or No)

History YES (Yes or No)

 History size 1ðð (nonnegative integer)

Logging YES (Yes or No)

Pace of visual trace 2 (steps per second)

Refresh screen NO (Yes or No)

Rewrite interval 5ð (number of output lines)

Session log size 1ððð (number of retained lines)

Show log line numbers YES (Yes or No)

Show message ID numbers NO (Yes or No)

Show monitor line numbers YES (Yes or No)

Show scroll field YES (Yes or No)

Show source/listing suffix YES (Yes or No)

Show warning messages YES (Yes or No)

 Test level ALL (All,Error,None)

 Enter QUIT to return with current settings saved.

CANCEL to return without current settings saved.

á ñ

Figure 16. Profile Settings Panel with Default Settings

A list of the profile parameters, their descriptions, and the equivalent SET com-
mands follows.

Change Test Granularity
Specifies the granularity of testing for AT CHANGE. Equivalent to SET CHANGE.

DBCS characters
Controls whether the shift-in and shift-out characters are recognized. Equiv-
alent to SET DBCS.

Default Listing PDS name
If specified, the data set where Debug Tool looks for the source/listing. This
field appears only if you are debugging on MVS. Equivalent to SET DEFAULT

LISTINGS.

 Chapter 5. Using the Debug Tool interfaces 99

 Customizing your session

Default scroll amount
Specifies the default amount assumed for SCROLL commands where no amount
is specified. Equivalent to SET DEFAULT SCROLL.

Default window
Selects the default window acted upon when WINDOW commands are issued with
the cursor on the command line. Equivalent to SET DEFAULT WINDOW.

Execute commands
Controls whether commands are executed or just checked for syntax errors.
Equivalent to SET EXECUTE.

History
Controls whether a history (an account of each time Debug Tool is entered) is
maintained. Equivalent to SET HISTORY.

History size
Controls the size of the Debug Tool history table. Equivalent to SET HISTORY.

Logging
Controls whether a log file is written. Equivalent to SET LOG.

Pace of visual trace
Sets the maximum pace of animated execution. Equivalent to SET PACE.

Refresh screen
Clears the screen before each display. REFRESH is useful when there is
another application writing to the screen. Equivalent to SET REFRESH.

Rewrite interval
Defines the number of lines of intercepted output that are written by the appli-
cation before Debug Tool refreshes the screen. Equivalent to SET REWRITE.

Session log size
The number of session log output lines retained for display. Equivalent to SET
LOG.

Show log line numbers
Turns line numbers on or off in the log window. Equivalent to SET LOG NUMBERS.

Show message ID numbers
Controls whether ID numbers are shown in Debug Tool messages. Equivalent
to SET MSGID.

Show monitor line numbers
Turns line numbers on or off in the monitor window. Equivalent to SET MONITOR

NUMBERS.

Show scroll field
Controls whether the scroll amount field is shown in the display. Equivalent to
SET SCROLL DISPLAY.

Show source/listing suffix
Controls whether the frequency suffix column is displayed in the Source
window. Equivalent TO SET SUFFIX.

Show warning messages (C/C++ and PL/I only)
Controls whether warning messages are shown or conditions raised when com-
mands contain evaluation errors. Equivalent to SET WARNING.

100 Debug Tool User's Guide and Reference

Test level
Selects the classes of exceptions to cause automatic entry into Debug Tool.
Equivalent to SET TEST.

A field indicating scrolling values is shown only if the screen is not large enough to
show all the profile parameters at once. This field is not shown in Figure 16.

You can change the settings of these profile parameters at any time during your
session. For example, you can increase the delay that occurs between the exe-
cution of each statement when you issue the STEP command by modifying the
amount specified in the Pace of visual trace field at any time during your session.

To modify the profile settings for your session, enter a new value over the old value
in the field you want to change. Equivalent SET linemode commands are issued
when you QUIT from the panel.

Entering the equivalent SET command changes the value on the Profile Settings
Panel as well.

To preserve any changes you make to the default profile settings, specify a file
before you begin your session using the ddname inspsafe and the dsname or fileid
of your choice. Debug Tool recognizes any file with this ddname as the file where
it saves session panel settings for use during subsequent sessions. All PANEL set-
tings are saved, except the setting for the Listing Panel and the following settings:

 COUNTRY

 FREQUENCY

 INTERCEPT

 LOG

 NATIONAL LANGUAGE

 PROGRAMMING LANGUAGE

 QUALIFY

 SOURCE

 TEST

If you do not allocate this file before your session, Debug Tool begins the next
debugging session with the values shown in Figure 16.

Settings remain in effect for the entire debug session.

Getting help during your session
Command syntax help is available with Debug Tool. If you are uncertain as to the
proper syntax or exact keywords required by a command, enter the command, fol-
lowed by a question mark, on the command line:

STEP ?

The following information is displayed in your Log window:

 Chapter 5. Using the Debug Tool interfaces 101

à ð
The partially parsed command is:

STEP

The next word can be one of:

\ OVER

; RETURN

unsigned positive integer

INTO

á ñ

102 Debug Tool User's Guide and Reference

 Multiple processes and enclaves

Chapter 6. Multiple processes and enclaves

This chapter discusses invocation of Debug Tool with more than one process,
debugging multiple enclaves, and using Debug Tool features with multiple enclaves.

The following topics are covered in this chapter:

Debugging applications within multiple enclaves
Invoking Debug Tool within an enclave
Using the source window and related windows
Retaining a log file of your Debug Tool session
Processing commands from a commands file
Using breakpoints within multiple enclaves
ending a Debug Tool session
Using Debug Tool commands within multiple enclaves

Debugging applications within multiple enclaves
There is a single Debug Tool session across all enclaves in a process. Break-
points set in one process are restored when the new process begins in the new
session.

Invoking Debug Tool within an enclave
Once an enclave in a process activates Debug Tool, it remains active throughout
subsequent enclaves in the process, regardless of whether the run-time options for
the enclave specify TEST or NOTEST. Debug Tool retains the settings specified from
the TEST run-time option for the enclave that activated it, until you modify them with
SET TEST (see “SET TEST” on page 326). If your Debug Tool session includes
more than one process, the settings for TEST are reset according to those specified
on the run-time TEST option of the first enclave that activates Debug Tool in each
new process.

If Debug Tool is first activated in a nested enclave of a process, and you STEP or GO
back to the parent enclave, you can debug the parent enclave. However, if the
parent enclave contains COBOL but the nested enclave does not, Debug Tool is
not active for the parent enclave, even upon return from the child enclave.

Upon activation of Debug Tool, the initial commands string, primary commands file,
and the preferences file are run. They run only once, and affect the entire Debug
Tool session. A new primary commands file cannot be invoked for a new enclave.

Using the source window and related windows
A particular enclave's Source or Listing windows and their related windows
(Compact Source, Local Breakpoint, and Local Monitor windows) are hidden when
that enclave invokes another enclave. You cannot open a Source or Listing
window for a compile unit unless that compile unit is in the current enclave.

 Copyright IBM Corp. 1995, 1998 103

 Multiple processes and enclaves

Retaining a log file of your Debug Tool session
Ensure that your log file is correctly allocated. See “Using the Session Log file to
maintain a record of your session” on page 87.

Processing commands from a commands file
A commands file continues to process its series of commands regardless of what
level of enclave is entered.

Using breakpoints within multiple enclaves
When any process is initialized, a termination breakpoint is automatically defined for
the process. Unless you clear or disable this breakpoint, it will be triggered when
the process finishes execution. During run time of a termination breakpoint, GO and
STEP are valid commands that cause your program to continue running the next
process in the series.

Ending a Debug Tool session
You cannot specify NOPROMPT as the third suboption in the TEST run-time option for
the next process on the host. This is to ensure that STATEMENT/LINE, ENTRY, EXIT,
and LABEL breakpoints are properly restored when the next process starts. If you
have not used these breakpoint types, you can specify NOPROMPT.

In a single enclave, QUIT closes Debug Tool.

In a nested enclave, however, QUIT causes Debug Tool to signal a severity 3 condi-
tion corresponding to Language Environment message CEE2529S. The system is
attempting to cleanly terminate all enclaves in the process.

Normally, the condition causes the current enclave to terminate. Then, the same
condition will be raised in the parent enclave, which will also terminate. This con-
tinues until all enclaves in the process have been terminated. As a result, you will
see a CEE2529S message for each enclave that is terminated.

There is one case where Debug Tool raises Language Environment severity 3 con-
dition and all enclaves in the process do not terminate: Under CICS, when the
assembler user exit for the application (or the default assembler user exit) does not
perform an EXEC CICS ABEND for unhandled severity 3 conditions. In these
cases, the application continues to run, but Debug Tool becomes inactive.

For CMS Only : Under CMS, an unhandled condition in a nested enclave causes
an Language Environment abend 4094 with reason code 40.

or CICS and MVS Only : Under CICS and MVS, an abend appears on the applica-
tion terminal. For Language Environment 1.3 it is 4038. An abend at termination
of a nested enclave is normal and should be expected.

104 Debug Tool User's Guide and Reference

 Multiple processes and enclaves

Using Debug Tool commands within multiple enclaves
Some Debug Tool commands and variables have a specific scope for enclaves and
processes. Table 2 summarizes the behavior of specific Debug Tool commands
and variables when you are debugging an application that consists of multiple
enclaves. For syntax and a full description of each of the Debug Tool commands,
see Chapter 13, “Debug Tool commands” on page 205.

Table 2 (Page 1 of 2). Scope of Debug Tool Commands and Variables across Multiple Enclaves

Debug Tool Command

Affects
Current
Enclave
Only

Affects
Entire
Debug
Tool
Session Comments

%CAAADDRESS X

AT GLOBAL X

AT TERMINATION X

CLEAR AT X X In addition to clearing breakpoints set in the current
enclave, CLEAR AT can clear global breakpoints.

CLEAR DECLARE X

CLEAR VARIABLES X

Declarations X Session variables are cleared at the termination of the
process in which they were declared.

DISABLE X X In addition to disabling breakpoints set in the current
enclave, DISABLE can disable global breakpoints.

ENABLE X X In addition to enabling breakpoints set in the current
enclave, ENABLE can enable global breakpoints.

LIST AT X X In addition to listing breakpoints set in the current
enclave, LIST AT can list global breakpoints.

LIST CALLS X Applies to all systems except MVS batch and MVS with
TSO. Under MVS batch and MVS with TSO, LIST CALLS

lists the call chain for the current active thread in the
current active enclave.

For programs containing interlanguage communication
(ILC), routines from previous enclaves are only listed if
they are coded in a language that is active in the current
enclave.

Also lists compile units in parent enclaves under CMS if
the enclave was created using view SVC LINK. If the
enclave was created with the system() function or the
CMSCALL macro, compile units in parent enclaves will not
be listed.

Note: Only compile units in the current thread will be
listed for PL/I multitasking applications.

LIST EXPRESSION X You can only list variables in the currently active thread.

LIST LAST X

LIST NAMES CUS X Applies to compile unit names. In the Debug Frame
window, compile units in parent enclaves are marked as
deactivated.

 Chapter 6. Multiple processes and enclaves 105

 Multiple processes and enclaves

Table 2 (Page 2 of 2). Scope of Debug Tool Commands and Variables across Multiple Enclaves

Debug Tool Command

Affects
Current
Enclave
Only

Affects
Entire
Debug
Tool
Session Comments

LIST NAMES TEST X Applies to Debug Tool session variable names.

MONITOR GLOBAL X Applies to Global monitors.

PROCEDURE X

SET COUNTRY1 X This setting affects both your application and Debug Tool.

At the beginning of an enclave, the settings are those pro-
vided by Language Environment or your operating
system. For nested enclaves, the parent's settings are
restored upon return from a child enclave.

SET EQUATE1 X

SET INTERCEPT1 X For C, intercepted streams or files cannot be part of any
C I/O redirection during the execution of a nested
enclave. For example, if stdout is intercepted in program
A, program A cannot then redirect stdout to stderr when
it does a system() call to program B. Also, not supported
for PL/I.

SET NATIONAL LANGUAGE1 X This setting affects both your application and Debug Tool.

At the beginning of an enclave, the settings are those pro-
vided by Language Environment or your operating
system. For nested enclaves, the parent's settings are
restored upon return from a child enclave.

SET PROGRAMMING

LANGUAGE1
X Applies only to programming languages in which compile

units known in the current enclave are written (a language
is "known" the first time it is entered in the application
flow).

SET QUALIFY1 X Can only be issued for load modules, compile units, and
blocks that are known in the current enclave.

SET TEST1 X

TRIGGER condition2 X Applies to triggered conditions.2 Conditions can be either
an Language Environment symbolic feedback code, or a
language-oriented keyword or code, depending on the
current programming language setting.

TRIGGER AT X X In addition to triggering breakpoints set in the current
enclave, TRIGGER AT can trigger global breakpoints.

Note:

1. SET commands other than those listed in this table affect the entire Debug Tool session.
2. If no active condition handler exists for the specified condition, the default condition handler can cause the

program to end prematurely.

106 Debug Tool User's Guide and Reference

 Using Debug Tool in different modes and environments

Chapter 7. Using Debug Tool in different modes and
environments

This chapter describes:

� Using Debug Tool in line or batch mode
� Running multitasking programs with Debug Tool.
� Debugging ISPF applications
� Programming considerations for DB2, IMS, and CICS programs
� Requirements when using Debug Tool with DB2, IMS, and CICS programs
� Suggestions on invoking Debug Tool in DB2, IMS, and CICS environments
� Using Debug Tool CICS Interactive Run-Time Facility (DTCN)

Using Debug Tool in line mode
If you only have access to a typewriter-like terminal, you need to use Debug Tool in
line mode.

Note: Line mode is not supported in CICS.

To start a line-mode Debug Tool session, make sure the setting of SCREEN is off
by specifying it in either your primary commands file, preferences file, or the initial
command string included in the TEST run-time option. Then follow the steps out-
lined in “Invoking your program for a debugging session” on page 29 to begin a
Debug Tool session in CMS or MVS with TSO. If you are using a terminal that
does not support a full-screen session, Debug Tool defaults to line mode.

Debug Tool issues a message indicating that execution has begun.

After control is given to Debug Tool, it displays the following prompt when it is
ready for a command:

TEST:

or

TEST (qualify:>location):

where qualify:>location is replaced by Debug Tool's current location in the
program. The prompt used depends on the current PROMPT setting (SHORT or LONG).
Enter your commands at the prompt.

If you need to continue a command, use the command continuation character, the
hyphen (-), and the prompt is replaced by the word PENDING.... When you are
finished with Debug Tool in line mode, end your session by entering QUIT.

Commands you can use in line mode
You can use most, but not all, Debug Tool commands in line mode. The com-
mands that you cannot use are those designed to control your full-screen session,
such as PANEL commands, WINDOW commands, and cursor-sensitive commands.
For more information on the commands and their appropriate usage, see
Chapter 12, “Using Debug Tool commands” on page 193.

To help make line-mode debugging more efficient, use the LIST command to list
source statements. See “LIST command” on page 274 for more information.

 Copyright IBM Corp. 1995, 1998 107

 Running multitasking programs with Debug Tool

Getting HELP during a line-mode session
Online command syntax help is available for each Debug Tool command, similar to
the help described in “Getting help during your session” on page 101.

You must issue a separate request for syntax help for each command.

Using Debug Tool in batch mode
Debug Tool can run in batch mode, creating a noninteractive session.

In batch mode, Debug Tool receives its input from either the primary commands
file, the USE file, or the command string specified in the run-time TEST option, and
writes its normal output to a log file.

Note: You must allocate a data set for the log file.

Commands that require user interaction, such as PANEL, are invalid in batch mode.

You might want to run a Debug Tool session in batch mode if:

� You want to restrict the processor resources used. Batch mode generally uses
fewer processor resources than interactive mode.

� You have a program that might tie up your terminal for long periods of time.
With batch mode, you can use your terminal for other work while the batch job
is running.

� You are debugging an application in its native batch environment, such as
MVS/JES or CICS batch.

When Debug Tool is reading commands from a specified data set or file and no
more commands are available in that data set or file, it forces a GO command until
the end of the program is reached.

When debugging in batch mode, use QUIT to end your session.

Running multitasking programs with Debug Tool
You can run your multitasking programs with Debug Tool. When more than one
task is involved in your program, Debug Tool might be invoked by any or all of
them. Because conflicting use of the terminal or log file, for example, could occur if
Debug Tool is operating on multiple tasks, its use is single-threaded. So, if your
program runs as two tasks (task A and task B) and task A calls Debug Tool, Debug
Tool accepts the request and begins operating on behalf of task A. If, during that
period, task B calls Debug Tool, the request from task B is held until the request
from task A is complete (for example, you issued a STEP or GO command). Debug
Tool is then released and can accept any pending invocation.

See OS/390 Language Environment Programming Guide, for more information.

108 Debug Tool User's Guide and Reference

 Debugging DB2 programs

MVS/ESA SP V5R1 with OpenEdition R2 requirement
MVS/ESA SP V5R1 9 (or later) with OpenEdition (OE) R2 is required to run multi-
tasking applications. The OpenEdition R2 must be installed and activated in order
to run multitasking applications.

The OpenEdition R2 is needed so that the POSIX-defined multithreading functions
can be used to support multitasking.

Restrictions when debugging multitasking applications
The following is a list of restrictions when debugging multitasking applications:

� Debugging applications that create another process because of conflicting use
of the terminal.

� Only variables and symbol information for compile units in the task currently
being debugged are accessible.

� The LIST CALL command only provides a traceback of the compile units in the
current task.

� The source file can reside on an HFS file system, but executables that are
stored on an HFS file system cannot be debugged.

Debugging ISPF applications
When debugging ISPF applications or applications using line mode I/O, issue the
SET REFRESH ON command.

This command is executed and is displayed in the log output area of the
Command/Log window. Note that SET REFRESH ON modifies the Debug Tool envi-
ronment. Consequently, the REFRESH setting is saved in the preferences file
(inspsafe), and it is preserved between Debug Tool invocations. So, you only
need to specify it once; Debug Tool uses the same setting on subsequent invoca-
tions.

For general information about defining the Debug Tool environment and the prefer-
ences file, see “Customizing your session” on page 95.

When you are debugging ISPF applications, Debug Tool and the application share
the same emulator session. Consequently, it is necessary to press PA2 after each
ISPF panel display. PA2 refreshes the ISPF application panel and removes resi-
dual Debug Tool output from the emulator session. This is necessary only if Debug
Tool sends output to the emulator session between ISPF application panel displays.

Debugging DB2 programs
When you are planning to use Debug Tool to debug your DB2 programs, certain
steps need to be taken. These steps are described in detail below.

 Chapter 7. Using Debug Tool in different modes and environments 109

 Debugging DB2 programs

 Programming considerations
There are no special coding techniques for any DB2 programs you might want to
debug using Debug Tool. For details on how to code your program to access a
DB2 database, see the HLL Programming Guides and the IBM DATABASE 2 Appli-
cation Programming Guide.

To communicate with DB2, you should:

� Delimit SQL statements with EXEC SQL and END-EXEC statements
� Declare SQLCA in working storage
� Declare the host variables
� Code the appropriate SQL statements
� Test the DB2 return codes

 Program preparation
Program preparation includes the DB2 precompiler, the compiler, the Language
Environment prelinker, the linkage editor, and DB2 bind. For C/C++, Debug Tool
uses, as the program source file, the input to the compiler (the output from the DB2
precompiler). The precompiler output must be saved in a permanent data set.

 Precompile requirements
Before your program can be compiled, the SQL statements must be prepared using
the DB2 precompiler. For details about the precompiler, see IBM DATABASE 2
Application Programming Guide. No special preparations are needed in the pre-
compile step to use Debug Tool.

When debugging a program containing SQL, keep the following in mind:

� The SQL preprocessor replaces all the SQL statements in the program with
host language code. The modified source output from the preprocessor con-
tains the original SQL statements in comment form. For this reason, the source
or listing view displayed during a debugging session can look very different
from the original source.

� The host language code inserted by the SQL preprocessor invokes the SQL
access module for your program. You can halt program execution at each call
to a SQL module and immediately following each call to a SQL module, but the
called modules cannot be debugged.

 Compile requirements
The output from the precompiler must be used as input to the compiler. To debug
your program with Debug Tool, use the compile-time TEST option. A description of
TEST is found in one of the following sections:

“Compiling a C program with the compile-time TEST option” on page 5
“Compiling a C++ program with the compile-time TEST option” on page 9
“Compiling a COBOL program with the compile-time TEST option” on page 10
“Compiling a PL/I program with the compile-time TEST option” on page 13

The suboptions of the compile-time TEST option control the production of such
debugging aids as dictionary tables and program hooks that Debug Tool needs in
order to debug your program. The choices you make when compiling your program
can affect the amount of Debug Tool function available during your debugging

110 Debug Tool User's Guide and Reference

 Debugging DB2 programs

session. When a program is under development, you should compile it with
TEST(ALL) to get the full capability of Debug Tool.

Important : Ensure that your source (if you are working with C/C++ language) or
listing (if you are working with COBOL or PL/I) is stored in a permanent data set
that is available to Debug Tool.

 Link requirements
The output from the compiler must be linked into your program load library. You
can include the user run-time options module, CEEUOPT, by doing the following:

1. Find the user run-time options program CEEUOPT in the Language Environ-
ment SCEESAMP library.

2. Change the NOTEST parameter into a default TEST parameter:

old: NOTEST=(ALL,\,PROMPT,INSPPREF),

new: TEST=(,\,;,\),

3. Assemble the CEEUOPT program and keep the object code.

4. Link-edit the CEEUOPT object code with any program to invoke Debug Tool.

See “Using alternative Debug Tool invocation methods” on page 31 for more infor-
mation.

Figure 17 on page 112 shows the modified assembler program, CEEUOPT.

The user run-time options program can be assembled with predefined TEST run-time
options to establish defaults for one or more applications. Link-editing an applica-
tion with this program results in the default options when that application is invoked.

If your system programmer has not already done so, include all the proper libraries
in the SYSLIB concatenation. For example, the ISPLOAD library for ISPLINK calls,
and the DB2 DSNLOAD library for the DB2 interface modules (DSNxxxx).

 Bind requirements
Before you can run your DB2 program, you must run a DB2 bind in order to bind
your program with the relevant DBRM output from the precompiler step. No special
requirements are needed for Debug Tool.

Using Debug Tool with DB2 programs
You can debug DB2 programs in either batch or interactive mode. When using
batch mode, you must know the exact Debug Tool commands you want to have
executed during the test and include them in the command input file. In interactive
mode, the debugging commands can be entered interactively.

 Batch mode
In order to debug your program with Debug Tool while in batch mode, follow these
steps:

1. Make sure the Debug Tool modules are available, either by STEPLIB or
through the LINKLIB.

2. Provide all the data set definitions in the form of DD statements (example: Log,
Preference, list, and so on).

 Chapter 7. Using Debug Tool in different modes and environments 111

 Debugging DB2 programs

\/\\/

\/\ LICENSED MATERIALS - PROPERTY OF IBM \/

\/\ 5688-198 (C) COPYRIGHT IBM CORP. 1994. ALL RIGHTS RESERVED. \/

\/\ SEE COPYRIGHT INSTRUCTIONS. \/

\/\\/

CEEUOPT CSECT

CEEUOPT AMODE ANY

CEEUOPT RMODE ANY

 CEEXOPT ABPERC=(NONE), X

 AIXBLD=(OFF), X

 ALL31=(OFF), X

 ANYHEAP=(32K,16K,ANYWHERE,FREE), X

 BELOWHEAP=(32K,16K,FREE), X

 CBLOPTS=(ON), X

 CBLPSHPOP=(ON), X

 CBLQDA=(ON), X

 CHECK=(ON), X

 COUNTRY=(US), X

 DEBUG=(ON), X

 ERRCOUNT=(2ð), X

 HEAP=(64K,64K,ANYWHERE,KEEP,16K,16K), X

 INTERRUPT=(OFF), X

 LIBSTACK=(32K,16K,FREE), X

 MSGFILE=(SYSOUT), X

 MSGQ=(15), X

 NATLANG=(ENU), X

 TEST=(,\,;,\), X

 RPTOPTS=(OFF), X

 RPTSTG=(OFF), X

 RTEREUS=(OFF), X

 SIMVRD=(OFF), X

 STACK=(512K,512K,BELOW,KEEP), X

 STORAGE=(NONE,NONE,NONE,8K), X

 TERMTHDACT=(MSG), X

 TRAP=(ON), X

 UPSI=(ðððððððð), X

 VCTRSAVE=(OFF), X

 XUFLOW=(OFF)

DC C'5688-198 (C) COPYRIGHT IBM CORP. 1994'

DC C'LICENSED MATERIAL - PROGRAM PROPERTY OF IBM'

 END

Figure 17. Run-time options module CEEUOPT

3. Specify your debug commands in the command input file.

4. Run your program through the TSO batch facility.

 Interactive mode
In this mode, you can decide at debug time what debugging commands you want
issued during the test.

Using TSO Commands

1. Ensure that either you or your system programmer has allocated all the
required data sets through a CLIST or REXX EXEC.

2. Issue the DSN command to invoke DB2.

3. Issue the RUN subcommand to execute your program. The run-time TEST option
can be specified as a parameter on the RUN subcommand. An example for a
COBOL program is:

112 Debug Tool User's Guide and Reference

 Debugging IMS programs

RUN PROG(progname) PLAN(planname) LIB('user.library')

 PARMS('/TEST(,\,;,\)')

Using TSO/Call Access Facility (CAF)

1. Link-edit the CAF language interface module DSNALI with your program.

2. Ensure that the data sets required by Debug Tool and your program have been
allocated through a CLIST or REXX procedure.

3. Issue the TSO CALL command CALL 'DSN23ð.RUNLIB.LOAD(name of your

program)', to start your program. DSN230 is a default high-level qualifier and
DB2 might be installed elsewhere on your system. Include the run-time TEST
option as a parameter in this command.

After your program has been initiated, debug your program by issuing the required
Debug Tool commands.

Note: If your source does not come up in Debug Tool when you launch it, check
that the listing or source file name corresponds to the MVS library name,
and that you have at least read access to that MVS library. For more infor-
mation see “PANEL command (full-screen mode)” on page 291, “SET
DEFAULT LISTINGS (MVS)” on page 309, and “SET SOURCE” on
page 324.

The program listing or source that Debug Tool displays and uses for the debugging
session is the output from the compile step, and thus includes all the DB2 expan-
sion code produced by the DB2 precompiler.

For more information on accessing the correct DB2 program library, and on using
the TSO and call attachment facilities, see IBM DATABASE 2 Administration Guide.

Debugging IMS programs
When testing IMS online transaction programs, use the Batch Terminal Simulator
(BTS) Full-Screen Image Support (FSS) to display your MFS screen formats on the
TSO terminal. This enables you to enter data on-screen in the same way as it
would be entered in IMS.

FSS is the default option when BTS is started in the TSO foreground, and is only
available when you are running BTS in the TSO foreground. FSS can only be
turned off by specifying TSO=NO on the ./O command. When running in the TSO
foreground, all call traces are displayed on your TSO terminal by default. This can
be turned off by parameters on either the ./O or ./T commands. For more details
on BTS and the FSS facility, see IMS/VS Batch Terminal Simulator Program Refer-
ence and Operations Manual.

 Programming considerations
When using Debug Tool to debug your IMS application programs:

� For COBOL, the following rules apply:

– Do not use the ENTRY 'anyname' USING statement. Instead, code the
USING clause on the PROCEDURE DIVISION statement.

– If your COBOL program calls other COBOL programs that you also want to
debug, do not use ENTRY statements in the called programs. The program

 Chapter 7. Using Debug Tool in different modes and environments 113

 Debugging IMS programs

name must be the same as its entry point name. Debug Tool cannot locate
the program listing when entry points are used.

 Program preparation
Program preparation steps for IMS include compile and link activities.

 Compile requirements
Your program must be compiled with the compile-time TEST option. Use the default
options to gain maximum debugging facilities.

Important : Ensure that your source (if you are working with C/C++ language) or
listing (if you are working with COBOL or PL/I) is stored in a permanent data set
that is available to Debug Tool.

 Link requirements
When you link your program, do the following:

� Include a run-time options module in your program link. With an IMS program,
run-time options cannot be specified at program start. They must be coded
and assembled in a user-defined run-time option module. For instructions on
how to create the CEEUOPT run-time options module using the CEEXOPT macro,
follow steps 1 to 4 on page 111 under “Link requirements.”

� When you link your COBOL program, do the following:

– Include the IMS interface module DFSLI000 from the IMS RESLIB library.

– Do not use the ENTRY DLITCBL linkage editor control statement.

Using Debug Tool with IMS programs
Debug Tool can be used with the IMS Batch Terminal Simulator (BTS) to debug
IMS programs in one of three ways:

1. To test your IMS program interactively, use Debug Tool while running BTS in
the TSO foreground. The IMS program still executes in batch; however, it
invokes a CLIST which runs interactively. This is the only way to use the inter-
active mode of Debug Tool.

2. Run BTS as a batch job. Only the batch mode of Debug Tool can be used
with BTS running as a batch job.

3. Test your program as an IMS batch job (without BTS). Only the batch mode of
Debug Tool can be used without BTS.

 Interactive mode
The only way to invoke Debug Tool in interactive mode is to run BTS in the TSO
foreground. In interactive mode, Debug Tool commands can be entered as
required.

If you want to debug an IMS batch program using the interactive mode of Debug
Tool, do the following under BTS:

1. Define a dummy transaction code on the ./T command to initiate your program

2. Include a dummy transaction in the BTS input stream

3. Start BTS in the TSO foreground

114 Debug Tool User's Guide and Reference

 Debugging IMS programs

Note: If your source or listing does not come up in Debug Tool when you launch
it, check that the source or listing file name corresponds to the MVS library
name, and that you have at least read access to that MVS library. For
more information see “PANEL command (full-screen mode)” on page 291
and “SET SOURCE” on page 324.

Currently, Debug Tool can only be used to debug one iteration of a transaction at a
time. When the program terminates you must close down Debug Tool before you
can view the output of the transaction.

Therefore, if you use an input data set, you can only specify data for one trans-
action in that data set. The data for the next transaction must be entered from your
TSO terminal.

A new debugging session will be started automatically for the next transaction.
When using FSS, you must enter the /* command on your TSO terminal to termi-
nate the BTS session.

 Batch mode
You can use Debug Tool to debug IMS programs in batch mode. The debug com-
mands must be predefined and included in one of the Debug Tool command files,
or in a command string. The command string can be specified as a parameter
either in the run-time TEST option, or when CALL CEETEST or __ctest is used.
Although batch mode consumes fewer resources, you must know beforehand
exactly which debug commands you are going to issue. When you run BTS as a
batch job, the batch mode of Debug Tool is the only mode available for use.

For example, you can allocate a data set, userid.CODE.BTSINPUT with individual
members of test input data for IMS transactions under BTS.

Under IMS, you can invoke Debug Tool in the following ways:

� Use the compiler run-time option (#pragma runopts for C and C++)
� Include CEEUOPT csect when linking your program (for C/C++)
� Use the Language Environment callable service CEETEST (__ctest() for C/C++)

Using alternative methods of command input under IMS
You can issue Debug Tool commands in different ways, depending on which mode
you are running under.

In TSO/BTS, commands are interactive.

� Run-time TEST options (primary commands file, preferences file, or command
string)

 � line mode
 � full-screen mode

Outside BTS, run-time TEST options (primary commands file, preferences file, or
command string) are in batch IMS mode.

Under BTS, run-time TEST options (primary commands file, preferences file, or
command string) are in BTS batch mode.

 Chapter 7. Using Debug Tool in different modes and environments 115

 Debugging CICS programs

Debugging CICS programs
Before you can debug your programs under CICS, make sure your Systems Pro-
grammer has made the appropriate changes to your CICS region to support Debug
Tool (see your compiler Installation Guide or Program Directory). You also need to
ensure that your program is translated by the CICS translator prior to compilation.
The program listing (for COBOL and PL/I) or the program source file (for C/C++)
must be retained in a permanent data set for Debug Tool to read when you debug
your program.

Note: For C/C++, it is the input to the compiler (that is, the output from the CICS
translator) that needs to be retained. To enhance performance when using
Debug Tool, use a large blocksize when saving these files.

Debug modes under CICS
Debug Tool can run in several different modes, providing you with the flexibility to
debug your applications in the way that suits you best. These modes include:

� Single Terminal Mode:

This is probably the mode you will use the most. A single 3270 session is used
by both Debug Tool and the application, swapping displays on the terminal as
required.

As you step through your application, the terminal shows Debug Tool screens,
but when an EXEC CICS SEND command is issued, that screen will be displayed.
Debug Tool holds that screen on the terminal for you to review—simply press
ENTER to return to a Debug Tool screen. When your application issues EXEC
CICS RECEIVE, the application screen again appears, so you can fill in the
screen details.

� Dual Terminal Mode:

This mode can be useful if you are debugging screen I/O applications. Debug
Tool displays its screens on a separate 3270 session than the terminal dis-
playing the application.

You step through the application using the Debug Tool terminal and, whenever
the application issues an EXEC CICS SEND, the screen is sent to the application
display terminal. Note that, if you do not code IMMEDIATE on the EXEC CICS

SEND command, the buffer of data might be held within CICS Terminal Control
until an optimum opportunity to send it is encountered--usually the next EXEC

CICS SEND or EXEC CICS RECEIVE. When the application issues an EXEC CICS

RECEIVE, the Debug Tool terminal will wait until you respond to the application
terminal.

� Interactive Batch Mode:

Use this mode if you are debugging a transaction which does not have a ter-
minal associated with it. The transaction continues to run without a CICS prin-
cipal facility, but Debug Tool screens are displayed on a 3270 session that you
name.

� Noninteractive Batch Mode:

In this mode, Debug Tool does not have a terminal associated to it at all. It
receives its commands from a command file and writes its results to a log file.
This mode is useful if you want Debug Tool to debug a program automatically.

116 Debug Tool User's Guide and Reference

 Debugging CICS programs

Invoking Debug Tool under CICS
There are several different mechanisms available to invoke Debug Tool under
CICS. Each mechanism has a different advantage and are listed below:

� DTCN, a full-screen CICS transaction that allows you to dynamically modify any
Language Environment run-time TEST/NOTEST option with which your applica-
tion was originally link-edited. You can also use DTCN to modify other Lan-
guage Environment run-time options that are not specific to Debug Tool.

DTCN is the recommended mechanism for invoking Debug Tool sessions and
supports all the modes outlined in “Debug modes under CICS” on page 116.

� Language Environment CEEUOPT module link-edited into your application,
containing an appropriate TEST option, which tells Language Environment to
invoke Debug Tool every time the application is run.

This mechanism can be useful during initial testing of new code when you will
want to run Debug Tool frequently. For information on preparing CEEUOPT in
this manner, see “Preparing and using CEEUOPT to invoke Debug Tool under
CICS” on page 122.

� A compile-time directive within the application, such as #pragma runopts(test)

(for C/C++) or CALL CEETEST.

These directives can be useful when you need to run multiple debug sessions
for a piece of code which is deep inside a multiple enclave or multiple CU appli-
cation. The application runs without Debug Tool until it encounters the direc-
tive, at which time Debug Tool is invoked at the precise point that you specify.
With CALL CEETEST, you can even make the invocation of Debug Tool condi-
tional, depending on variables that the application can test.

� CICS CEDF utility where you can invoke a debug session in Dual Terminal
mode alongside CEDF, using a special option on the CEDF command.

This mechanism does not require you to change the application link-edit
options or code, so it can be useful if you need to debug programs which have
been compiled with the TEST option, but which do not have invocation mech-
anisms built into them. For information on using CEDF under CICS, see “Pre-
paring and using CEDF to invoke Debug Tool under CICS” on page 123.

Preparing and using DTCN to invoke Debug Tool under CICS
In order to use the DTCN utility to invoke Debug Tool, link-edit the DTCN custom-
ized Language Environment user exit, CEEBXITA, into the CICS program you want
to debug, using one of the following methods:

1. If your installation is not using this user exit, link-edit member EQADCCXT,
which contains the CSECT CEEBXITA, from library
EQAW.V1R2M0.SEQAMOD into your main program.

2. If your installation is already using CEEBXITA, request the name and location
of the DTCN customized exit from your CICS system administrator and link that
exit with your main program.

Once you have successfully link-edited your program, the application is ready to
run. However, before you begin debugging your application, make sure you use
the DTCN transaction to define a Debug Tool run-time startup profile and define the
Terminal and/or Transaction Id you plan to use for debugging. Once the profile has
been created, store it in the Debug Tool repository, described in “Profile repository”

 Chapter 7. Using Debug Tool in different modes and environments 117

 Debugging CICS programs

on page 121. You are now ready to run your application on the Terminal Id you
defined in the startup profile.

To start the DTCN utility, enter DTCN on the system command line. After DTCN is
started, the panel below is provided. The fields are designed to capture the infor-
mation needed for Debug Tool to start a debugging session with your application.
The data you provide is then stored in the Debug Tool run-time startup profile
repository. You can do this by pressing PF4.

 DTCN screen
When you start DTCN, the initial DTCN screen with no user profile appears. The
data entry fields in this screen show the default values for single terminal mode as
displayed in the following example:

à ð
DTCN DEBUG TOOL CICS Interactive Run-Time Facility Sð7CICP2

Item Choice Possible choices

Terminal Id ==> tttt Terminal to debug

Transaction Id ==> Transaction to debug

Session Type ==> MFI MFI, TCP, APPC, LU2

PWS Type ==> VAD, CODE

Port/Sessionid ==> TCP Port or APPC Session Identifier

Display Id ==>

Test Option ==> Test Test/Notest

Test Level ==> All All/Error/None

Command File ==>

Prompt Level ==> Prompt Prompt/Noprompt/\/;

Preference File ==> \

Any other valid Language Environment Options

==>

EQA25ð7E Show failed - profile does not exist

PF1=HELP 2=GHELP 3=EXIT 4=ADD 5=REPLACE 6=DELETE 7=SHOW 8=NEXT 1ð=CLOSE DTCN

á ñ

The sections that follow provide a detailed description for each area of the initial
DTCN screen shown above. For help on an individual field, you can use the
context sensitive help function by pressing PF1 with the cursor placed on that field.

 Header area

à ð
DTCN DEBUG TOOL CICS Interactive Run-Time Facility Sð7CICP2

Item Choice Possible choices

The Header area contains:

� Identifier of the transaction - DTCN

� Application Id of the CICS region in which the transaction is running

 � Column descriptions

118 Debug Tool User's Guide and Reference

 Debugging CICS programs

 Input area
The Input Area of the DTCN main panel is used to display and enter the data for
the debugging profile. The Input Area is divided into four sections and is described
below:

 Area 1:

Terminal Id ==> Terminal to debug

Transaction Id ==> Transaction to debug

This section contains the Terminal Id and Transaction Id which, when concatenated
together become the key used by DTCN to process debugging profiles. The defi-
nitions are:

Terminal Id CICS terminal identifier where you want to run your application in
debugging mode.

Note: The default value of this field is the terminal identifier from
where DTCN is being run.

Transaction Id
CICS transaction identifier you want to debug.

 Area 2:

Session Type ==> MFI MFI, TCP, APPC, LU2

PWS Type ==> VAD, CODE

Port/Session Id ==> TCP Port or APPC Session Identifier

Display Id ==>

This section describes how you want to start the Debug Tool user interface in order
to debug your application transaction. You can establish a debugging session
using the host interface (MFI) or a cooperative session using either APPC, TCP/IP,
or an LU2 communication protocol. The default is MFI.

Session Type Choose one of the following session types:

MFI Indicates that Debug Tool will initialize on a 3270 type
terminal.

TCP Indicates that you will interface with Debug Tool from
your workstation using the TCP/IP protocol.

APPC Indicates that you will interface with Debug Tool from
your workstation using the APPC protocol.

LU2 An LU2 cooperative debugging session on the work-
station with OS/2. LU2 applies only if you have the
Workstation feature of CODE/370 installed on your
OS/2 workstation.

PWS Type Identifies which one of the following tools you plan to use when
debugging your application program:

CODE You plan to use CODE/370 to debug your application

VAD You plan to use VisualAge Remote Debugger to debug
your application

 Chapter 7. Using Debug Tool in different modes and environments 119

 Debugging CICS programs

Port/Session Id Allows you to have multiple workstation sessions so your can
debug two or more applications at the same time.

Display Id Depending on the Session Type you've selected, the Display Id
is one of the following:

� For MFI - A CICS terminal for Dual Terminal MFI debug-
ging

� For TCP - Either an IP address or Host Name
� For APPC - The LU name

 Area 3:

Test Option ==> Test Test/Notest

Test Level ==> All All/Error/None

Command File ==>

Prompt Level ==> Prompt Prompt/Noprompt/\/;

Preference File ==> \

For more detailed information on the following fields, see “Run-time TEST option
syntax” on page 19. The definitions are:

TEST Option TEST/NOTEST specifies the conditions under which Debug Tool
assumes control during the initialization of your application.

Test Level ALL/ERROR/NONE specifies what conditions need to be met for
Debug Tool to gain control.

Command File A valid fully qualified data set name specifying the primary
commands file for this run.

Note: Enclosing the name of the data set in single or double
quotes is not allowed.

Prompt Level PROMPT/NOPROMPT/\/; specifies whether Debug Tool is invoked at
Language Environment initialization.

Preference File A valid fully qualified data set name specifying the preference
file to be used.

Note: Enclosing the name of the data set in single or double
quotes is not allowed.

 Area 4:

Any other valid Language Environment Options

This area is provided to allow you to specify additional run-time options needed to
debug your application.

 Message line

==>

EQA25ð7E Show failed - profile does not exist

DTCN displays the messages at the bottom of the screen. For successful SHOW or
NEXT command, DTCN displays full Language Environment options stored in the

120 Debug Tool User's Guide and Reference

 Debugging CICS programs

Debugging Repository. Options longer than 79 characters are truncated, but their
contents are properly displayed in the Input Field section. Check Appendix E,
“Debug Tool Messages” on page 355 for an explanation and programmer
response.

DTCN PF key definitions

PF1=HELP 2=GHELP 3=EXIT 4=ADD 5=REPLACE 6=DELETE 7=SHOW 8=NEXT 1ð=CLOSE DTCN

á ñ

The PF keys on the DTCN main screen are described as follows:

PF1 Help Context sensitive help. Provides detailed help for the entry
fields when positioning the curser on the field and pressing
PF1.

PF2 GHelp General help for DTCN

PF3 Exit exits DTCN

PF4 Add Adds a new profile to the profile repository (no replace)

PF5 Replace Replaces an existing profile in the repository (no add)

PF6 Delete Removes the current profile from the repository

PF7 Show Retrieves the specified profile from the repository

PF8 Next Retrieves the next profile from the repository

PF10 Close DTCN Deletes the profile repository with all stored debugging profiles

 Profile repository
DTCN allows you to build Debug Tool run-time startup profiles that are used when
you run your application. The fields on the DTCN screen defined earlier make up
the data for one entry. The DTCN screen allows you to add, replace, or delete an
entry from the Profile Repository that contains all the entries for the CICS region
you are working in. DTCN uses a key that uniquely identifies each entry in the
Profile Repository. That key is made up by concatenating the application Terminal
Id and Transaction Id fields from the DTCN screen. Entries are sorted and stored
in the repository using this key.

The scope of the Debugging Profile depends on the contents of the Terminal Id and
Transaction Id. The scope of the profiles is as follows:

Terminal Id (blank) Debugging profile applies to any invocation of a given Trans-
action Id region wide (generic transaction debugging profile).
This is used to interactively debug CICS batch transactions
or troubleshooting programs run with:

(TEST(ERROR,,NOPROMPT,\))

Terminal Id, Transaction Id (blank)
Any enabled transaction run on a specified terminal uses
stored debugging profile (generic terminal debugging profile).

Terminal Id, Transaction Id
Debugging profile applies only to enabled corresponding
transaction running on corresponding terminal (specific for
terminal and transaction).

 Chapter 7. Using Debug Tool in different modes and environments 121

 Debugging CICS programs

When the application is run, during the initialization of the first enclave, the profile
presented back to Language Environment is the profile with the narrowest scope:
specific for terminal and transaction, then generic terminal one, then generic trans-
action one.

DTCN data entry verification
DTCN performs data verification on the data you entered in the DTCN panel.
When DTCN discovers an error, it places the cursor in the erroneous field and dis-
plays a message. You can use context sensitive help (PF1) to find what is wrong
with the input.

Once you have entered your debug requirements and saved them, you can activate
Debug Tool. Debug Tool will run according to the options you specified.

After you have finished debugging your program, use DTCN again to turn off your
debug profile by pressing PF3 to exit. You do not need to remove EQADCCXT
from the load module; in fact, it's a good idea to leave it there for the next time you
want to invoke Debug Tool.

Modifying other options
You can dynamically change any other Language Environment options defined in
your CICS installation as overrideable except the STACK option. For additional infor-
mation about Language Environment options, see the various Language Environ-
ment publications or contact your CICS system programmer.

Preparing and using CEEUOPT to invoke Debug Tool under CICS
To request that Language Environment invoke Debug Tool every time the applica-
tion is run, assemble a CEEUOPT module with an appropriate run-time TEST

option. It is a good idea to link-edit the CEEUOPT module into a library and just
add an INCLUDE LibraryDDname(CEEUOPT-MemberName) statement to the link-edit
options when you link your application. Once the application program has been
placed in the load library (and NEWCOPY'd if required), whenever it is run Debug
Tool will be invoked.

Debug Tool runs in the mode defined in the run-time TEST option you supplied,
normally Single Terminal mode, although you could provide a primary commands
file and a log file and not use a terminal at all. For information on the run-time
TEST option, see “Using the run-time TEST option” on page 18.

To invoke Debug Tool, simply run the application. Don't forget to remove the
CEEUOPT containing your run-time TEST option when you have finished debugging
your program.

Preparing and using compile-time directives to invoke Debug Tool
under CICS

To request the program itself to invoke Debug Tool, add the appropriate directive to
your application as described in “Invoking Debug Tool with CEETEST” on page 32
and “Specifying run-time TEST option with #pragma runopts in C and C++” on
page 39. Whenever these directives are processed by your program, Debug Tool
will be invoked in Single Terminal mode (this method supports only Single Terminal
mode).

122 Debug Tool User's Guide and Reference

 Debugging CICS programs

Preparing and using CEDF to invoke Debug Tool under CICS
No specific preparation is required to use CEDF to invoke Debug Tool other than
compiling the application with the appropriate compiler options and saving the
source/listing.

CEDF has an ",I" option which invokes Debug Tool. This option invokes both EDF
and Debug Tool in Dual Terminal mode. In Dual Terminal mode, EDF and Debug
Tool screens are displayed on the terminal where you issue the CEDF command;
application screens are displayed on the application terminal.

Note: You need to know the id of each terminal. One way to get this information
is by using the CEOT transaction. The output will include Ter(xxxx), where
xxxx is the terminal id.

To invoke Debug Tool, enter the CEDF transaction as follows:

 CEDF xxxx,ON,I

where xxxx is the terminal on which you want to start the transaction to be
debugged. This terminal is where the application is started. It performs 3270 appli-
cation I/O, while a Debug Tool session is invoked at the terminal where CEDF is
invoked.

CICS will return a message verifying the terminal id of the second terminal. Then,
on the xxxx terminal, enter:

TRAN

where TRAN is the id for the transaction being debugged.

Once the command is entered, Debug Tool will be invoked for all Language
Environment-enabled programs that are running on the terminal where Debug Tool
is started. Debug Tool will continue to be active on this terminal, even if you turn
off EDF.

For example, to begin a Debug Tool session using terminal T304 as the debugging
terminal and T305 as the terminal where you want to run your application, invoke
the CEDF transaction as follows on T304:

CEDF T3ð5,ON,I

Then, on terminal T305, enter the name of the transaction you are debugging:

TRAN

When you run your application on T305, Debug Tool is invoked on T304. Terminal
T305 displays only application output, that is, a specific CICS command to write to
the screen.

Restrictions when debugging under CICS
The following restrictions apply when debugging programs with the Debug Tool in a
CICS environment:

� The __ctest() function with CICS does nothing.

� The CDT# transaction is a special Debug Tool service transaction, and is not
intended for activation by direct terminal input. If CDT# is invoked via terminal
entry, it will return to the caller (no function is performed).

 Chapter 7. Using Debug Tool in different modes and environments 123

 Debugging CICS programs

� Applications which issue EXEC CICS POST cannot be debugged in Dual Ter-
minal mode.

� CICS does not support Debug Tool line mode.

� Data definition (ddname) is not supported. All files, including the log file, USE
files, and preferences file, must be referred to by their full data set names.

� The TSO, SET INTERCEPT, and SYSTEM commands cannot be used.

� CICS does not support an attention interrupt from the keyboard.

� The log file is not automatically started. You need to use the SET LOG ON

command.

� Ensure that you allocate a log file big enough to hold all the log output from a
debug session, because the log file is truncated after it becomes full. (A
warning message is not issued before the log is truncated.)

124 Debug Tool User's Guide and Reference

 Debug Tool Support of programming languages

Chapter 8. Debug Tool Support of programming languages

This chapter discusses the ways Debug Tool makes it possible for you to debug
programs of different languages, structures, conventions, variables, and methods of
evaluating expressions.

As part of the effort to support multiple high-level programming languages, Debug
Tool has adapted its commands to the different HLLs, enabled you to use interpre-
tive subsets of commands from the various HLLs, and mapped common attributes
of data types across the languages. It does the following:

� Maps compatible attributes between HLL data types
� Evaluates HLL expressions
� Treats constants and variables

This chapter also describes the concept of interpretive command subsets,
exceptions and conditions in Debug Tool, and Debug Tool's built-in functions.

A general rule to remember is that Debug Tool tries to let the language itself guide
how Debug Tool works with it. Further information is available in the various HLL
language reference manuals, listed in the bibliography.

Multiple enclaves and interlanguage communication (ILC)
Debugging a multiple-enclave ILC application with Debug Tool is supported.
However, keep the following points in mind:

� The SET PROGRAMMING LANGUAGE command can be used to change the current
programming language setting. However, the programming language setting is
limited to the languages currently known to Debug Tool (that is, languages con-
tained in the current load module).

� Command lists on monitors and breakpoints have an implied programming lan-
guage setting, which is the language that was in effect at the time the monitor
or breakpoint was established. This means that if you change the language
setting, errors might result when the monitor is refreshed or the breakpoint is
triggered.

Compatible attributes mapped between HLL data types
Debug Tool allows you, while working in one language, to declare session variables
you can continue to use after calling in a load module of a different language. See
the Attribute Mapping tables in “Declarations (C/C++)” on page 247, “Declarations
(COBOL)” on page 250, or “DECLARE command (PL/I)” on page 253 for more
information on how session data attributes are mapped across programming lan-
guages. Attributes not shown in the tables cannot be mapped to other program-
ming languages.

Also remember that variables with incompatible attributes cannot be accessed from
another programming language.

 Copyright IBM Corp. 1995, 1998 125

 Debug Tool Support of programming languages

Debug Tool evaluation of HLL expressions
Whenever an expression is entered, Debug Tool will remember the programming
language in effect at that time. When the command is run, the expression will be
passed to the language run time that was in effect when the expression was
entered, which might be different than the one in effect when the expression is run.

When you are entering an expression that will not be run immediately, it is recom-
mended that you fully qualify all program variables. This assures that proper
context information (such as load module, block, etc.) is passed with the expression
to the language run time when the statement is run. If this is not done, the context
might not be the one you intended when you set the breakpoint, and the language
run time might fail to evaluate the expression.

Debug Tool interpretation of HLL variables and constants
Debug Tool also supports the use of HLL variables and constants, both as a part of
evaluating portions of your test program and in declaring and using temporary vari-
ables.

Three general types of variables supported by Debug Tool are:

� Program variables defined by the HLL compiler's symbol table

� Debug Tool variables denoted by the percent (%) sign

� Temporary, or session, variables declared for a given Debug Tool session and
existing only for the session

 HLL variables
Some variable references require language-specific evaluation, such as pointer ref-
erencing or subscript evaluation. Once again, the Debug Tool interprets each case
in the manner of the HLL in question. Below is a list of some of the areas where
Debug Tool accepts a different form of reference depending on the current pro-
gramming language:

 � Structure qualification

C/C++ and PL/I: dot (.) qualification, high-level to low-level
COBOL: IN or OF keyword, low-level to high-level

 � Subscripting

 C/C++: name [subscript1][subscript2]...

COBOL and PL/I: name(subscript1,subscript2,...)

 HLL constants
You can use both string constants and numeric constants. Debug Tool accepts
both types of constants in C/C++, COBOL, and PL/I.

126 Debug Tool User's Guide and Reference

 Debug Tool Support of programming languages

Debug Tool variables (or intrinsic functions)
Debug Tool has reserved several variables to contain its own information. These
variables are denoted by the percent sign (%) as a first character, to distinguish
them from program variables, and can be accessed while testing programs in any
supported HLL.

Table 3 shows a list of Debug Tool variables and the languages with which they
can be used. Following the table is a list of their definitions.

Table 3. Descriptions of Debug Tool Variables and Their Corresponding Languages

Debug Tool
Variable

C/C++ PL/I COBOL Description

%GPRn X X X Represents general-purpose registers.

%FPRn X X X Represents single-precision floating-point registers.

%LPRn X X X Represents double-precision floating-point registers.

%EPRn X X Represents extended-precision floating-point registers.

%ADDRESS X X X Contains the address of the location where your program was
interrupted.

%AMODE X X X Contains the current AMODE of the suspended program (either 24 or
31).

%BLOCK X X X Contains the name of the current block.

Note: The block name provided might not be unique within a compile unit.

%CAAADDRESS X X X Contains the address of the CAA control block associated with the
suspended program.

%CONDITION X X X Contains the name (or number) of the condition identification when
Debug Tool is entered because of an AT OCCURRENCE.

%COUNTRY X X X Contains the current country code.

%CU X X X Contains the name of the primary entry point of the current
program. Equivalent to %PROGRAM.

%EPA X X X Contains the address of the primary entry point in the currently
interrupted program.

%HARDWARE X X X Identifies the type of hardware where the application is running.

%LINE X X X Contains the current line number.
Equivalent to %STATEMENT.

%LOAD X X X Contains the name of the load module of the current program, or an
asterisk (\).

%NLANGUAGE X X X Contains the national language currently in use.

%PATHCODE X X X Contains an integer value identifying the type of change occurring
when the program flow changes.

%PLANGUAGE X X X Contains the current programming language.

%PROGRAM X X X Contains the name of the primary entry point of the current compile
unit.
Equivalent to %CU.

%RC X X X Contains a return code whenever a Debug Tool command ends.

%RUNMODE X X X Contains a string identifying the presentation mode of Debug Tool.

%STATEMENT X X X Contains the current statement number.
Equivalent to %LINE.

%SUBSYSTEM X X X Contains the name of the underlying subsystem, if any, where the
program is executing.

%SYSTEM X X X Contains the name of the operating system supporting the program.

 Chapter 8. Debug Tool Support of programming languages 127

 Debug Tool Support of programming languages

You can use all Debug Tool variables in expressions. Additionally, the first four
variables, representing the various types of registers, can be used as the targets of
assignments.

Note: Use caution when assigning new values to registers. Important program
information can be lost.

Detailed descriptions of the Debug Tool variables follow.

Modifiable Debug Tool variables
%GPRð, %GPR1,...,%GPR15

Represent general-purpose registers at the point of interruption in a program.

%FPRð, %FPR2, %FPR4, %FPR6 ih1 id=fprn print='%FPRn'.FPRn
Represent single-precision floating-point registers.

%LPRð, %LPR2, %LPR4, %LPR6

Represent the double-precision floating-point registers. They are similar to the
single-precision floating-point registers (%FPRs).

%EPRð, %EPR4

Represent the extended-precision floating-point registers.

Nonmodifiable Debug Tool variables
%ADDRESS

Contains the address of the location where the program has been interrupted.

%AMODE

Contains the current AMODE of the suspended program. Possible values are
24 or 31.

%BLOCK

Contains the name of the current block.

%CAAADDRESS

Contains the address of the CAA control block associated with the suspended
program.

%CONDITION

Contains the name (or number) of the condition identification when Debug Tool
is entered due to an AT OCCURRENCE.

%COUNTRY

Contains the current country code.

%CU

Contains the name of the primary entry point of the current compile unit.

%CU is equivalent to %PROGRAM.

%EPA

Contains the address of the primary entry point of the currently interrupted
program.

%HARDWARE

Identifies the type of hardware where the application program is running. A
possible value is: 370/ESA.

128 Debug Tool User's Guide and Reference

 Debug Tool Support of programming languages

%LINE

Contains the current line number. This value can include a period, since the
current line can be a statement other than the first statement on a source line.

If the program is at the entry or exit of a block, %LINE contains ENTRY or EXIT,
respectively.

If the line number cannot be determined (for example, a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk (*).

%LINE is equivalent to %STATEMENT.

%LOAD

Contains an asterisk (*) unless the current program is part of a fetched or
called module. If the current program is part of a fetched or called module,
%LOAD contains the name of that load module.

%NLANGUAGE

Indicates the national language currently in use. Possible values are:

 ENGLISH

 UENGLISH

 JAPANESE

%PATHCODE

Contains an integer value that identifies the kind of change occurring when the
path of program execution has reached a point of discontinuity and the path
condition is raised.

The possible values vary according to the language of your program. See
“Using Debug Tool variables in C/C++” on page 140 for your C program or
“Using Debug Tool variables in COBOL” on page 175 for your COBOL
program.

%PLANGUAGE

Indicates the programming language currently in use.

%PROGRAM

Contains the name of the primary entry point of the current program.

%PROGRAM is equivalent to %CU.

%RC

Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of −1.

Note: The %RC return code is a Debug Tool variable. It is not related to the
return code that can be found in Register 15.

%RUNMODE

Contains a string identifying the presentation mode of Debug Tool. Possible
values are:

 LINE

 SCREEN

 BATCH

 Chapter 8. Debug Tool Support of programming languages 129

 Debug Tool Support of programming languages

%STATEMENT

Contains the current statement number. This value can include a period, since
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, %STATEMENT contains ENTRY or
EXIT, respectively.

If the statement number cannot be determined (for example, a run-time state-
ment number does not exist or the address where the program is interrupted is
not in the program), %STATEMENTS contains an asterisk (*).

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM

Contains the name of the underlying subsystem, if any, where the program is
executing. Possible values are:

 CICS

 IMS

 TSO

 NONE

Subsystems only occur on MVS, so %SUBSYSTEM is only valid on MVS. Listing
this variable while working with CMS displays NONE.

%SYSTEM

Contains the name of the operating system supporting the program. Possible
values are:

 MVS

 VM

 Interpretive subsets
To allow you to use familiar commands while in a debugging session, Debug Tool
provides an interpretive subset of commands for each language. This consists of
commands that have the same syntax, whether used with Debug Tool or when
writing application programs. You use these commands in Debug Tool as though
you were coding in the original language.

Use the SET PROGRAMMING LANGUAGE command to set the current programming lan-
guage to the desired language. The current programming language determines
how commands are parsed. If you SET PROGRAMMING LANGUAGE to AUTOMATIC, every
time the current qualification changes to a module in a different language, the
current programming language is automatically updated.

The following types of Debug Tool commands have the same syntax (or a subset
of it) as the corresponding statements (if defined) in each supported programming
language:

Assignment These commands allow you to assign a value to a variable or refer-
ence.

Conditional These commands evaluate an expression and control the flow of
execution of Debug Tool commands according to the resulting
value.

Declarations These commands allow you to declare temporary variables.

130 Debug Tool User's Guide and Reference

 Debug Tool Support of programming languages

Looping These commands allow you to program an iterative or logical loop
as a Debug Tool command.

Multiway These commands allow you to program multiway logic in the Debug
Tool command language.

In addition, Debug Tool supports special kinds of commands for some languages.

Qualifying variables and changing the point of view
Each HLL defines a concept of name scoping to allow you, within a single compile
unit, to know what data is referenced when a name is used (for example, if you use
the same variable name in two different procedures). Similarly, Debug Tool defines
the concepts of qualifiers and point of view for the run-time environment to allow
you to reference all variables in a program, no matter how many subroutines it con-
tains. The assignment x = 5 does not appear difficult for Debug Tool to process.
However, if you declare x in more than one subroutine, the situation is no longer
obvious. If x is not in the currently executing compile unit, you need a way to tell
Debug Tool how to determine the proper x.

You also need a way to change the Debug Tool's point of view to allow it to refer-
ence variables it cannot currently see (that is, variables that are not within the
scope of the currently executing block or compile unit, depending upon the HLL's
concept of name scoping).

 Qualification
Qualification is a method you can use to specify to what procedure or load module
a particular variable belongs. You do this by prefacing the variable with the block,
compile unit, and load module (or as many of these labels as are necessary), sepa-
rating each label with a colon (or double colon following the load module specifica-
tion) and a greater-than sign (:>), as follows:

LOAD_NAME::>CU_NAME:>BLOCK_NAME:>object

This procedure, known as explicit qualification, lets Debug Tool know precisely
where the variable is.

If required, LOAD_NAME is the load module name. It is required only when the
program consists of multiple load modules and when you want to change the quali-
fication to other than the current load module. LOAD_NAME can be the Debug Tool
variable %LOAD.

If required, CU_NAME is the compile unit name. The CU_NAME is required only when
you want to change the qualification to other than the currently qualified compile
unit. CU_NAME can be the Debug Tool variable %CU.

If required, BLOCK_NAME is the program block name. The BLOCK_NAME is required
only when you want to change the qualification to other than the currently qualified
block. BLOCK_NAME can be the Debug Tool variable %BLOCK.

For PL/I Only :

In PL/I, the primary entry name of the external procedure is the same as the
compile unit name. When qualifying to the external procedure, the procedure
name of the top procedure in a compile unit fully qualifies the block. Specifying
both the compile unit and block name results in an error. For example:

 Chapter 8. Debug Tool Support of programming languages 131

 Debug Tool Support of programming languages

LM::>PROC1:>variable

is valid.

LM::>PROC1:>PROC1:>variable

is not valid.

For C++ Only :

You must specify the full function qualification including formal parameters
where they exist. For example:

1. For function (or block) ICCD2263() declared as void ICCD2263(void) within
CU "USERID.SOURCE.LISTING(ICCD226)" the correct block specification
for C++ would include the parenthesis () as follows:

qualify block %load::>"USERID.SOURCE.LISTING(ICCD226)":>ICCD2263()

2. For CU ICCD0320() declared as int ICCD0320(signed long int SVAR1,
signed long int SVAR2) the correct qualification for AT ENTRY is:

AT ENTRY "USERID.SOURCE.LISTING(ICCDð32ð)":>ICCDð32ð(long,long)

Notes: Use the Debug Tool command DESCRIBE CUS to give you the
correct BLOCK or CU qualification needed.

Use the LIST NAMES command to show all polymorphic functions of
a given name. For the example above, LIST NAMES "ICCDð32ð\"

would list all polymorphic functions called ICCDð32ð.

You do not have to preface variables in the currently executing compile unit. These
are already known to Debug Tool; in other words, they are implicitly qualified.

In order for attempts at qualifying a variable to work, each block must have a name.
Blocks that have not received a name are named by Debug Tool, using the form:
%BLOCKnnn, where nnn is a number that relates to the position of the block in the
program. To find out the Debug Tool's name for the current block, use the
DESCRIBE PROGRAMS command.

Changing the point of view
The point of view is usually the currently executing block. You can get to inacces-
sible data by changing the point of view using the SET QUALIFY command with the
operand

LOAD_NAME::>CU_NAME:>BLOCK_NAME

Each time you update any of the three Debug Tool variables %CU, %PROGRAM, or
%BLOCK, all four variables (%CU, %PROGRAM, %LOAD, and %BLOCK) are automatically
updated to reflect the new point of view. If you change %LOAD using SET QUALIFY

LOAD, only %LOAD is updated to the new point of view. The other three Debug Tool
variables remain unchanged. For example, suppose your program is currently sus-
pended at loadx::>cux:>blockx. Also, the load module loadz, containing the
compile unit cuz and the block blockz, is known to Debug Tool. The settings cur-
rently in effect are:

%LOAD = loadx
%CU = cux
%PROGRAM = cux
%BLOCK = blockx

132 Debug Tool User's Guide and Reference

 Debug Tool Support of programming languages

If you enter any of the following commands:

SET QUALIFY BLOCK blockz;

SET QUALIFY BLOCK cuz:>blockz;

SET QUALIFY BLOCK loadz::>cuz:>blockz;

the following settings are in effect:

%LOAD = loadz
%CU = cuz
%PROGRAM = cuz
%BLOCK = blockz

If you are debugging a program that has multiple enclaves, SET QUALIFY can be
used to identify references and statement numbers in any enclave by resetting the
point of view to a new block, compile unit, or load module.

Debug Tool handling of conditions and exceptions
To suspend program execution just before your application would terminate abnor-
mally, start your application with the following options:

TRAP(ON)

TEST(ALL,\,NOPROMPT,\)

When a condition is signaled in your application, Debug Tool prompts you and you
can then dynamically code around the problem. For example, you can initialize a
pointer, allocate memory, or change the course of the program with the GOTO
command. You can also indicate to Language Environment's condition handler,
that you have already handled the condition by issuing a GO BYPASS command.
Beware that some of the code that follows the instruction that raised the condition
might be relying in data that was not properly stored or handled.

When debugging with Debug Tool, you have a choice (depending on your host
system) of either instructing the debugger to handle program exceptions and condi-
tions, or passing them on to your own exception handler. Programs also have
access to Language Environment services to deal with program exceptions and
conditions.

Condition handling in Debug Tool
You can use either or both of the two methods during a debugging session to
ensure that Debug Tool gains control at the occurrence of HLL conditions.

If you specify TEST(ALL) as a run-time option when you begin your debugging
session, Debug Tool gains control at the occurrence of most conditions.

Note: Debug Tool recognizes all Language Environment conditions that are
detected by the Language Environment error handling facility.

You can also direct Debug Tool to respond to the occurrence of conditions by using
the AT OCCURRENCE command to define breakpoints. These breakpoints halt proc-
essing of your program when a condition is raised, after which Debug Tool is given
control. It then processes the commands you specified when you defined the
breakpoints. For more information on OCCURRENCE breakpoints, see “AT
OCCURRENCE” on page 225.

 Chapter 8. Debug Tool Support of programming languages 133

 Debug Tool Support of programming languages

For a description of HLL conditions, see the corresponding language references
and OS/390 Language Environment Programming Guide.

There are several ways a condition can occur, and several ways it can be handled.

When a condition can occur
A condition can occur during your Debug Tool session when:

� A C++ application throws an object.

� A C/C++ application program executes a raise statement.

� A PL/I application program executes a SIGNAL statement.

� The Debug Tool command TRIGGER is executed.

� Program execution causes a condition to exist. In this case, conditions are not
raised at consistency points (the operations causing them can consist of
several machine instructions, and consistency points usually occur at the begin-
nings and ends of statements).

� The setting of WARNING is OFF (for C/C++ and PL/I).

When a condition occurs
When an HLL condition occurs and you have defined a breakpoint with associated
actions, those actions are first performed. What happens next depends on how the
actions end.

� Your program's execution can be terminated with a QUIT command.

� Control of your program's execution can be returned to the HLL exception
handler, so that processing proceeds as if Debug Tool had never been invoked
(even if you have perhaps used it to change some variable values, or taken
some other action).

� Control of your program's execution can be returned to the program itself,
bypassing any further processing of this exception either by the user program
or the environment.

� PL/I allows GO TO out of block;, so execution control can be passed to some
other point in the program.

� If no circumstances exist explicitly directing the assignment of control, your
primary commands file or terminal is queried for another command.

If, after the execution of any defined breakpoint, control returns to your program
with a GO, the condition is raised again in the program (if possible and still appli-
cable). If you use a GOTO to bypass the failing statement, you also bypass your
program's error handling facilities.

Exception handling within expressions (C/C++ and PL/I only)
When an exception such as division by zero is detected in a Debug Tool
expression, you can use the Debug Tool command SET WARNING to control Debug
Tool and program response. During an interactive Debug Tool session, such
exceptions are sometimes due to typing errors and as such are probably not
intended to be passed to the program. If you do not want errors in Debug Tool
expressions to be passed to your program, use SET WARNING ON. Expressions con-
taining such errors are terminated, and a warning message is displayed.

134 Debug Tool User's Guide and Reference

 Debug Tool Support of programming languages

However, you might want to pass an exception on to your program, perhaps to test
an error recovery procedure. In this case, use SET WARNING OFF.

Requesting an attention interrupt during interactive sessions
During an interactive Debug Tool session you can request an attention interrupt, if
necessary. For example, you can stop what appears to be an unending loop, stop
the display of voluminous output at your terminal, or stop the execution of the STEP
command.

An attention interrupt should not be confused with the ATTENTION condition. If you
set an AT OCCURRENCE or ON ATTENTION, the commands associated with that break-
point are not run at an attention interrupt.

Language Environment run-time options TRAP and INTERRUPT should both be set to
ON in order for attention interrupts that are recognized by the host operating system
to be also recognized by Language Environment. The test level suboption of the
run-time TEST option should not be set to NONE. See OS/390 Language Environ-
ment Programming Guide.

For CICS Only :

An attention interrupt key is not supported in CICS.

For MVS Only :

For C, using an attention interrupt, use SET INTERCEPT ON FILE stdout to inter-
cept messages to the terminal. This is required because messages do not go
to the terminal after an attention interrupt.

The correct key might not be marked ATTN on every keyboard. Often the following
keys are used:

� Under TSO: PA1 key
� Under CMS: PA1 key twice
� Under IMS: PA1 key

When you request an attention interrupt, control is given to Debug Tool:

� At the next hook if Debug Tool has previously gained control or if you specify
either TEST(ERROR) or TEST(ALL) or have specifically set breakpoints

� At a __ctest() or CEETEST call

� When an HLL condition is raised in the program, such as SIGINT in C

Debug Tool's built-in functions
Debug Tool provides you with several built-in functions, available while debugging
programs in all supported languages, which allow you to perform variable manipu-
lations. These functions are distinguished by a percent sign (%) as the first char-
acter. Below is a brief description of each function, including its proper syntax.

 Chapter 8. Debug Tool Support of programming languages 135

 Debug Tool Support of programming languages

For use with C/C++, COBOL, and PL/I
The following Debug Tool built-in functions are for use with C/C++, COBOL, and
PL/I:

 %HEX
You can use %HEX with the LIST command to display the hexadecimal value of an
operand.

55──%HEX──(──reference──)──5%

reference
A valid COBOL or PL/I reference, or C/C++ lvalue.

 %STORAGE
You can use %STORAGE to reference storage by address and length. You can use
this function only in conjunction with commands employing AT CHANGE.

55──%STORAGE──(──address─ ──┬ ┬─────────── ─)───────────────────────────────5%
 └ ┘ ─,──length─

address
The starting address of storage to be monitored for changes. This must be an
ðx constant in C/C++ or an H constant in COBOL.

length
The number of bytes of storage to be monitored for changes. This must be a
positive integer constant. The default value is 1.

For use with C/C++ and PL/I
The following Debug Tool built-in functions are for use only with C/C++ and PL/I
programs:

 %INSTANCES
You can use %INSTANCES to provide the maximum value of %RECURSION (the most
recent recursion number) for a given block.

55──%INSTANCES──(──reference──)──5%

reference
An automatic variable or a subroutine parameter. If necessary, you can use
qualification to specify the variable.

 %RECURSION
You can use %RECURSION to access an automatic variable or a parameter in a spe-
cific instance of a recursive procedure.

55──%RECURSION──(──reference──,──expression──)───────────────────────────5%

136 Debug Tool User's Guide and Reference

 Debug Tool Support of programming languages

reference
An automatic variable or a subroutine parameter. If necessary, you can use
qualification to specify the variable.

expression
The recursion number of the variable or parameter. The oldest recursion is
referenced by %RECURSION(var, 1) and the most recent by %RECURSION(var,
%INSTANCES(var)).

For use with PL/I
The following Debug Tool built-in function is for use only with PL/I programs:

 %GENERATION
You can use %GENERATION to access a specific generation of a controlled variable in
your program.

55──%GENERATION──(──reference──,──expression──)──────────────────────────5%

reference
A controlled variable.

expression
The generation number (N) of a controlled variable (X), where:

1 ≤ N ≤ ALLOCATION(X)

The oldest instance of X is referenced by %GENERATION(X,1), and the most
recent by %GENERATION(X,ALLOCATION(X)).

 Chapter 8. Debug Tool Support of programming languages 137

 Using Debug Tool with C/C++ programs

Chapter 9. Using Debug Tool with C/C++ programs

This chapter provides information on using C/C++ variables and expressions with
Debug Tool. It covers the Debug Tool subset of C/C++ commands and reserved
words, accessing program variables, declaring temporary variables (also known as
session variables), displaying values of C/C++ variables, assigning values to C/C++
variables, and using Debug Tool variables.

It also covers expressions, including discussions of function calls, operators, and
C/C++ unique statements; and qualification and multiple load modules.

Debug Tool commands
Debug Tool's command language is a subset of C/C++ commands and has the
same syntactical requirements. Debug Tool allows you to work in a language you
are familiar with so learning a new set of commands is not necessary.

The interpretive subset of C/C++ commands recognized by Debug Tool is shown in
Table 19 on page 347. This subset of commands is valid only when the current
programming language is C or C++.

For specific usage notes concerning each command, see the appropriate section of
Chapter 13, “Debug Tool commands” on page 205.

In addition to the subset of C/C++ commands that you can use is a list of reserved
keywords used and recognized by C/C++ that you cannot abbreviate, use as vari-
able names, or use as any other type of identifier. This list is shown in Table 20
on page 347. These keywords are reserved only when the current programming
language is C or C++.

For explanations of command usage and keyword meaning, see OS/390 C/C++
Language Reference.

Using C/C++ variables with Debug Tool
Debug Tool can process all program variables that are valid in C or C++. It allows
you to assign and display the values of variables during your session. It also
allows you to declare temporary variables with the recognized C declarations to suit
your testing needs.

Accessing program variables
Debug Tool obtains information about a program variable by name using the
symbol table built by the compiler. If you specify TEST(SYM) at compile time, the
compiler builds a symbol table that allows you to reference any variable in the
program.

See “Compiling a C program with the compile-time TEST option” on page 5 or
“Compiling a C++ program with the compile-time TEST option” on page 9 for more
details.

Note: There are no suboptions for C++. Symbol information is generated by
default when the compile-time TEST option is specified.

138  Copyright IBM Corp. 1995, 1998

 Using Debug Tool with C/C++ programs

Displaying values of C/C++ variables or expressions
To display the values of variables or expressions, issue the LIST command. The
LIST command causes Debug Tool to log and display the current values (and
names if requested) of variables, including the evaluated results of expressions.
See “LIST command” on page 274 for more information.

Suppose you want to display the program variables X, row[X], and col[X], and
their values at line 25. If you issue the following command:

AT 25 LIST (X, row[X], col[X]); GO;

Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program (GO),
stops at line 25, and displays the variable names and their values.

If you want to see the result of their addition, enter:

AT 25 LIST (X + row[X] + col[X]); GO;

Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program (GO),
stops at line 25, and displays the result of the expression.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, enter LIST
UNTITLED.

You can also list variables with the printf function call as follows:

printf ("X=%d, row=%d, col=%d\n", X, row[X], col[X]);

The output from printf, however, does not appear in the Log window and is not
recorded in the log file unless you set INTERCEPT ON FILE stdout.

Declaring temporary variables
You might want to declare temporary variables, also known as session variables,
for use during the course of your session. You cannot initialize temporary variables
in declarations. However, you can use an assignment statement or function call to
initialize a temporary variable.

As in C, keywords can be specified in any order. Variable names up to 255 char-
acters in length can be used. Identifiers are case-sensitive, but if you want to use
the session variable when the current programming language changes from C to
another HLL, the variable must have an uppercase name and compatible attributes.
For more information see Table 12 on page 250.

To declare a floating-point variable called maximum, enter the following C declara-
tion:

double maximum;

You can only declare scalars, arrays of scalars, structures, and unions in Debug
Tool (pointers for the above are allowed as well).

If you declare a temporary variable with the same name as a programming vari-
able, the temporary variable hides the programming variable. To reference the pro-
gramming variable, you must qualify it. For example:

main:>x for the program variable x
x for the session variable x

 Chapter 9. Using Debug Tool with C/C++ programs 139

 Using Debug Tool with C/C++ programs

Session variables remain in effect for the entire debug session, unless they are
cleared using the CLEAR command.

For more on qualification, see “Using qualification for C/C++” on page 158. For
more on declarations, see “Declarations (C/C++)” on page 247.

Assigning values to C/C++ variables
To assign a value to a C/C++ variable, you use an assignment expression. See
“Expression command (C/C++)” on page 264 for syntax information. Assignment
expressions assign a value to the left operand. The left operand must be a modifi-
able lvalue. An lvalue is an expression representing a data object that can be
examined and altered.

C contains two types of assignment operators: simple and compound. A simple
assignment operator gives the value of the right operand to the left operand.

Note: Only the assignment operators that work for C will work for C++, that is,
there is no support for overloaded operators.

The following example demonstrates how to assign the value of number to the
member employee of the structure payroll:

payroll.employee = number;

Compound assignment operators perform an operation on both operands and give
the result of that operation to the left operand. For example, this expression gives
the value of index plus 2 to the variable index:

index += 2

Debug Tool supports all C operators except the tenary operator, as well as any
other full C language assignments and function calls to user or C library functions.
For more on function calls, see “Function calls” on page 147.

Using Debug Tool variables in C/C++
Debug Tool variables, as shown in Table 4, provide information about your
program that you can use during your session. These variables are distinguished
by a percent character (%) as the first character in their names. To display the
values of any of them during your session, use the LIST command.

Table 4 (Page 1 of 2). C/C++ Attributes for Debug Tool Variables

Debug Tool
Variable

C/C++
Attributes

Description

%GPRn signed int Represents general-purpose registers.

%FPRn float Represents single-precision floating-point regis-
ters.

%LPRn double Represents double-precision floating-point regis-
ters.

%EPRn long double Represents extended-precision floating-point regis-
ters.

%ADDRESS void * Contains the address of the location where your
program was interrupted.

140 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

You can use all Debug Tool variables in expressions. Additionally, the variables
representing general and floating-point registers are modifiable and can be used as
the targets of assignment commands.

Note: When modifying register values, do not modify the base register.

Table 4 (Page 2 of 2). C/C++ Attributes for Debug Tool Variables

Debug Tool
Variable

C/C++
Attributes

Description

%AMODE signed short int Contains the current AMODE of the suspended
program (either 24 or 31).

%BLOCK unsigned char[] Contains the name of the current block.

%CAAADDRESS void * Contains the address of the CAA control block
associated with the suspended program.

%CONDITION unsigned char[] Contains the name (or number) of HLL or Lan-
guage Environment condition.

%COUNTRY unsigned char[] Contains the current country code.

%CU unsigned char[] Contains the name of the current compilation unit.

Equivalent to %PROGRAM.

%EPA void * Contains the address of the primary entry point in
the currently interrupted program.

%HARDWARE unsigned char[] Identifies the type of hardware where the applica-
tion is running.

%LINE unsigned char[] Contains the current line number.

Equivalent to %STATEMENT.

%LOAD unsigned char[] Contains the name of the load module of the
current program.

%NLANGUAGE unsigned char[] Contains the national language currently being
used.

%PATHCODE signed short int Contains an integer value identifying the type of
change occurring when Debug Tool is entered
because of a path breakpoint.

%PLANGUAGE unsigned char[] Contains the current programming language.
%PLANGUAGE returns "C" for both C and C++.

%PROGRAM unsigned char[] Contains the name of the primary entry point of
the current program.

Equivalent to %CU.

%RC signed short int Contains a return code whenever a Debug Tool
command ends.

%RUNMODE unsigned char[] Contains a string identifying the presentation mode
of Debug Tool.

%STATEMENT unsigned char[] Contains the current statement number.

Equivalent to %LINE.

%SUBSYSTEM unsigned char[] Contains the name of the underlying subsystem, if
any, where the program is executing.

%SYSTEM unsigned char[] Contains the name of the operating system sup-
porting the program.

 Chapter 9. Using Debug Tool with C/C++ programs 141

 Using Debug Tool with C/C++ programs

Detailed descriptions of the Debug Tool variables follow.

%GPRð, %GPR1,..., %GPR15
Represent general-purpose registers at the point of interruption in a C/C++
program. You can use them in expressions:

list (%GPR5 + 1ð);

and as targets of assignments:

%GPR5 = name_table;

Notes:

� If you change a %GPRn register, the change is reflected when you
resume program execution.

� Only %GPR12 can be used at external entry.

� Although assigning new values to variables %GPR12 and %GPR13

does not result in an error, when any subsequent action is taken the
newly set values are reset to their previous values.

� If you change %GPR3 in an expression, the base register in the
program can be lost.

%FPRð, %FPR2, %FPR4, %FPR6
Represent single-precision floating-point registers and are equivalent to float
variables. You can use them in expressions:

x = %FPR4 / 6.3

and as targets of assignments:

%FPRð = 3.14152

%LPRð, %LPR2, %LPR4, %LPR6
Represent the double-precision floating-point registers and are equivalent to
double variables. Similar to the single-precision floating-point registers (%FPRs),
you can use these registers in expressions and as targets of assignments.

%EPRð, %EPR4
Represent the extended-precision floating-point registers, and are equivalent to
long double variables. Similar to the single-precision floating-point registers
(%FPRs), you can use these registers in expressions and as targets of assign-
ments.

%ADDRESS

Contains the address of the location where the program was interrupted.

%AMODE

Contains the current AMODE of the suspended program. Possible values are
24 or 31.

%BLOCK

Contains the name of the current block. To display the name of the current
block, you can use the LIST command or issue:

DESCRIBE PROGRAM;

You can change or override the value of %BLOCK by using the SET QUALIFY

command.

142 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

%CAAADDRESS

Contains the address of the CAA control block associated with the suspended
program.

%CONDITION

Contains the name (or number) of HLL or Language Environment condition.

%COUNTRY

Contains the current country code.

%CU

Contains the name of the primary entry point of the current program.

You can change or override the value of %CU by using the QUALIFY command.

%CU is equivalent to %PROGRAM.

%EPA

Contains the address of the primary entry point of the currently interrupted
program.

%HARDWARE

Identifies the type of hardware where the application program is running. A
possible value is 370/ESA.

%LINE

Contains the current line (statement) number. This value can include a period
since the current line can be a statement other than the first statement on a
source line. For example, if %LINE = 5.5, the current statement is the fifth
statement on the fifth source line.

If the program is at the entry or exit of a block, %LINE contains ENTRY or EXIT
respectively.

If the line number cannot be determined (for example, if a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk (*).

%LINE is equivalent to %STATEMENT.

%LOAD

Contains the name of the currently qualified load module and is used when an
unqualified reference to a program or variable is made. If the currently quali-
fied load module is the one initially loaded, %LOAD contains a single asterisk (*).

Whenever control is transferred to Debug Tool, %LOAD is set to the name of the
currently executing load module (or to an asterisk in the initial load module).
You can change or override the value of %LOAD by using the SET QUALIFY

command.

 For modules to be recognized by Debug Tool, they must be loaded by a lan-
guage call and not through a direct operating system load command.

%NLANGUAGE

Indicates the national language currently in use. Its possible values include:

 ENGLISH
 UENGLISH
 JAPANESE

 Chapter 9. Using Debug Tool with C/C++ programs 143

 Using Debug Tool with C/C++ programs

%PATHCODE

Contains an integer value identifying the kind of path change taking place when
Debug Tool is entered because of a path breakpoint. Possible values are:

–1 Debug Tool is not in control as the result of a path or attention situ-
ation.

0 Attention function (not ATTENTION condition).

1 A block has been entered.

2 A block is about to be exited.

3 Control has reached a user label.

4 Control is being transferred as a result of a function reference. The
invoked routine's parameters, if any, have been prepared.

5 Control is returning from a function reference. Any return code con-
tained in register 15 has not yet been stored.

6 Some logic contained by a conditional do/while, for, or while state-
ment is about to be executed. This can be a single or Null state-
ment and not a block statement.

7 The logic following an if(...) is about to be executed.

8 The logic following an else is about to be executed.

9 The logic following a case within an switch is about to be executed.

10 The logic following a default within a switch is about to be executed.

13 The logic following the end of a switch, do, while, if(...), or for is
about to be executed.

17 A goto, break, continue, or return is about to be executed.

Values in the range 3–17 can only be assigned to %PATHCODE if your program
was compiled with an option supporting path hooks.

%PLANGUAGE

Indicates the programming language currently in use. %PLANGUAGE returns C for
both C and C++.

%PROGRAM

The name of the primary entry point of the current program.

You can change or override the value of %PROGRAM by using the QUALIFY
command.

%PROGRAM is equivalent to %CU.

%RC

Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of −1.

The %RC return code is a Debug Tool variable. It is not related to the return
code that can be found in Register 15.

%RUNMODE

Contains a string identifying the presentation mode of Debug Tool. Possible
values are:

144 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

 LINE

 SCREEN

 BATCH

%STATEMENT

Contains the current statement number. This value can include a period since
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, %STATEMENT contains ENTRY or
EXIT, respectively.

If the statement number cannot be determined (for example, if a run-time state-
ment number does not exist or the address where the program is interrupted is
not in the program), %STATEMENT contains an asterisk (*).

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM

Contains the name of the underlying subsystem, if any, where the program is
executing. Possible values are:

 CICS
 IMS
 TSO
 NONE

Subsystems only occur on MVS; if you list this variable while working with VM,
Debug Tool displays NONE.

%SYSTEM

Contains the name of the operating system supporting the program. Possible
values are:

 MVS
 VM

You can access certain variables that have no intrinsic meaning in your operating
system or language. For example, when debugging in a VM environment,
requesting the value of the variable %SUBSYSTEM does not result in an error.
However, subsystems occur only on MVS, so %SUBSYSTEM requested during a
debugging session under VM always results in NONE.

 C/C++ expressions
Debug Tool allows evaluation of expressions in your test program. All expressions
available in C/C++ are also available within Debug Tool except for the conditional
expression (? :). That is, all operators such as +, −, %:, and += are fully supported
with the exception of the conditional operator.

C/C++ language expressions are arranged in the following groups based on the
operators they contain and how you use them:

 Primary expression
 Unary expression
 Binary expression
 Conditional expression
 Assignment expression
 Comma expression

 Chapter 9. Using Debug Tool with C/C++ programs 145

 Using Debug Tool with C/C++ programs

 lvalue
 Constant

An lvalue is an expression representing a data object that can be examined and
altered. For a more detailed description of expressions and operators, see the C
and C++ Program Guides.

The semantics for C/C++ operators are the same as in a compiled C or C++
program. Operands can be a mixture of constants (integer, floating-point,
character, string, and enumeration), C/C++ variables, Debug Tool variables, or
session variables declared during a Debug Tool session. Language constants are
specified as described in the C and C++ Language Reference publications.

The Debug Tool command DESCRIBE ATTRIBUTES can be used to display the
resultant type of an expression, without actually evaluating the expression.

The C/C++ language does not specify the order of evaluation for function call argu-
ments. Consequently, it is possible for an expression to have a different execution
sequence in compiled code than within Debug Tool. For example, if you enter the
following in an interactive session:

int x;

int y;

x ═ y ═ 1;

printf ("%d %d %d%" x, y, x═y═ð);

the results can differ from results produced by the same statements located in a C
or C++ program segment. Any expression containing behavior undefined by ANSI
standards can produce different results when evaluated by Debug Tool than when
evaluated by the compiler.

For more information about expressions and operators, refer to OS/390 C/C++ Lan-
guage Reference.

The following examples show you various ways Debug Tool supports the use of
expressions in your programs:

� Debug Tool assigns 12 to a (the result of the printf()) function call, as in:

a = (1,2/3,a++,b++,printf("hello world\n"));

� Debug Tool supports structure and array referencing and pointer dereferencing,
as in:

league[num].team[1].player[1]++;
league[num].team[1].total +═ 1;

++(\pleague);

� Simple and compound assignment is supported, as in:

v.x = 3;
a ═ b ═ c ═ d ═ ð;

\(pointer++) –═ 1;

� C/C++ language constants in expressions can be used, as in:

146 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

pointer_to_c = "abcdef" + ðx2;
\pointer_to_long ═ 3521L ═ ðx69a1;

float_val ═ 3e–11 + 6.6E–1ð;

char_val ═ '7';

� The comma expression can be used, as in:

intensity <<= 1, shade \ increment, rotate(direction);
alpha ═ (y>>3, omega % 4);

� Debug Tool performs all implicit and explicit C conversions when necessary.
Conversion to long double is performed in:

long_double_val = unsigned_short_val;
long_double_val ═ (long double) 3;

 Function calls
You can perform calls to user and C library functions within Debug Tool.

You can make calls to C library functions at any time. In addition, you can use the
C library variables stdin, stdout, stderr, __amrc, and errno in expressions
including function calls.

The library function ctdli cannot be called unless it is referenced in a compilation
unit in the program, either main or a function linked to main.

Calls to user functions can be made, provided Debug Tool is able to locate an
appropriate definition for the function within the symbol information in the user
program. These definitions are created when the program is compiled with
TEST(SYM) for C or TEST for C++. For details, see “Compiling a C program with the
compile-time TEST option” on page 5 or “Compiling a C++ program with the
compile-time TEST option” on page 9.

Debug Tool performs parameter conversions and parameter-mismatch checking
where possible. Parameter checking is performed if:

� The function is a library function

� A prototype for the function exists in the current compilation unit

� Debug Tool is able to locate a prototype for the function in another compilation
unit, or the function itself was compiled with TEST(SYM) for C or with TEST for
C++.

You can turn off this checking by specifying SET WARNING OFF.

Calls can be made to any user functions that have linkage supported by the C or
C++ compiler. However, for C++ calls made to any user function, the function must
be declared as:

extern "C"

For example, use this declaration if you want to debug an application signal
handler. When a condition occurs, control passes to Debug Tool which then
passes control to the signal handler.

Debug Tool attempts linkage checking, and does not perform the function call if it
determines there is a linkage mismatch. A linkage mismatch occurs when the
target program has one linkage but the source program believes it has a different
linkage.

 Chapter 9. Using Debug Tool with C/C++ programs 147

 Using Debug Tool with C/C++ programs

It is important to note the following regarding function calls:

� The evaluation order of function arguments can vary between the C/C++
program and Debug Tool. No discernible difference exists if the evaluation of
arguments does not have side effects.

� Debug Tool knows about the function return value, and all the necessary con-
versions are performed when the return value is used in an expression.

For more information about #pragma linkage and the extern keyword, refer to
OS/390 C/C++ Language Reference.

Using Debug Tool functions with C/C++
Debug Tool provides built-in functions for use during a debugging session. These
functions allow greater access to your programming environment and greater
control over your debugging session. Using these functions, you can reference
storage, translate the values of operands to hexadecimal characters, or access a
variable or parameter during a specific instance of a recursive procedure.

 Using %HEX
When used with the LIST command, %HEX allows you to display the value of an
operand as a hexadecimal character string. For example, if you want to examine
the internal representation of the packed decimal variable zvar1 whose external
representation is 235, you can enter:

LIST %HEX(zvar1);

The hexadecimal value of 235C is displayed in the Log window.

 Using %STORAGE
%STORAGE allows you to reference storage by address and length. By using
%STORAGE as the reference when setting a CHANGE breakpoint, you can watch spe-
cific areas of storage for changes. For example, to monitor eight bytes of storage
at the hex address 22222 for changes, enter:

AT CHANGE %STORAGE (ðxððð22222, 8)

LIST "Storage has changed at Hex address 22222"

 Using %RECURSION
%RECURSION allows you to access an automatic variable or a parameter in a specific
instance of a recursive function. When you use %RECURSION, remember that:

� If the expression has a value of 1, the oldest generation is referenced. The
higher the value of the expression, the more recent the generation of the vari-
able Debug Tool references.

� %RECURSION can be used like a Debug Tool variable.

 Using %INSTANCES
%INSTANCES returns the maximum value of %RECURSION (that is, the most recent
recursion number) for a given block. %INSTANCES can be used like a Debug Tool
variable.

%INSTANCES and %RECURSION can be used together to determine the number of times
a function is recursively called. They can also give you access to an automatic
variable or parameter in a specific instance of a recursive procedure. Assume, for
example, your program contains these statements:

148 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

int RecFn(unsigned int i) {

if (i ══ ð) {

 __ctest("");

At this point, the __ctest() call gives control to Debug Tool, and you are prompted
for commands. If you enter:

LIST %INSTANCES(i);

Your Log window displays the number of times RecFn() was interactively called.

If you enter:

%RECURSION(i, 1);

you receive the value of 'i' at the first call of RecFn().

If necessary, you can use qualification to specify the parameter. For example, if
the current point of execution is in %block2, and %block3 is a recursive function
containing the variable x, you can write an expression using x by qualifying the
variable, as follows:

%RECURSION(main:>%block3:>x, %INSTANCES(main:>%block3:>x, y+

For the proper syntax of the functions described above, see “Debug Tool's built-in
functions” on page 135.

The following are examples of command sequences issued to Debug Tool using
C/C++ semantics and library functions:

� The following example gets a line of input from stdin using the C library routine
gets.

char line[1ðð];

char \result;

result ═ gets(line);

� The following example removes a file and checks for an error, issuing a
message if an error occurs.

int result;

result ═ remove("mayfile.dat");

if (result !═ ð)

perror("could not delete file");

� Debug Tool performs the necessary conversions when a call to a library func-
tion is made. The cast operator can be used. In the following example, the
integer 2 is converted to a double, which is the required argument type for
sqrt.

double sqrtval;

sqrtval ═ sqrt(2);

� Nested function calls can be performed, as in:

printf("absolute value is %d\n", abs(-55));

� C library variables such as errno and stdout can be used, as in:

fprintf(stdout, "value of errno is %d\n", errno);

 Chapter 9. Using Debug Tool with C/C++ programs 149

 Using Debug Tool with C/C++ programs

Debug Tool evaluation of C/C++ expressions
Debug Tool interprets most input as a collection of one or more expressions. You
can use expressions to alter a program variable or to extend the program by adding
expressions at points that are governed by AT breakpoints.

Debug Tool evaluates C/C++ expressions following the rules presented in OS/390
C/C++ Language Reference. The result of an expression is equal to the result that
would have been produced if the same expression had been part of your compiled
program.

Implicit string concatenation is supported. For example, "abc" "def" is accepted
for "abcdef" and treated identically. Concatenation of wide string literals to string
literals is not accepted. For example, L"abc"L"def" is valid and equivalent to
L"abcdef", but "abc" L"def" is not valid.

Expressions you use during your session are evaluated with the same sensitivity to
enablement as are compiled expressions. Conditions that are enabled are the
same ones that exist for program statements.

During a Debug Tool session, if the current setting for WARNING is ON, the occur-
rence in your C or C++ program of any one of the conditions listed below causes
the display of a diagnostic message. The messages themselves are displayed on
your terminal, and are explained in Appendix E, “Debug Tool Messages” on
page 355. The list below is for reference only.

� Division by zero

� Remainder (%) operator for a zero value in the second operand

� Array subscript out of bounds for a defined array

� Bit shifting by a number that is either negative or greater than 32

� Incorrect number of parameters, or parameter type mismatches for a function
call

� Differing linkage calling conventions for a function call

� Assignment of an integer value to a variable of enumeration data type where
the integer value does not correspond to an integer value of one of the enu-
meration constants of the enumeration data type

� Assignment to an lvalue that has the const attribute

� Attempt to take the address of an object with register storage class

� A signed integer constant not in the range −2**31<—>2**31

� A real constant not having an exponent of 3 or fewer digits

� A float constant not larger than
5.39796053469340278908664699142502496E-79 or smaller than
7.2370055773322622139731865630429929E+75

� A hex escape sequence that does not contain at least one hexadecimal digit

� An octal escape sequence with an integer value of 256 or greater

� An unsigned integer constant greater than the maximum value of 4294967295.

150 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

Using SET INTERCEPT with C programs
Several considerations must be kept in mind when using the INTERCEPT command
to intercept files while you are debugging a C application.

For CICS Only : SET INTERCEPT is not supported for CICS.

For C++, there is no specific support for intercepting IOStreams. IOStreams is
implemented using C I/O which implies that:

� If you intercept I/O for a C standard stream, this implicitly intercepts I/O for the
corresponding I/OStreams standard stream.

� If you intercept I/O for a file, by name, and define an IOStream object associ-
ated with the same file, IOStream I/O to that file will be intercepted.

Note: Although you can intercept IOStreams indirectly via C/370 I/O, the behav-
iors might be different or undefined in C++.

You can use the following names with the SET INTERCEPT command during a
debugging session:

� stdout, stderr, and stdin (lowercase only)

� any valid fopen() file specifier.

The behavior of I/O interception across system() call boundaries is global. This
implies that the setting of INTERCEPT ON for xx in Program A is also in effect for
Program B (when Program A system() calls to Program B). Correspondingly,
setting INTERCEPT OFF for xx in Program B turns off interception in Program A
when Program B returns to A. This is also true if a file is intercepted in Program B
and returns to Program A. This model applies to disk files, memory files, and
standard streams.

When a stream is intercepted, it inherits the text/binary attribute specified on the
fopen statement. The output to and input from the Debug Tool log file behaves like
terminal I/O, with the following considerations:

� Intercepted input behaves as though the terminal opened for record I/O. Inter-
cepted input is truncated if the data is longer than the record size and the trun-
cated data is not available to subsequent reads.

� Intercepted output is not truncated. Data is split across multiple lines.

� Some situations causing an error with the real file might not cause an error
when the file is intercepted (for example, truncation errors do not occur). Files
expecting specific error conditions do not make good candidates for inter-
ception.

� Only sequential I/O can be performed on an intercepted stream, but file posi-
tioning functions are tolerated and the real file position is not changed. fseek,
rewind, ftell, fgetpos, and fsetpos do not cause an error, but have no effect.

� The '\a' character does not cause a beep when running under VM as it does
for terminal output.

� The logical record length of an intercepted stream reflects the logical record
length of the real file.

 Chapter 9. Using Debug Tool with C/C++ programs 151

 Using Debug Tool with C/C++ programs

� When an unintercepted memory file is opened, the record format is always
fixed and the open mode is always binary. These attributes are reflected in the
intercepted stream.

� Files opened to the terminal for write are flushed before an input operation
occurs from the terminal. This is not supported for intercepted files.

For more information on the behavior of terminal I/O, see OS/390 C/C++ Program-
ming Guide.

Other characteristics of intercepted files are:

� When an fclose() occurs or INTERCEPT is set OFF for a file that was inter-
cepted, the data is flushed to the session log file before the file is closed or the
SET INTERCEPT OFF command is processed.

� When an fopen() occurs for an intercepted file, an open occurs on the real file
before the interception takes effect. If the fopen() fails, no interception occurs
for that file and any assumptions about the real file, such as the ddname allo-
cation and data set defaults, take effect.

� The behavior of the ASIS suboption on the fopen() statement is not supported
for intercepted files.

� When the clrmemf() function is invoked and memory files have been inter-
cepted, the buffers are flushed to the session log file before the files are
removed.

� If the fldata() function is invoked for an intercepted file, the characteristics of
the real file are returned.

� If stderr is intercepted, the interception overrides the Language Environment
message file (the default destination for stderr). A subsequent SET INTERCEPT

OFF command returns stderr to its MSGFILE destination.

� If a file is opened with a ddname, interception occurs only if the ddname is
specified on the INTERCEPT command. Intercepting the underlying file name
does not cause interception of the stream.

� When running under VM, if a file mode of "*" is specified on the INTERCEPT
command, all files opened with the specified file name and type are inter-
cepted. If a file mode is not specified, "*" is assumed.

� User prefix qualifications are included in MVS data set names entered in the
INTERCEPT command, using the same rules as defined for the fopen() function.
For more information, see OS/390 C/C++ Programming Guide.

� If library functions are invoked when Debug Tool is waiting for input for an inter-
cepted file (for example, if you interactively enter fwrite(..) when Debug Tool
is waiting for input), subsequent behavior is undefined.

� I/O intercepts remain in effect for the entire debug session, unless you termi-
nate them by selecting SET INTERCEPT OFF.

Command line redirection of the standard streams is supported under Debug Tool,
as follows:

 1.

 a. 1>&2:

152 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

If stderr is the target of the interception command, stdout is also inter-
cepted. If stdout is the target of the INTERCEPT command, stderr is not
intercepted. When INTERCEPT is set OFF for stdout, the stream is redirected
to stderr.

 b. 2>&1:

If stdout is the target of the INTERCEPT command, stderr is also inter-
cepted. If stderr is the target of the INTERCEPT command, stdout is not
intercepted. When INTERCEPT is set OFF for stderr, the stream is redirected
to stdout again.

 2.

 a. 1>file.name :

stdout is redirected to file.name . For interception of stdout to occur,
stdout or file.name can be specified on the interception request. This also
applies to 1>>file.name

 b. 2>file.name :

stderr is redirected to file.name. For interception of stderr to occur,
stderr or file.name can be specified on the interception request. This also
applies to 2>>file.name

 3.

 a. 2>&1 1>file.name :

stderr is redirected to stdout, and both are redirected to file.name . If
file.name is specified on the interception command, both stderr and
stdout are intercepted. If you specify stderr or stdout on the INTERCEPT

command, the behavior follows rule 1b above.

 b. 1>&2 2>file.name :

stdout is redirected to stderr, and both are redirected to file.name . If you
specify file.name on the INTERCEPT command, both stderr and stdout are
intercepted. If you specify stdout or stderr on the INTERCEPT command,
the behavior follows rule 1a above.

4. The same standard stream cannot be redirected twice on the command line.
Interception is undefined if this is violated.

 a. 2>&1 2>file.name :

Behavior of stderr is undefined.

 b. 1>&2 1>file.name :

Behavior of stdout is undefined.

Objects and scopes
An object is visible in a block or source file if its data type and declared name are
known within the block or source file. The region where an object is visible is
referred to as its scope. In Debug Tool, an object can be a variable or function and
is also used to refer to line numbers.

Note: The use of an object here is not to be confused with a C++ object. Any
reference to C++ will be qualified as such.

 Chapter 9. Using Debug Tool with C/C++ programs 153

 Using Debug Tool with C/C++ programs

In ANSI C, the four kinds of scope are:

 Block
 File
 Function
 Function prototype

For C++, in addition to the scopes defined for C, it also has the class scope.

An object has block scope if its declaration is located inside a block. An object with
block scope is visible from the point where it is declared to the closing brace (}) that
terminates the block.

An object has file scope if its definition appears outside of any block. Such an
object is visible from the point where it is declared to the end of the source file. In
Debug Tool, if you are qualified to the compilation unit with the file static variables,
file static and global variables are always visible.

The only type of object with function scope is a label name.

An object has function prototype scope if its declaration appears within the list of
parameters in a function prototype.

A class member has class scope if its declaration is located inside a class.

You cannot reference objects that are visible at function prototype scope, but you
can reference ones that are visible at file or block scope if:

� For C variables and functions, the source file was compiled with TEST(SYM) and
the object was referenced somewhere within the source.

� For C variables declared in a block that is nested in another block, the source
file was compiled with TEST(SYM, BLOCK).

� For line numbers, the source file was compiled with TEST(LINE) GONUMBER.

� For labels, the source file was compiled with TEST(SYM, PATH). In some cases
(for example, when using GOTO), labels can be referenced if the source file was
compiled with TEST(SYM, NOPATH).

Debug Tool follows the same scoping rules as ANSI, except that it handles objects
at file scope differently. An object at file scope can be referenced from within
Debug Tool at any point in the source file, not just from the point in the source file
where it is declared. Debug Tool temporary variables always have a higher scope
than program variables, and consequently have higher precedence than a program
variable with the same name. The program variable can always be accessed
through qualification.

In addition, Debug Tool supports the referencing of variables in multiple load
modules. Multiple load modules are managed through the C library functions
dllload(), dllfree(), fetch(), and release(). For example, let's assume the
program shown in Figure 18 on page 155 is compiled with TEST(SYM). When
Debug Tool gains control, the file scope variables length and table are available
for change, as in:

length = 6ð;

154 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

The block scope variables i, j, and temp are not visible in this scope and cannot
be directly referenced from within Debug Tool at this time. You can list the line
numbers in the current scope by entering:

LIST LINE NUMBERS;

Now let's assume the program shown in Figure 18 is compiled with TEST(SYM,
NOBLOCK). Since the program is explicitly-compiled using NOBLOCK, Debug Tool will
never know about the variables j and temp because they are defined in a block that
is nested in another block. Debug Tool does know about the variable i since it is
not in a scope that is nested.

#pragma runopts(EXECOPS)

#include <stdlib.h>

main()

{

>>> Debug Tool is given <<<

>>> control here. <<<

 init();

 sort();

}

short length ═ 4ð;

static long \table;

init()

{

table ═ malloc(sizeof(long)\length);

 ...

}

sort ()

{ /\ Block sort \/

 int i;

for (i ═ ð; i < length–1; i++) { /\ Block %BLOCK2 \/

 int j;

for (j ═ i+1; j < length; j++) { /\ Block %BLOCK3 \/

static int temp;

temp ═ table[i];

table[i] ═ table[j];

table[j] ═ temp;

 }

 }

}

Figure 18. Program Showing Support for Referencing Variables in Multiple Load Modules

 Storage classes
Debug Tool supports the change and reference of all objects declared with the fol-
lowing storage classes:

 auto

 register

 static

 extern

Temporary variables declared during the Debug Tool session are also available for
reference and change.

 Chapter 9. Using Debug Tool with C/C++ programs 155

 Using Debug Tool with C/C++ programs

An object with auto storage class is available for reference or change in Debug
Tool, provided the block where it is defined is active. Once a block finishes exe-
cuting, the auto variables within this block are no longer available for change, but
can still be examined using DESCRIBE ATTRIBUTES.

An object with register storage class might be available for reference or change in
Debug Tool, provided the variable has not been optimized to a register.

An object with static storage class is always available for change or reference in
Debug Tool. If it is not located in the currently qualified compile unit, you must
specifically qualify it.

An object with extern storage class is always available for change or reference in
Debug Tool. It might also be possible to reference such a variable in a program
even if it is not defined or referenced from within this source file. This is possible
provided Debug Tool can locate another compile unit (compiled with TEST(SYM))
with the appropriate definition.

Blocks and block identifiers for C
It is often necessary to set breakpoints on entry into or exit from a given block or to
reference variables that are not immediately visible from the current block. Debug
Tool can do this, provided that all blocks are named. It uses the following naming
convention:

� The outermost block of a function has the same name as the function.

� Blocks enclosed in this outermost block are sequentially named: %BLOCK2,
%BLOCK3, %BLOCK4, and so on in order of their appearance in the function.

When these block names are used in the Debug Tool commands, you might need
to distinguish between nested blocks in different functions within the same source
file. This can be done by naming the blocks in one of two ways:

� Function_name:>%BLOCKzzz (short form)
� Function_name:>%BLOCKxxx:>%BLOCKyyy: ... :>%BLOCKzzz (long form).

%BLOCKzzz is contained in %BLOCKyyy, which is contained in %BLOCKxxx. The short
form is always allowed; it is never necessary to specify the long form.

The currently active block name can be retrieved from the Debug Tool variable
%BLOCK . You can display the names of blocks by entering:

DESCRIBE CU;

In the program shown in Figure 18 on page 155, the function sort has three
blocks:

 sort

 %BLOCK2

 %BLOCK3

The following example sets a breakpoint on entry to the second block of sort:

at entry sort:>%BLOCK2;

The following example sets a breakpoint on exit of the first block of main and lists
the entries of the sorted table.

156 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

at exit main {

for (i = ð; i < length; i++)

printf("table entry %d is %d\n", i, table[i]);

}

The following example lists the variable temp in the third block of sort. This is
possible since temp has the static storage class.

LIST sort:>%BLOCK3:temp;

Blocks and block identifiers for C++
Block Identifiers tend to be longer for C++ than C because C++ functions can be
overloaded. In order to distinguish one function name from the other, each block
identifier is like a prototype. For example, a function named shapes(int,int) in C
would have a block named shapes; however, in C++ the block would be called
shapes(int,int).

You must always refer to a C++ block identifier in its entirety, even if the function is
not overloaded. That is, you cannot refer to shapes(int,int) as shapes only.

Note: The block name for main() is always main (without the qualifying parame-
ters after it) even when compiled with C++ because main() has extern C
linkage.

Since block names can be quite long, it is not unusual to see the name truncated in
the LOCATION field on the first line of the screen. If you want to find out where you
are, enter:

QUERY LOCATION

and the name will be shown in its entirety (wrapped) in the session log.

Block identifiers are restricted to a length of 255 characters. Any name longer than
255 characters is truncated.

Displaying environmental information
You can also use the DESCRIBE command to display a list of attributes applicable to
the current run-time environment. The type of information displayed varies from
language to language.

Issuing DESCRIBE ENVIRONMENT opens a list of open files and conditions being moni-
tored by the run-time environment. For example, if you enter DESCRIBE
ENVIRONMENT while debugging a C or C++ program, you might get the following
output:

 Chapter 9. Using Debug Tool with C/C++ programs 157

 Using Debug Tool with C/C++ programs

Currently open files

 stdout

 sysprint

The following conditions are enabled:

 SIGFPE

 SIGILL

 SIGSEGV

 SIGTERM

 SIGINT

 SIGABRT

 SIGUSR1

 SIGUSR2

 SIGABND

Using qualification for C/C++
Qualification is a method of:

� Specifying an object through the use of qualifiers
� Changing the point of view.

Qualification is often necessary due to name conflicts, or when a program consists
of multiple load modules, compile units, and/or functions.

When program execution is suspended and Debug Tool receives control, the
default, or implicit qualification is the active block at the point of program suspen-
sion. All objects visible to the C or C++ program in this block are also visible to
Debug Tool. Such objects can be specified in commands without the use of qual-
ifiers. All others must be specified using explicit qualification.

Qualifiers depend, of course, upon the naming convention of the system where you
are working. For instance, Figure 19 on page 159, shows a block of code from a
C program under VM, and Figure 20 on page 160 shows a block of code from a C
program under MVS.

In both examples, when Debug Tool receives control, variables i, j, temp, table,
and length can be specified without qualifiers in a command. If variable sn is
referenced, Debug Tool uses the variable that is a float. However, the names of
the blocks and compile units differ, maintaining compatibility with the operating
system.

158 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

LOAD MODULE NAME: MAINMOD

SOURCE FILE NAME: SORTMAIN C A

short length ═ 4ð;

main ()

{

 long \table;

 void (\pf)();

table ═ malloc(sizeof(long)\length);

 ...

pf ═ fetch("SORTMOD");

 (\pf)(table);

 ...

 release(pf);

 ...

}

LOAD MODULE NAME: SORTMOD

SOURCE FILE NAME: SORTSUB C A

short length ═ 4ð;

short sn ═ 3;

void sort(long table[])

{

 short i;

for (i ═ ð; i < length-1; i++) {

 short j;

for (j ═ i+1; j < length; j++) {

float sn ═ 3.ð;

 short temp;

temp ═ table[i];

 ...

>>> Debug Tool is given <<<

>>> control here. <<<

 ...

table[i] ═ table[j];

table[j] ═ temp;

 }

 }

}

Figure 19. Qualification in VM

 Chapter 9. Using Debug Tool with C/C++ programs 159

 Using Debug Tool with C/C++ programs

LOAD MODULE NAME: MAINMOD

SOURCE FILE NAME: MVSID.SORTMAIN.C

short length ═ 4ð;

main ()

{

 long \table;

 void (\pf)();

table ═ malloc(sizeof(long)\length);

 ...

pf ═ fetch("SORTMOD");

 (\pf)(table);

 ...

 release(pf);

 ...

}

LOAD MODULE NAME: SORTMOD

SOURCE FILE NAME: MVSID.SORTSUB.C

short length ═ 4ð;

short sn ═ 3;

void (long table[])

{

 short i;

for (i ═ ð; i < length-1; i++) {

 short j;

for (j ═ i+1; j < length; j++) {

float sn ═ 3.ð;

 short temp;

temp ═ table[i];

 ...

>>> Debug Tool is given <<<

>>> control here. <<<

 ...

table[i] ═ table[j];

table[j] ═ temp;

 }

 }

}

Figure 20. Qualification in MVS

 Using qualifiers
You can precisely specify an object, provided you know the following:

� Load module or DLL name
� Source file (compilation unit) name
� Block name (must include function prototype for C++ block qualification).

These are known as qualifiers and some, or all, might be required when referencing
an object in a command. Qualifiers are separated by a combination of greater than
signs (>) and colons and precede the object they qualify. For example, the fol-
lowing is a fully qualified object:

LOAD_NAME::>CU_NAME:>BLOCK_NAME:>object

If required, LOAD_NAME is the name of the load module. It is required only when the
program consists of multiple load modules and when you want to change the quali-

160 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

fication to other than the current load module. LOAD_NAME is enclosed in double
quotation marks. If it is not, it must be a valid identifier in the C or C++ program-
ming language. LOAD_NAME can also be the Debug Tool variable %LOAD.

If required, CU_NAME is the name of the compilation unit or source file. The CU_NAME
must be the fully qualified source file name or an absolute pathname. It is required
only when you want to change the qualification to other than the currently qualified
compilation unit. It can be the Debug Tool variable %CU. If there appears to be an
ambiguity between the compilation unit name, and (for example), a block name,
you must enclose the compilation unit name in double quotation marks (").

If required, BLOCK_NAME is the name of the block. This has the same syntax as
described in the section on “Blocks and block identifiers for C” on page 156.
BLOCK_NAME can be the Debug Tool variable %BLOCK.

For VM Only : The following examples are based on Figure 19 on page 159.

� Change the file scope variable length defined in the compilation unit SORTSUB:

"SORTMOD"::>"SORTSUB":>length = 2ð;

� Assume Debug Tool gained control from main(). The following changes the
variable length:

%LOAD::>"SORTMAIN":>length = 2ð;

Because length is in the current load module and compilation unit, it can also
be changed by:

length = 2ð;

� Assume Debug Tool gained control as shown in Figure 19 on page 159. You
can break whenever the variable temp in load module SORTMOD changes in
any of the following ways:

AT CHANGE temp;

AT CHANGE %BLOCK3:>temp;

AT CHANGE sort:>%BLOCK3:>temp;

AT CHANGE %BLOCK:>temp;

AT CHANGE %CU:>sort:>%BLOCK3:>temp;

AT CHANGE "SORTSUB":>sort:>%BLOCK3:>temp;

AT CHANGE "SORTMOD"::>"SORTSUB":>sort:>%BLOCK3:>temp;

For MVS Only : The following examples are based on Figure 20 on page 160.

� Change the file scope variable length defined in the compilation unit
MVSID.SORTSUB.C in the load module SORTMOD:

"SORTMOD"::>"MVSID.SORTSUB.C":>length = 2ð;

� Assume Debug Tool gained control from main(). The following changes the
variable length:

%LOAD::>"MVSID.SORTMAIN.C":>length = 2ð;

Because length is in the current load module and compilation unit, it can also
be changed by:

length = 2ð;

� Assume Debug Tool gained control as shown in Figure 20 on page 160. You
can break whenever the variable temp in load module SORTMOD changes in
any of the following ways:

 Chapter 9. Using Debug Tool with C/C++ programs 161

 Using Debug Tool with C/C++ programs

AT CHANGE temp;

AT CHANGE %BLOCK3:>temp;

AT CHANGE sort:%BLOCK3:>temp;

AT CHANGE %BLOCK:>temp;

AT CHANGE %CU:>sort:>%BLOCK3:>temp;

AT CHANGE "MVSID.SORTSUB.C":>sort:>%BLOCK3:>temp;

AT CHANGE "SORTMOD"::>"MVSID.SORTSUB.C":>sort:>%BLOCK3:>temp;

Changing the point of view
To change the point of view from the command line or a command file, use qual-
ifiers in conjunction with the SET QUALIFY command. This can be necessary to get
to data that is inaccessible from the current point of view, or can simplify debugging
when a number of objects are being referenced.

It is possible to change the point of view to another load module or DLL, to another
compilation unit, to a nested block, or to a block that is not nested. The SET
keyword is optional.

The following examples of changing the point of view are based on Figure 19 on
page 159:

� Qualify to the second nested block in the function sort() while in sort.

SET QUALIFY BLOCK %BLOCK2;

You can do this in a number of other ways, including:

QUALIFY BLOCK sort:>%BLOCK2;

Once the point of view changes, Debug Tool has access to objects accessible
from this point of view. You can specify these objects in commands without
qualifiers, as in:

j = 3;

temp = 4;

� Qualify to the function main in the load module MAINMOD in the compilation
unit SORTMAIN and list the entries of table.

QUALIFY BLOCK "MAINMOD"::>"SORTMAIN":>main();
LIST table[i];

The following examples of changing the point of view are based on Figure 20 on
page 160:

� Qualify to the second nested block in the function sort() in sort.

SET QUALIFY BLOCK %BLOCK2;

You can do this in a number of other ways, including:

QUALIFY BLOCK sort:>%BLOCK2;

Once the point of view changes, Debug Tool has access to objects accessible
from this point of view. You can specify these objects in commands without
qualifiers, as in:

j = 3;

temp = 4;

� Qualify to the function main in the load module MAINMOD in the compilation
unit MVSID.SORTMAIN.C and list the entries of table.

162 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

QUALIFY BLOCK "MAINMOD"::>"MVSID.SORTMAIN.C":>main;
LIST table[i];

Stepping through C++ programs
You can step through methods as objects are constructed and destructed. In addi-
tion, you can step through static constructors and destructors. These are methods
of objects that are executed before and after main() respectively.

If you are debugging a program that calls a function that resides in a header file,
the cursor moves to the applicable header file. You can then view the function
source as you step through it. Once the function returns, debugging continues at
the line following the original function call.

You can step around a header file function by issuing the STEP OVER command.
This is useful in stepping over Library functions (e.g., string functions defined in
string.h) that you cannot debug anyway.

Setting breakpoints in C++
Setting AT ENTRY/EXIT and AT CALL breakpoints in C++ differs from C. The fol-
lowing sections describe the differences and provides you with examples of these
differences:

 AT ENTRY/EXIT
AT ENTRY/EXIT sets a breakpoint in the specified block. You can set a breakpoint
on methods, methods within nested classes, templates, and overloaded operators.
An example is given for each below.

A block identifier can be quite long, especially with templates, nested classes, or
class with many levels of inheritance. In fact, it might not even be obvious at first
as to the block name for a particular function. To set a breakpoint for these non-
trivial blocks can be quite cumbersome. Therefore, it is recommended that you
make use of DESCRIBE CU and retrieve the block identifier from the session log as
described in “Retrieving commands from the log and source windows” on
page 198.

When you do a DESCRIBE CU, the methods are always shown qualified by their
class. If a method is unique, you can set a breakpoint by using just the method
name. Otherwise, you must qualify the method with its class name. The following
two examples are equivalent:

AT ENTRY method()

AT ENTRY classname::method()

The following examples are valid:

 Chapter 9. Using Debug Tool with C/C++ programs 163

 Using Debug Tool with C/C++ programs

The following examples are invalid:

AT ENTRY square(int,int) 'simple' method square

AT ENTRY shapes::square(int) Method square qualified by its class
shapes.

AT EXIT outer::inner::func() Nested classes. Outer and inner are
classes. func() is within class inner.

AT EXIT Stack<int,5>::Stack() Templates.

AT ENTRY Plus::operator++(int) Overloaded operator.

AT ENTRY ::fail() Functions defined at file scope must be
referenced by the global scope operator ::

AT ENTRY shapes Where shapes is a class. Cannot set
breakpoint on a class. (There is no block
identifier for a class.)

AT ENTRY shapes::square Invalid since method square must be fol-
lowed by its parameter list.

AT ENTRY shapes:>square(int) Invalid since shapes is a class name, not
a block name.

 AT CALL
AT CALL gives Debug Tool control when the application code attempts to call the
specified entry point. The entry name must be a fully qualified name. That is, the
name shown in DESCRIBE CU must be used. Using the example

AT ENTRY shapes::square(int)

to set a breakpoint on the method square, you must enter:

AT CALL shapes::square(int)

even if square is uniquely identified.

Examining C++ objects
When displaying an object, only the local member variables are shown. Access
types (public, private, protected) are not distinguished among the variables. The
member functions are not displayed. If you want to see their attributes, you can
display them individually, but not in the context of a class. When displaying a
derived class, the base class within it is shown as type class and will not be
expanded as the Objects example shows. Here are examples of displaying C++
objects:

164 Debug Tool User's Guide and Reference

 Using Debug Tool with C/C++ programs

<< Sample program source >>

class shape {

. . .

};

class line : public shape {

member variables of class line...

}

line edge;

<< End >>

 Objects
To describe attributes for the object EDGE, enter DESCRIBE ATTRIBUTES edge and
you get:

DESCRIBE ATTRIBUTES edge;

ATTRIBUTES for edge

Its address is yyyyyyyy and its length is xx

 class line

 class shape

member variables of class shape....

Note that the base class is shown as class shape _shape.

 Classes
To display the attributes of class shape, enter DESCRIBE ATTRIBUTES class shape

and you get:

DESCRIBE ATTRIBUTES class shape ;

 ATTRIBUTES for class shape

const class shape

. . .

. . .

 Static data
If a class contains static data, the static data will be shown as part of the class
when displayed. For example:

class A {

 int x;

static int y;

}

A obj;

You can also display the static member by referencing it as A::y since each object
of class A has the same value.

 Chapter 9. Using Debug Tool with C/C++ programs 165

 Low-level debugging

 Global data
To avoid ambiguity, variables declared at file scope can be referenced using the
global scope operator ::. For example:

int x;

class A {

 int x;

. . .

 }

}

If you are within a member function of A and want to display the value of x at file
scope, enter LIST ::x. If you do not use ::, entering LIST x will display the value of
x for the current object (i.e., this–>x).

 Low-level debugging
Debug Tool is not an assembly-level debugger, but you might find it useful to
monitor registers (general-purpose and floating-point) while stepping through your
code and assembly listing by using the LIST REGISTERS command. The compiler
listing displays the pseudo assembly code, including Debug Tool hooks. You can
watch the hooks that you stop on and watch expected changes in register values
step by step in accordance with the pseudo assembly instructions between the
hooks. You can also modify the value of machine registers while stepping through
your code.

For example, here is a C program that you can run:

int dbl(int j) /\ line 1 \/

{ /\ line 2 \/

return 2\j; /\ line 3 \/

} /\ line 4 \/

int main(void)

{

 int i;

i = 1ð;

 return dbl(i);

}

With the compile-time options TEST(ALL),LIST, your pseudo assembly listing will
contain something like:

166 Debug Tool User's Guide and Reference

 Low-level debugging

\ int dbl(int j)

 ST r1,152(,r13)

\ {

 EX rð,HOOK..PGM-ENTRY

\ return 2\j;

 EX rð,HOOK..STMT

 L r15,152(,r13)

 L r15,ð(,r15)

 SLL r15,1

 B @5L2

 DC A@5L2-ep)

 NOPR

 @5L1 DS ðD

\ }

 @5L2 DS ðD

 EX rð,HOOK..PGM-EXIT

Issue the command:

MONITOR LIST REGISTERS

to continuously monitor the registers. After a few steps, Debug Tool halts on line 1
and you have halted on the program entry hook seen above. Another STEP takes
you to line 3 and you have halted on the statement hook. The next STEP takes you
to line 4 and you have halted on the program exit hook. In accord with the pseudo
assembly listing, only Register 15 has changed during this STEP, and it contains the
return value of the function. In the MONITOR window, Register 15 now has the value
0x00000014 (decimal 20) as expected.

You can change the value from 20 to 8 just before returning from dbl() by issuing
the command:

%GPR15 = 8 ;

You can list the contents of storage in various ways. Using the LIST REGISTERS

command, you can receive a list of the contents of the general-purpose registers or
the floating-point registers.

You can also monitor the contents of storage by specifying a dump-format display
of storage. To accomplish this, use the LIST STORAGE command. You can specify
the address of the storage that you want to view, as well as the number of bytes.

 Chapter 9. Using Debug Tool with C/C++ programs 167

 Using Debug Tool with COBOL programs

Chapter 10. Using Debug Tool with COBOL Programs

This chapter provides information on the way Debug Tool interacts with COBOL.

It covers such areas as the debugging environment provided by Debug Tool, the
Debug Tool subset of COBOL commands and reserved words, Debug Tool evalu-
ation of COBOL expressions, methods of program qualification, and changing the
point of view among several load modules.

This chapter also discusses variables: accessing program variables, declaring tem-
porary variables, displaying values of COBOL variables, assigning values to
COBOL variables, using Debug Tool variables in COBOL, and using DBCS charac-
ters in COBOL when testing with the Debug Tool.

Debugging environment provided for COBOL programs
While Debug Tool allows you to use many commands that are either very similar or
equivalent to COBOL commands, Debug Tool does not necessarily interpret these
commands as required by the compiler options you chose when compiling your
program. This is due to the fact that, in the Debug Tool environment, the following
settings are in effect:

 DYNAM

 NOCMPR2

 NODBCS

 NOWORD

 NUMPROC(NOPFD)

 QUOTE

 TRUNC(BIN)

 ZWB

For more information on these compile-time options, see the COBOL Language
Reference publications.

Debug Tool Subset of COBOL commands
To make testing COBOL programs easier, Debug Tool allows you to write debug-
ging commands that resemble COBOL commands. It does this by providing an
interpretive subset of COBOL language commands that is recognized by Debug
Tool and either closely resembles or duplicates the syntax and action of the appro-
priate COBOL commands. This not only allows you to work with familiar com-
mands, but also simplifies the insertion into your source code of program patches
developed while in your Debug Tool session.

The interpretive subset of COBOL commands recognized by Debug Tool is shown
in Table 23 on page 350. This subset of commands is valid only when the current
programming language is COBOL.

For explanations of command usage and keyword meaning, see the COBOL for
MVS & VM Language Reference.

168  Copyright IBM Corp. 1995, 1998

 Using Debug Tool with COBOL programs

Restrictions on COBOL-like commands
Some restrictions apply to the use of the COBOL commands COMPUTE, MOVE, and
SET; the conditional execution command, IF; the multiway switch, EVALUATE; the
iterative looping command, PERFORM; and the subroutine call, CALL. The restrictions
listed below for each command are in addition to restrictions found in COBOL Lan-
guage Reference publications.

 COMPUTE
When using COMPUTE to assign the value of an arithmetic expression to a variable,
keep the following restrictions in mind:

� COMPUTE can assign a value to only one identifier.

� If Debug Tool was invoked due to a computational condition or an attention
interrupt, using an assignment to set a variable might not give the results you
expect. This is due to the uncertainty of variable values within statements as
opposed to their values at statement boundaries.

� The following phrases are not supported: ROUNDED, SIZE ERROR, and
END-COMPUTE.

� The keyword EQUAL is not supported (= must be used).

| � COMPUTE cannot be used to perform a computation with a windowed date field if
| the arithemetic expression consists of more than one operand.

| � Any expanded date field specified as an operand in the arithmetic expression is
| treated as a nondate field.

| � The result of the evaluation of the arithmetic expression is always considered to
| be a nondate field.

� If the arithmetic expression in the COMPUTE operation consists of only one
numeric operand, the command is treated as a MOVE command. Therefore, the
same restrictions that apply to the MOVE command also apply to the COMPUTE
command.

For more information, see “COMPUTE command (COBOL)” on page 245 and
COBOL Language Reference publications.

 MOVE
When using MOVE to assign the value of one program, session, or Debug Tool vari-
able, or literal to another program, session, or Debug Tool variable, keep in mind
the following restrictions:

� MOVE can assign a value to only one identifier.

� If Debug Tool was invoked due to a computational condition or an attention
interrupt, using an assignment to set a variable might not give the results you
expect. This is due to the uncertainty of variable values within statements, as
opposed to their values at statement boundaries.

� The CORRESPONDING phrase is not supported.

| � MOVE does not support date windowing. Therefore, you cannot use the MOVE
| command to assign the value of a windowed date field to an expanded date
| field or to a nondate field.

| � You cannot use the MOVE command to assign the value of one expanded date
| field to another expanded date field with a different DATE FORMAT clause, or

 Chapter 10. Using Debug Tool with COBOL Programs 169

 Using Debug Tool with COBOL programs

| to assign the value of one windowed date field to another windowed date field
| with a different DATE FORMAT clause.

Table 25 on page 352 shows the permissible moves for the MOVE command.

For more information, see “MOVE command (COBOL)” on page 288 and COBOL
Language Reference publications.

 SET
While using the SET command, keep the following restrictions in mind:

� Only a single receiver is allowed.

� Only the sender-receiver combinations listed in Table 26 on page 354 are sup-
ported.

� If Debug Tool was invoked due to a computational condition or an attention
interrupt, using an assignment to set a variable might not give the results you
expect. This is due to the uncertainty of variable values within statements as
opposed to their values at statement boundaries.

� Only Formats 1, 5, and 7 of the COBOL SET command are supported.

Additionally, Debug Tool provides a hexadecimal constant that can be used with
the SET command, where the hexadecimal value is denoted by an "H" and delim-
ited by quotation marks or apostrophes. For more information on this constant, see
“Using constants in expressions” on page 182.

For more information, see “SET command (COBOL)” on page 328 and COBOL
Language Reference publications.

 IF
When using the IF command, keep in mind the following restrictions:

� Only simple relation conditions are supported.
� The NEXT SENTENCE phrase is not supported.

| � Comparison combinations with windowed date fields are not supported.
| � Comparisons between expanded date fields with different DATE FORMAT
| clauses are not supported.

� Only the comparisons shown in Table 24 on page 351 are supported.

For more information, see “IF command (COBOL)” on page 271 and COBOL Lan-
guage Reference publications.

 EVALUATE
When using the EVALUATE command, keep in mind the following restrictions:

� Only a single subject is supported.
� Consecutive WHENs without associated commands are not supported.
� THROUGH/THRU ranges must be specified as literal constants.
� Only simple relation conditions are supported.
� Debug Tool implements the EVALUATE command as a series of IF commands.

As a result, only the comparisons shown in Table 24 on page 351 are sup-
ported.

For more information, see “EVALUATE command (COBOL)” on page 262 and
COBOL Language Reference publications.

170 Debug Tool User's Guide and Reference

 Using Debug Tool with COBOL programs

 PERFORM
When using the PERFORM command, keep in mind the following restrictions:

� Only inline PERFORM commands are supported (but the PERFORM command can
be a Debug Tool procedure invocation).

� Only simple relation conditions are supported.

� The AFTER phrase is not supported.

� Index names and floating-point variables cannot be used as the varying identi-
fiers.

� Index names are not supported in the BY phrase.

| � Windowed date fields are not supported in the VARYING, FROM, or BY phrases.

For more information, see “PERFORM command (COBOL)” on page 293 and
COBOL Language Reference publications.

 CALL
When using the CALL command, keep in mind the following restrictions:

� The ON OVERFLOW and ON EXCEPTION phrases are not supported. Consequently,
END-CALL is not supported.

� Only CALL commands to separately compiled programs are supported. You
cannot CALL nested programs, although they can be invoked by GOTO or STEP to
a compiled-in CALL command.

� All CALLs are dynamic. The called program is loaded when it is called.

| � A windowed date field cannot be specified as either the identifier containing the
| entry name, or an identifier in the USING phrase.

For more information, see “CALL command” on page 234 and COBOL Language
Reference publications.

COBOL command format
When you are entering commands directly at your terminal or workstation, the
format is free-form, because you can begin your commands in column 1 and con-
tinue long commands using the appropriate method. You can continue on the next
line during your Debug Tool session by using an SBCS hyphen (-) as a continua-
tion character.

However, when you use a file as the source of command input, the format for your
commands is similar to the source format for the COBOL compiler. The first six
positions are ignored, and an SBCS hyphen in column 7 indicates continuation from
the previous line. You must start the command text in column 8 or later, and end it
in column 72.

The continuation line (with a hyphen in column 7) optionally has one or more
blanks following the hyphen, followed by the continuing characters. In the case of
the continuation of a literal string, an additional quote is required. When the token
being continued is not a literal string, blanks following the last nonblank character
on the previous line are ignored, as are blanks following the hyphen.

 Chapter 10. Using Debug Tool with COBOL Programs 171

 Using Debug Tool with COBOL programs

When Debug Tool copies commands to the log file, they are formatted according to
the rules above so that you can use the log file during subsequent Debug Tool
sessions.

Continuation is not allowed within a DBCS name or literal string. This restriction
applies to both interactive and command file input.

Using COBOL variables with Debug Tool
Debug Tool can process all variable types valid in the COBOL language.

In addition to being allowed to assign values to variables and display the values of
variables during your session, you can declare temporary variables to suit your
testing needs. The following sections describe these tasks.

Accessing program variables
Debug Tool obtains information about a program variable by name, using informa-
tion that is contained in the symbol table built by the compiler. You make the
symbol table available to Debug Tool by compiling with the compile-time TEST(SYM)
option. (See “Compiling a COBOL program with the compile-time TEST option” on
page 10 for details about the compile-time TEST option.)

Assigning values to COBOL variables
Debug Tool provides three COBOL-like commands to use when assigning values to
variables—SET, MOVE, and COMPUTE.

Note: All examples concerning SET, MOVE, and COMPUTE refer to the declarations in
the COBOL program segment shown in Figure 21. The examples con-
cerning LIST, found in “Displaying values of COBOL variables” on
page 174, also refer to this program segment.

ð1 GRP.

ð2 ITM-1 OCCURS 3 TIMES INDEXED BY INX1.

ð3 ITM-2 PIC 9(3) OCCURS 3 TIMES INDEXED BY INX2.

ð1 B.

 ð2 A PIC 9(1ð).

ð1 D.

 ð2 C PIC 9(1ð).

ð1 F.

ð2. E PIC 9(1ð) OCCURS 5 TIMES.

77 AA PIC X(5) VALUE 'ABCDE'.

77 BB PIC X(5).

77 XX PIC 9(9) COMP.

77 ONE PIC 99 VALUE 1.

77 TWO PIC 99 VALUE 2.

77 PTR POINTER

Figure 21. Sample COBOL Variable Declarations

While reading the examples of variable manipulation, refer to these declarations.

172 Debug Tool User's Guide and Reference

 Using Debug Tool with COBOL programs

 SET
SET allows you to assign values to indexes associated with index names. inx1,
defined in Figure 21 on page 172 as the index to itm-1, can be given the following
value:

SET inx1 TO 3;

This assigns inx1 a value of three.

You can also set index values as equal to each other, as in the following example:

SET inx2 TO inx1;

This assigns the value of inx1 to inx2.

With SET, you can set pointers. The following example:

SET ptr TO NULL;

assigns the value of an invalid address (nonnumeric 0) to ptr and:

SET ptr TO ADDRESS OF one;

assigns the address of one to ptr.

You can also use H-literals to set pointers. The following example:

SET ptr TO H'2ððððð';

assigns the hexadecimal value of '20000' to ptr.

 MOVE
MOVE allows you to assign the value of one program, session, or Debug Tool vari-
able or literal to another. The following example:

MOVE a OF b TO c OF d;

assigns to the program variable c, found in structure d, the value of the program
variable a, found in structure b. Note the qualification used in this example.

The following example:

MOVE 123 TO itm-2(1,1);

assigns the value of 123 to the first table element of itm-2.

You can also use reference modification to assign values to variables as shown in
the following two examples:

MOVE aa(2:3) TO bb;

and

MOVE aa TO bb(1:4);

 COMPUTE
COMPUTE allows you to assign the value of an arithmetic expression to a variable.
The following example:

COMPUTE xx = (a + e(1)) / c \ 2;

assigns to variable xx the result of the expression (a + e(1)) / c \ 2.

You can also use table elements in such assignments as shown in the following
example:

 Chapter 10. Using Debug Tool with COBOL Programs 173

 Using Debug Tool with COBOL programs

COMPUTE itm−2(1,2) = (a + 1ð) / e(2);

The value assigned to a variable is always assigned to the storage for that variable.
In an optimized program, a variable can be temporarily assigned to a register, and
a new value assigned to that variable does not necessarily alter the value used by
the program.

To assign a value to a temporary variable named CMS, TSO, or SYSTEM, abut the
"=" to the reference as shown in the following example:

COMPUTE cms= 5;

Declaring temporary variables
You might want or need to declare temporary variables, also known as session var-
iables, during your Debug Tool session. The relevant variable assignment com-
mands are similar to their counterparts in the COBOL language. The rules used for
forming variable names in COBOL also apply to the declaration of temporary vari-
ables during a Debug Tool session. For more information on COBOL variable
names, see COBOL Language Reference publications. Only elementary variables
with the attributes shown in Table 13 on page 252 can be declared as session
variables. They are accessible to other HLLs.

The following declarations are for a string variable, a decimal variable, a pointer
variable, and a floating-point variable. To declare a string named description,
enter:

77 description PIC X(25)

To declare a variable named numbers, enter:

77 numbers PIC 9(4) COMP

To declare a pointer variable named pinkie, enter:

77 pinkie POINTER

To declare a floating-point variable named shortfp, enter:

77 shortfp COMP-1

Session variables remain in effect for the entire debug session.

Displaying values of COBOL variables
To display the values of variables, issue the LIST command. The LIST command
causes Debug Tool to log and display the current values (and names, if requested)
of variables. For example, if you want to display the variables aa, bb, one, and
their respective values at statement 52 of your program, issue the following
command:

AT 52 LIST TITLED (aa, bb, one); GO;

Debug Tool sets a breakpoint at statement 52 (AT), begins execution of the
program (GO), stops at statement 52, and displays the variable names (TITLED) and
their values.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, issue LIST
UNTITLED instead of LIST TITLED.

174 Debug Tool User's Guide and Reference

 Using Debug Tool with COBOL programs

The value displayed for a variable is always the value that was saved in storage for
that variable. In an optimized program, a variable can be temporarily assigned to a
register, and the value shown for that variable might differ from the value being
used by the program.

Using DBCS characters
Programs you run with Debug Tool can contain variables and character strings
written using the double-byte character set (DBCS). Debug Tool also allows you to
issue commands containing DBCS variables and strings. For example, you can
display the value of a DBCS variable (LIST), assign it a new value, monitor it in the
monitor window (MONITOR), or search for it in a window (FIND).

To use DBCS with Debug Tool, enter:

SET DBCS ON;

The IBM default for DBCS is ON.

The DBCS syntax and continuation rules you must follow to use DBCS variables in
Debug Tool commands are the same as those for the COBOL language.

For COBOL you must type a DBCS literal, such as G, in front of a DBCS value in a
Monitor or Data pop-up window if you want to update the value.

See COBOL Language Reference publications for discussions of DBCS usage with
COBOL.

Using Debug Tool variables in COBOL
Debug Tool variables, as shown in Table 5, provide information about your
program that you can use during your session. These variables are distinguished
by a percent character (%) as the first character in their names. To display the
values of any of them during your session, issue the LIST command.

Table 5 (Page 1 of 2). Descriptions of Debug Tool Variables

Debug Tool
Variable

COBOL
Attributes

Description

%GPRn PICTURE

S9(9) USAGE

COMP

Represents general-purpose registers.

%FPRn USAGE COMP-1 Represents single-precision floating-point registers.

%LPRn USAGE COMP-2 Represents double-precision floating-point registers.

%EPRn n/a Represents extended-precision floating-point registers; not
valid in COBOL programs.

%ADDRESS USAGE

POINTER

Contains the address of the location where your program
was interrupted.

%AMODE PICTURE

S9(4) USAGE

COMP

Contains the current AMODE of the suspended program
(31).

%BLOCK PICTURE X(j) Contains the name of the current block.

%CAAADDRESS USAGE

POINTER

Contains the address of the CAA control block associated
with the suspended program.

 Chapter 10. Using Debug Tool with COBOL Programs 175

 Using Debug Tool with COBOL programs

Debug Tool variables representing general and floating-point registers can be used
as the targets of assignment commands. Detailed descriptions of the Debug Tool
variables follow.

%GPRð, %GPR1,...,%GPR15

Variables that represent general purpose registers at the point of interruption in
a COBOL program. You can use them as targets of assignments:

MOVE name_table TO %GPR5;

When modifying register values, use care that you do not change the base reg-
ister.

Table 5 (Page 2 of 2). Descriptions of Debug Tool Variables

Debug Tool
Variable

COBOL
Attributes

Description

%CONDITION PICTURE X(j) Contains the name (or number) of the condition identifica-
tion when Debug Tool is entered because of an HLL or
Language Environment condition.

%COUNTRY PICTURE X(j) Contains the current country code.

%CU PICTURE X(j) Contains the name of the primary entry point of the
current compilation unit.

Equivalent to %PROGRAM.

%EPA USAGE

POINTER

Contains the address of the primary entry point in the cur-
rently interrupted program.

%HARDWARE PICTURE X(j) Identifies the type of hardware where the application is
running.

%LINE PICTURE X(j) Contains the current line number. For COBOL, %LINE
does not return a relative verb (within the line) for labels.

Equivalent to %STATEMENT.

%LOAD PICTURE X(j) Contains the name of the load module of the current
program.

%NLANGUAGE PICTURE X(j) Contains the national language currently being used.

%PATHCODE PICTURE

S9(4) USAGE

COMP

Contains an integer value identifying the type of change
occurring when the program flow changes.

%PLANGUAGE PICTURE X(j) Contains the current programming language.

%PROGRAM PICTURE X(j) Contains the name of the primary entry point of the
current program.

Equivalent to %CU.

%RC PICTURE

S9(4) USAGE

COMP

Contains a return code whenever a Debug Tool command
ends.

%RUNMODE PICTURE X(j) Contains a string identifying the presentation mode of
Debug Tool.

%STATEMENT PICTURE X(j) Equivalent to %LINE.

%SUBSYSTEM PICTURE X(j) Contains the name of the underlying subsystem, if any,
where the program is executing.

%SYSTEM PICTURE X(j) Contains the name of the operating system supporting the
program.

176 Debug Tool User's Guide and Reference

 Using Debug Tool with COBOL programs

Notes:

1. If you change a %GPRn register, the change is reflected when you resume
program execution.

2. Although assigning new values to variables %GPR12 and %GPR13 does not
result in an error, when any subsequent action is taken the newly set
values are reset to their previous values.

%FPRð, %FPR2, %FPR4, %FPR6
Represent short-precision floating-point registers. These variables are defined
as USAGE COMP-1. You can use them as targets of assignments:

MOVE 3.14152 TO %FPRð;

%LPRð, %LPR2, %LPR4, %LPR6

Represent long-precision floating-point registers. These variables are defined
as USAGE COMP-2. Similar to the short-precision floating-point registers (%FPRs),
you can use these registers as targets of assignments.

%EPRð, %EPR4

Represent the extended-precision floating-point registers. These variables are
not defined for COBOL programs.

%ADDRESS

Contains the address of the location where the COBOL program was inter-
rupted.

You can use the OFFSET table in the compiler listing to determine statement
numbers. To determine the offset, you can issue the following commands:

LIST %ADDRESS - %EPA

%ADDRESS might not locate a statement in your COBOL program in all instances.
When an error occurs outside of the program, in some instances, %ADDRESS con-
tains the actual interrupt address. This occurs only if Debug Tool is unable to
locate the last statement that was executed before control left the program.

%AMODE

Contains the current AMODE of the suspended program. The only possible
value is 31.

%BLOCK

Contains the name of the current block. To display the name of the current
block, you can use the LIST command or issue:

DESCRIBE PROGRAM;

You can change or override the value of %BLOCK using the QUALIFY command.

%CAAADDRESS

Contains the CAA control block associated with the suspended program.

%CONDITION

Contains the name (or number) of the condition identification when Debug Tool
is entered due to an HLL or Language Environment condition.

%COUNTRY

Contains the current country code.

 Chapter 10. Using Debug Tool with COBOL Programs 177

 Using Debug Tool with COBOL programs

%CU

Contains the name of the primary entry point of the current program.

You can change or override the value of %CU by using the QUALIFY command.

%CU is equivalent to %PROGRAM.

%EPA

Contains the address of the primary entry point of the currently interrupted
COBOL program.

%HARDWARE

Identifies the type of hardware where the application program is running. A
possible value is 370/ESA.

%LINE

Contains the current line number. This value can include a period, since the
current line can be a statement other than the first statement on a source line.

If the program is at the entry or exit of a block, %LINE contains ENTRY or EXIT,
respectively.

If the line number cannot be determined (for example, a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk (*). Also, for COBOL, %LINE does not
return a relative verb (within the line) for labels.

%LINE is equivalent to %STATEMENT.

%LOAD

Contains the name of the current qualifying load module and is used when an
unqualified reference to a program or variable is made. If the currently quali-
fied load module is the one initially loaded, %LOAD contains a single asterisk (*).

Whenever control is transferred to Debug Tool, %LOAD is set to the name of the
currently executing load module (or to an asterisk in the initial load module).
You can change or override the value of %LOAD by using the QUALIFY command.

Note: For modules to be recognized by Debug Tool, they must be loaded
using Language Environment services.

%NLANGUAGE

Indicates the national language currently being used. It is treated as a string in
COBOL. Its possible values are:

 ENGLISH
 UENGLISH
 JAPANESE

%PATHCODE

Contains an integer value identifying the kind of path change taking place when
Debug Tool is entered because of a path breakpoint. Its possible values are:

–1 Debug Tool is not in control as the result of a path or attention situ-
ation.

0 Attention function (not ATTENTION condition).

1 A block has been entered.

2 A block is about to be exited.

178 Debug Tool User's Guide and Reference

 Using Debug Tool with COBOL programs

3 Control has reached a label coded in the program (a paragraph
name or section name).

4 Control is being transferred as a result of a CALL or INVOKE. The
invoked routine's parameters, if any, have been prepared.

5 Control is returning from a CALL or INVOKE. If GPR 15 contains a
return code, it has already been stored.

6 Some logic contained by an inline PERFORM is about to be executed.
(Out-of-line PERFORM ranges must start with a paragraph or section
name, and are identified by %PATHCODE = 3.)

7 The logic following an IF...THEN is about to be executed.

8 The logic following an ELSE is about to be executed.

9 The logic following a WHEN within an EVALUATE is about to be exe-
cuted.

10 The logic following a WHEN OTHER within an EVALUATE is about to be
executed.

11 The logic following a WHEN within a SEARCH is about to be executed.

12 The logic following an AT END within a SEARCH is about to be exe-
cuted.

13 The logic following the end of one of the following structures is
about to be executed:

� An IF statement (with or without an ELSE clause)
� An EVALUATE or SEARCH

 � A PERFORM.

14 Control is about to return from a declarative procedure such as USE

AFTER ERROR. (Declarative procedures must start with section
names, and are identified by %PATHCODE = 3.)

15 The logic associated with one of the following phrases is about to be
run:

� [NOT] ON SIZE ERROR

� [NOT] ON EXCEPTION

� [NOT] ON OVERFLOW

� [NOT] AT END (other than SEARCH AT END)

� [NOT] AT END-OF-PAGE

� [NOT] INVALID KEY.

16 The logic following the end of a statement containing one of the fol-
lowing phrases is about to be run:

� [NOT] ON SIZE ERROR

� [NOT] ON EXCEPTION

� [NOT] ON OVERFLOW

� [NOT] AT END (other than SEARCH AT END)

� [NOT] AT END-OF-PAGE

� [NOT] INVALID KEY.

Note: Values in the range 3–16 can be assigned to %PATHCODE only if your
program was compiled with an option supporting path hooks.

 Chapter 10. Using Debug Tool with COBOL Programs 179

 Using Debug Tool with COBOL programs

%PLANGUAGE

Indicates the programming language currently being used.

%PROGRAM

Contains the name of the primary entry point of the current program.

You can change or override the value of %PROGRAM by using the QUALIFY
command.

%PROGRAM is equivalent to %CU.

%RC

Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of −1.

The %RC return code is a Debug Tool variable. It is not related to the return
code that can be found in Register 15.

%RUNMODE

Contains a string identifying the presentation mode of Debug Tool. Possible
values are:

 LINE

 SCREEN

 BATCH

%STATEMENT

Contains the current statement number. This value can include a period, as
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, %STATEMENT contains ENTRY or
EXIT, respectively.

If the statement number cannot be determined (for example, if a run-time state-
ment number does not exist or the address where the program is interrupted is
not in the program), %STATEMENT contains an asterisk (*).

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM

Contains the name of the underlying subsystem, if any, where the program is
running. Possible values are:

 CICS

 IMS

 TSO

 NONE

Subsystems occur only on MVS; a request for %SUBSYSTEM from a VM host
returns NONE.

%SYSTEM

Contains the name of the operating system supporting the program. Possible
values are:

 MVS
 VM

180 Debug Tool User's Guide and Reference

 Using Debug Tool with COBOL programs

Debug Tool evaluation of COBOL expressions
Debug Tool interprets COBOL expressions according to COBOL rules. Some
restrictions do apply. For example, the following restrictions apply when arithmetic
expressions are specified:

� Floating-point operands are not supported (COMP-1, COMP-2, external floating
point, floating-point literals).

� Only integer exponents are supported.

� Intrinsic functions are not supported.

| � Windowed date-field operands are not supported in arithmetic expressions in
| combination with any other operands.

When arithmetic expressions are used in relation conditions, both comparand attri-
butes are considered. Relation conditions follow the IF rules rather than the
EVALUATE rules.

Only simple relation conditions are supported. Sign conditions, class conditions,
condition-name conditions, switch-status conditions, complex conditions, and abbre-
viated conditions are not supported. When either of the comparands in a relation
condition is stated in the form of an arithmetic expression (using operators such as
plus and minus), the restriction concerning floating-point operands applies to both
comparands.

When both comparands are stated as simple references, all combinations listed in
Table 24 on page 351 are supported.

| Windowed date fields are not supported in relation conditions.

Displaying the results of expression evaluation
Use the LIST command to display the results of your expressions. For example, to
evaluate the expression and displays the result in the Log window, enter:

LIST a + (a − 1ð) + one;

You can also use structure elements in expressions. If e is an array, the following
two examples are valid:

LIST a + e(1) / c \ two;

LIST xx / e(two + 3);

See the COBOL Language Reference publications for discussions of COBOL
expression evaluation.

Expressions are evaluated according to COBOL rules applying to the options speci-
fied in “Debugging environment provided for COBOL programs” on page 168.
Conditions are the same ones that exist for program statements.

 Chapter 10. Using Debug Tool with COBOL Programs 181

 Using Debug Tool with COBOL programs

Using constants in expressions
During your Debug Tool session you can use expressions that use string constants
as one operand, as well as expressions that include variable names or number
constants as single operands. All COBOL string constant types discussed in
COBOL Language Reference publications are valid in Debug Tool, with the fol-
lowing restrictions:

� When you specify a hexadecimal (X'n') constant, no padding takes place. If
you need a fullword value, you must specify a full word.

� The following COBOL figurative constants are supported:

ZERO, ZEROS, ZEROES

 SPACE, SPACES

 HIGH-VALUE, HIGH-VALUES

 LOW-VALUE, LOW-VALUES

 QUOTE, QUOTES

 NULL, NULLS

Any of the above preceded by ALL
Symbolic-character (whether or not preceded by ALL).

Additionally, Debug Tool allows the use of a hexadecimal constant. This
H-constant is a fullword value that can be specified in hex using numeric-hex-literal
format (hexadecimal characters only, delimited by either quotation marks (") or
apostrophes (') and preceded by H). The value is right-justified and padded on the
left with zeros. The following example:

LIST STORAGE (H'2ðcdð');

displays the contents at a given address in hexadecimal format. You can use this
type of constant with the SET command. The following example:

SET ptr TO H'124bf';

assigns a hexadecimal value of 124bf to the variable ptr.

Using Debug Tool functions with COBOL
Debug Tool provides certain functions you can use to find out more information
about program variables and storage.

 Using %HEX
You can use the %HEX function with the LIST command to display the hexadecimal
value of an operand. For example, to display the external representation of the
packed decimal pvar3, defined as PIC 9(9), from 1234 as its hexadecimal (or
internal) equivalent, enter:

LIST %HEX (pvar3);

The Log window displays the hexadecimal string ð1234F.

Using the %STORAGE function
This Debug Tool function allows you to reference storage by address and length.
By using the %STORAGE function as the reference when setting a CHANGE breakpoint,
you can watch specific areas of storage for changes. For example, to monitor eight
bytes of storage at the hex address 22222 for changes, enter:

182 Debug Tool User's Guide and Reference

 Using Debug Tool with COBOL programs

AT CHANGE %STORAGE (H'ððð22222', 8)

LIST 'Storage has changed at Hex address 22222'

For more information about the functions described above, including the proper
syntax, see “Debug Tool's built-in functions” on page 135.

Using qualification for COBOL
Qualification is a method of specifying an object through the use of qualifiers, and
changing the point of view from one block to another so you can manipulate data
not known to the currently executing block. For example, the assignment MOVE 5

TO x; does not appear to be difficult for Debug Tool to process. However, you
might have more than one variable named x. You must tell Debug Tool which vari-
able x to assign the value of five.

You can use qualification to specify to what compile unit or block a particular vari-
able belongs. When Debug Tool is invoked, there is a default qualification estab-
lished for the currently executing block—it is implicitly qualified. Thus, you must
explicitly qualify your references to all statement numbers and variable names in
any other block. It is necessary to do this when you are testing a compile unit that
calls one or more blocks or compile units. You might need to specify what block
contains a particular statement number or variable name when issuing commands.

 Using qualifiers
Qualifiers are combinations of load modules, compile units, blocks, section names,
or paragraph names punctuated by a combination of greater-than signs (>), colons,
and the COBOL data qualification notation, OF or IN, that precede referenced state-
ment numbers or variable names.

When qualifying objects on a block level, use only the COBOL form of data quali-
fication. If data names are unique, or defined as GLOBAL, they do not need to be
qualified to the block level.

The following is a fully qualified object:

LOAD_NAME::>CU_NAME:>BLOCK_NAME:>object;

If required, LOAD_NAME is the name of the load module. It is required only when the
program consists of multiple load modules and you want to change the qualification
to other than the current load module. LOAD_NAME can also be the Debug Tool
variable %LOAD.

If required, CU_NAME is the name of the compilation unit. The CU_NAME must be the
fully qualified compilation unit name. It is required only when you want to change
the qualification to other than the currently qualified compilation unit. It can be the
Debug Tool variable %CU.

If required, BLOCK_NAME is the name of the block. The BLOCK_NAME is required only
when you want to change the qualification to other than the currently qualified
block. It can be the Debug Tool variable %BLOCK. Remember to enclose the block
name in double (") or single (') quotes if case sensitive. If the name is not inside
quotes, Debug Tool converts the name to upper case.

The following two screens are samples of two similar COBOL programs (blocks):

 Chapter 10. Using Debug Tool with COBOL Programs 183

 Using Debug Tool with COBOL programs

à ð
MAIN
...

 ð1 VAR1.

 ð2 VAR2.

 O3 VAR3 PIC XX.

 ð1 VAR4 PIC 99..

\\\\\\\\\\\\\\\\MOVE commands entered here\\\\\\\\\\\\\\\\

à ð
SUBPROG
...

 ð1 VAR1.

 ð2 VAR2.

 O3 VAR3 PIC XX.

 ð1 VAR4 PIC 99.

 ð1 VAR5 PIC 99.

\\\\\\\\\\\\\\\\LIST commands entered here\\\\\\\\\\\\\\\\

You can distinguish between the main and subprog blocks using qualification. If
you enter the following MOVE commands when main is the currently executing block:

MOVE 8 TO var4;

MOVE 9 TO subprog:>var4;

MOVE 'A' TO var3 OF var2 OF var1;

MOVE 'B' TO subprog:>var3 OF var2 OF var1;

and the following LIST commands when subprog is the currently executing block:

LIST TITLED var4;

LIST TITLED main:>var4;

LIST TITLED var3 OF var2 OF var1;

LIST TITLED main:>var3 OF var2 OF var1;

each LIST command results in the following output (without the commentary) in
your Log window:

à ð
VAR4 = 9; /\ var4 with no qualification refers to a variable \/

/\ in the currently executing block (subprog). \/

/\ Therefore, the LIST command displays the value of 9.\/

MAIN:>VAR4 ═ 8 /\ var4 is qualified to main. \/

/\ Therefore, the LIST command displays 8, \/

/\ the value of the variable declared in main. \/

VAR3 OF VAR2 OF VAR1 ═ 'B';

/\ In this example, although the data qualification \/

/\ of var3 is OF var2 OF var1, the \/

/\ program qualification defaults to the currently \/

/\ executing block and the LIST command displays \/

/\ 'B', the value declared in subprog. \/

VAR3 OF VAR2 OF VAR1 ═ 'A'

/\ var3 is again qualified to var2 OF var1 \/

/\ but further qualified to main. \/

/\ Therefore, the LIST command displays \/

/\ 'A', the value declared in main. \/

á ñ

The above method of qualifying variables is necessary for command files.

184 Debug Tool User's Guide and Reference

 Using Debug Tool with COBOL programs

Changing the point of view
The point of view is usually the currently executing block. You can also get to
inaccessible data by changing the point of view using the SET QUALIFY command.
The SET keyword is optional. For example, if the point of view (current execution) is
in main and you want to issue several commands using variables declared in
subprog, you can change the point of view by issuing the following:

QUALIFY BLOCK subprog;

You can then issue commands using the variables declared in subprog without
using qualifiers. Debug Tool does not see the variables declared in procedure
main. For example, the following assignment commands are valid with the subprog

point of view:

MOVE 1ð TO var5;

However, if you want to display the value of a variable in main while the point of
view is still in subprog, you must use a qualifier, as shown in the following example:

LIST (main:>var-name);

The above method of changing the point of view is necessary for command files.

 Chapter 10. Using Debug Tool with COBOL Programs 185

 Using Debug Tool with PL/I programs

Chapter 11. Using Debug Tool with PL/I programs

This chapter provides information about the Debug Tool subset of commands for
PL/I. It also covers PL/I language statements, conditions, expressions, and func-
tions. Debug Tool also supports PL/I freeform DBCS input, which is covered in this
chapter as well.

Debug Tool Subset of PL/I commands
Table 6 lists the Debug Tool interpretive subset of PL/I commands. This subset is
a list of commands recognized by Debug Tool that either closely resemble or dupli-
cate the syntax and action of the corresponding PL/I command. This subset of
commands is valid only when the current programming language is PL/I.

Table 6. Debug Tool Subset of PL/I Commands

Command Description

Assignment Scalar and vector assignment

BEGIN Composite command grouping

CALL Debug Tool procedure call

DECLARE or DCL Declaration of session variables

DO Iterative looping and composite command grouping

IF Conditional execution

ON Define an exception handler

SELECT Conditional execution

PL/I language statements
PL/I statements are entered as Debug Tool commands. Debug Tool makes it pos-
sible to issue commands in a manner similar to each language.

The following types of Debug Tool commands will support the syntax of the PL/I
statements:

Expression
This command evaluates an expression.

Block
BEGIN/END, DO/END, PROCEDURE/END

These commands provide a means of grouping any number of Debug
Tool commands into "one" command.

Conditional
IF/THEN, SELECT/WHEN/END

These commands evaluate an expression and control the flow of exe-
cution of Debug Tool commands according to the resulting value.

Declaration
DECLARE or DCL

These commands provide a means for declaring session variables.

186  Copyright IBM Corp. 1995, 1998

 Using Debug Tool with PL/I programs

Looping
DO/WHILE/UNTIL/END

These commands provide a means to program an iterative or conditional
loop as a Debug Tool command.

Transfer of Control
GOTO, ON

These commands provide a means to unconditionally alter the flow of
execution of a group of commands.

Table 7 shows the commands that are new or changed for this release of Debug
Tool when the current programming language is PL/I.

Table 7. PL/I Language-Oriented Commands

Command Description or Changes

ANALYZE Displays the PL/I style of evaluating an expression, and the precision and
scale of the final and intermediate results.

ON Performs as the AT OCCURRENCE command except it takes PL/I conditions
as operands.

BEGIN BEGIN/END blocks of logic.

DECLARE Session variables can now include COMPLEX (CPLX), POINTER, BIT,

BASED, ALIGNED, UNALIGNED, etc. Arrays can be declared to have upper
and lower bounds. Variables can have precisions and scales.

DO The three forms of DO are added; one is an extension of C's do.

1. DO; command(s); END;
2. DO WHILE | UNTIL expression; command(s); END;
3. DO reference=specifications; command(s); END;

IF The IF / ELSE does not require the ENDIF.

SELECT The SELECT / WHEN / OTHERWISE / END programming structure is added.

Using Debug Tool variables in PL/I
%PATHCODE Contains an integer value identifying the kind of path change taking

place when Debug Tool is entered because of a path breakpoint. Its
possible values are:

0 An attention interrupt occurred.

1 A block has been entered.

2 A block is about to be exited.

3 Control has reached a label constant.

4 Control is being sent somewhere else as the result of a CALL

or a function reference.

5 Control is returning from a CALL invocation or a function refer-
ence. Register 15, if it contains a return code, has not yet
been stored.

6 Some logic contained in a complex DO statement is about to
be executed.

7 The logic following an IF..THEN is about to be executed.

 Chapter 11. Using Debug Tool with PL/I programs 187

 Using Debug Tool with PL/I programs

8 The logic following an ELSE is about to be executed.

9 The logic following a WHEN within a select-group is about to be
executed.

10 The logic following an OTHERWISE within a select-group is
about to be executed.

Conditions and condition handling
All PL/I conditions are recognized by Debug Tool. They are used with the AT
OCCURRENCE and ON commands. See “AT OCCURRENCE” on page 225 and “ON
command (PL/I)” on page 289.

When an OCCURRENCE breakpoint is triggered, the Debug Tool %CONDITION variable
holds the following values:

These PL/I language-oriented commands are only a subset of all the commands
that are supported by Debug Tool.

Table 8. PL/I Conditions and %CONDITION Values(1) .

Triggered Condition %CONDITION Value

AREA AREA

ATTENTION CEE35J

COND (CC#1) CONDITION

CONVERSION CONVERSION

ENDFILE (MF) ENDFILE

ENDPAGE (MF) ENDPAGE

ERROR ERROR

FINISH CEEð66

FOFL CEE348

KEY (MF) KEY

NAME (MF) NAME

OVERFLOW CEE34C

PENDING (MF) PENDING

RECORD (MF) RECORD

SIZE SIZE

STRG STRINGRANGE

STRINGSIZE STRINGSIZE

SUBRG SUBSCRIPTRANGE

TRANSMIT (MF) TRANSMIT

UNDEFINEDFILE (MF) UNDEFINEDFILE

UNDERFLOW CEE34D

ZERODIVIDE CEE349

(1): The Debug Tool condition ALLOCATE raises the ON ALLOCATE condition when a PL/I
program encounters an ALLOCATE statement for a controlled variable.

188 Debug Tool User's Guide and Reference

 Using Debug Tool with PL/I programs

 Freeform input
Statements can be entered in PL/I's DBCS freeform. This means that statements
can freely use shift codes as long as the statement is not ambiguous.

This will change the description or characteristics of LIST NAMES in that:

LIST NAMES db<.c.skk.w>ord

will search for

<.D.B.C.Skk.W.O.R.D>

This will result in different behavior depending upon the language. For example,
the following will find a<kk>b in C and <.Akk.b> in PL/I.

LIST NAMES a<kk>\

where <kk> is shiftout-kanji-shiftin.

Freeform will be added to the parser and will be in effect while the current program-
ming language is PL/I.

 TEST(ERROR, ...)
With the run-time option, TEST(ERROR, ...) only the following can initialize Debug
Tool:

� The ERROR condition
 � Attention recognition
 � CALL PLITEST

 � CALL CEETEST

 LIST STORAGE
LIST STORAGE address has been enhanced so that the address can be a POINTER, a
Px constant, or the ADDR built-in function.

 Session variables
PL/I will support all Debug Tool scalar session variables. In addition, arrays and
structures can be declared.

Refer to Table 14 on page 255 for variables whose attributes will let them be prop-
erly used by other programming languages.

Accessing program variables
Debug Tool obtains information about a program variable by name using informa-
tion that is contained in the symbol table built by the compiler. The symbol table is
made available to the compiler by compiling with TEST(SYM) (see “Compiling a PL/I
program with the compile-time TEST option” on page 13 for more information).

Debug Tool uses the symbol table to obtain information about program variables,
controlled variables, automatic variables, and program control constants such as file
and entry constants and also CONDITION condition names. Based variables, con-
trolled variables, automatic variables and parameters can be used with Debug Tool
only after storage has been allocated for them in the program. An exception to this
is DESCRIBE ATTRIBUTES, which can be used to display attributes of a variable.

 Chapter 11. Using Debug Tool with PL/I programs 189

 Using Debug Tool with PL/I programs

Variable that are based on:

� An OFFSET variable,

� An expression, or

� A pointer that either is based or defined, a parameter, or member of either an
array or a structure

must be explicitly qualified when used in expressions. For example, assume you
made the following declaration:

DECLARE P1 POINTER;

DECLARE P2 POINTER;

DECLARE DX FIXED BIN(31) BASED(P2);

You would not be able to reference the variable directly by name. You can only
reference it by specifying either:

P2->DX
 or

P1->P2->DX

The following types of program variables cannot be used with Debug Tool:

� iSUB defined variables

 � Variables defined:

– On a controlled variable
– On an array with one or more adjustable bounds
– With a POSITION attributed that specifies something other than a constant

� Variables that are members of a based structure declared with the REFER

options.

 Structures
You cannot reference elements of arrays of structures. For example, suppose a
structure called PAYROLL is declared as follows:

Declare 1 Payroll(1ðð),

 2 Name,

 4 Last char(2ð),

 4 First char(15),

 2 Hours,

 4 Regular Fixed Decimal(5,2),

 4 Overtime Fixed Decimal(5,2);

Given the way PAYROLL is declared, the following examples of commands are
valid in Debug Tool:

LIST (PAYROLL(1).NAME.LAST, PAYROLL(1).HOURS.REGULAR);

LIST (ADDR (PAYROLL)) ;

LIST STORAGE (PAYROLL.HOURS, 128);

Given the way PAYROLL is declared, the following examples of commands are
invalid in Debug Tool:

190 Debug Tool User's Guide and Reference

 Using Debug Tool with PL/I programs

LIST (PAYROLL(1));

LIST (ADDR (PAYROLL(5)));

LIST STORAGE (PAYROLL(15).HOURS, 128));

 PL/I expressions
When the current programming language is PL/I, expression interpretation is similar
to that defined in the PL/I language, except for restrictions as noted in “Unsup-
ported PL/I language elements” on page 192.

The Debug Tool expression is similar to the PL/I expression. If the source of the
command is a variable-length record source (such as your terminal) and if the
expression extends across more than one line, a continuation character (an SBCS
hyphen) must be specified at the end of all but the last line.

All PL/I constant types are supported, plus the Debug Tool PX constant.

PL/I built-in functions
The Debug Tool supports the following PL/I built-in functions:

Table 9. PL/I Built-In Functions

ABS

ACOS

ADDR

ALL

ALLOCATION

ANY

ASIN

ATAN

ATAND

ATANH

BINARYVALUE

BINVALUE1

BIT

BOOL

CHAR

COMPLETION

COS

COSD

COSH

COUNT

CSTG2

CURRENTSTORAGE

DATAFIELD

DATE

DATETIME

DIM

EMPTY

ENTRYADDR

ERF

ERFC

EXP

GRAPHIC

HBOUND

HEX

HIGH

IMAG

LBOUND

LENGTH

LINENO

LOG

LOG1

LOG2

LOW

MPSTR

NULL

OFFSET

ONCHAR

ONCODE

ONCOUNT

ONFILE

ONKEY

ONLOC

ONSOURCE

PLIRETV

POINTER

POINTERADD

POINTERVALUE

PTRADD3

PTRVALUE4

REAL

REPEAT

SAMEKEY

SIN

SIND

SINH

SQRT

STATUS

STORAGE

STRING

SUBSTR

SYSNULL

TAN

TAND

TANH

TIME

TRANSLATE

UNSPEC

VERIFY

Notes:

1Abbreviation for BINARYVALUE.
2Abbreviation for CURRENTSTORAGE.
3Abbreviation for POINTERADD.
4Abbreviation for POINTERVALUE.

 Chapter 11. Using Debug Tool with PL/I programs 191

 Using Debug Tool with PL/I programs

Using SET WARNING command with built-ins
Certain checks are performed when the Debug Tool SET WARNING command setting
is ON and a built-in function (BIF) is evaluated:

� Division by zero
� The remainder (%) operator for a zero value in the second operand
� Array subscript out of bounds for defined arrays
� Bit shifting by a number that is negative or greater than 32
� On a built-in function call for an incorrect number of parameters or for param-

eter type mismatches
� On a built-in function call for differing linkage calling conventions

These checks are restrictions that can be removed by issuing SET WARNING OFF.

Unsupported PL/I language elements
The following list summarizes PL/I functions not available:

� Use of iSUB
� Interactive declaration or use of user-defined functions
� All preprocessor directives

 � Multiple assignments
 � BY NAME assignments
 � LIKE attribute
� FILE, PICTURE, and ENTRY data attributes
� All I/O statements, including DISPLAY

 � INIT attribute
� Structures with the built-in functions CSTG, CURRENTSTORAGE, and STORAGE
� The repetition factor is not supported for string constants
� GRAPHIC string constants are not supported for expressions involving other data

types
� Declarations cannot be made as sub-commands (for example in a BEGIN, DO, or

SELECT command group)

Positive identification of a compile unit (CU)
Debug Tool determines if a CU is Language Environment-enabled. If it is, the pro-
gramming language can be determined. If it is not, the Language Environment
utility exit is used to identify the programming language. If the programming lan-
guage of a CU cannot be identified, Debug Tool ignores the CU.

192 Debug Tool User's Guide and Reference

 Using Debug Tool commands

Chapter 12. Using Debug Tool commands

This chapter describes Debug Tool's windowed interfaces, command usage modes,
alternate methods of command input, variables, and common syntax elements. It
also gives you task-oriented information such as interpreting checklist boxes,
entering commands, getting help, qualifying variables, and changing the point of
view.

Command modes and language support
Commands can be issued in three modes: full-screen, line, and batch. In addition,
some commands are valid only in certain programming languages or operation
modes. Unless otherwise noted, Debug Tool commands are valid in all modes,
and for all supported languages.

 Entering commands
This section provides information for entering commands in Debug Tool. The fol-
lowing topics are discussed:

Command format Character set and case Abbreviating or truncating keywords
Continuing multiline commands Significance of blanks Using comments or con-
stants Retrieving commands from the log or source windows.

 Command format
For input typed directly at the terminal, input is free-form, optionally starting in
column 1. Separate multiple commands on a line with semicolons. The termi-
nating semicolon (;) is optional for a single command, or the last command in a
sequence of commands.

For input that comes from a primary commands or USE file, all of the Debug Tool
commands must be terminated with a semicolon except for the C block command.

Character set and case
The character set and case vary with the double-byte character set (DBCS) or the
current programming language setting in a Debug Tool session.

 Using DBCS
When the DBCS setting is ON, you can specify DBCS characters in the following
portions of all the Debug Tool commands:

 � Commentary text

� Character data valid in the current programming language

� Symbolic identifiers such as variable names (for COBOL, this includes session
variables), entry names, block names, and so forth (if the names contain DBCS
characters in the application program).

When the DBCS setting is OFF, double-byte data is not correctly interpreted or dis-
played. However, if you use the shift-in and shift-out codes as data instead of
DBCS indicators, you should issue SET DBCS OFF.

 Copyright IBM Corp. 1995, 1998 193

 Using Debug Tool commands

For more details on using DBCS characters, see “SET DBCS” on page 308.

 Using C/C++
For both C and C++, Debug Tool set the programming language to C. When the
current programming language setting is C:

� All keywords and identifiers must be the correct case. Debug Tool does not do
conversion to uppercase.

� DBCS characters are allowed only within comments and literals.

� Either trigraphs or the equivalent special characters can be used. Trigraphs
are treated as their equivalents at all times. For example, FIND "??<" would
find not only "??<" but also "{".

� The vertical bar (|) can be entered for the following C/C++ operations: bitwise
or (|), logical or (||), and bitwise assignment or (|=).

� There are alternate code points for the following C/C++ characters: vertical bar
(|), left brace ({), right brace (}), left bracket ([), and right bracket (]) .
Although alternate code points will be accepted as input for the braces and
brackets, the primary code points will always be logged. See OS/390 C/C++
User's Guide for an explanation of the alternate and primary code points in
C/C++

Using COBOL and PL/I
When the current programming language setting is not C, commands can generally
be either uppercase, lowercase, or mixed. Characters in the range a through z are
automatically converted to uppercase except within comments and quoted literals.
Also, in PL/I, only "|" and "¬" can be used as the boolean operators for OR and
NOT.

 Abbreviating keywords
When you issue the Debug Tool commands, you can truncate most command
keywords. You cannot truncate reserved keywords for the different programming
languages, system keywords (that is, CMS, SYS, SYSTEM, or TSO) or special case
keywords such as BEGIN, CALL, COMMENT, COMPUTE, END, FILE (in the SET INTERCEPT

and SET LOG commands), GOTO, INPUT, LISTINGS (in the SET DEFAULT LISTINGS

command), or USE. In addition, PROCEDURE can only be abbreviated as PROC.

The system keywords, and COMMENT, INPUT, and USE keywords, take precedence
over other keywords and identifiers. If one of these keywords is followed by a
blank, it is always parsed as the corresponding command. Hence, if you want to
assign the value 2 to a variable named CMS and the current programming lan-
guage setting is C, the "=" must be abutted to the reference, as in "CMS<no
space>= 2;" not "CMS<space>= 2;". If you want to define a procedure named USE,
you must enter "USE<no space>: procedure;" not "USE<space>:: procedure;".

When you truncate, you need only enter enough characters of the command to dis-
tinguish the command from all other valid Debug Tool commands. You should not
use truncations in a commands file or compile them into programs because they
might become ambiguous in a subsequent release. The following shows examples
of Debug Tool command truncations:

194 Debug Tool User's Guide and Reference

 Using Debug Tool commands

If you enter It will be
the following command... interpreted as...

A 3 AT 3

G GO

Q B B QUALIFY BLOCK B

Q Q QUERY QUALIFY

Q QUIT

If you specify a truncation that is also a variable in your program, the keyword is
chosen if this is the only ambiguity. For example, LIST A does not display the
value of variable A, but executes the LIST AT command, listing your current AT
breakpoints. To display the value of A, issue LIST (A).

In addition, ambiguous commands that cannot be resolved cause an error message
and are not performed. That is, there are two commands that could be interpreted
by the truncation specified. For example, D A A; is an ambiguous truncation since
it could either be DESCRIBE ATTRIBUTES a; or DISABLE AT APPEARANCE;. Instead,
you would have to enter DE A A; if you wanted DESCRIBE ATTRIBUTES a; or DI A A;

if you wanted DISABLE AT APPEARANCE;. There are, of course, other variations that
would work as well (for example, D ATT A;).

Continuation (full-screen and line mode)
If you need to use more than one line when entering a command, you must use a
continuation character.

When you are entering a command in interactive mode, the continuation character
must be the last nonblank character in each line that is to be continued. In the
following example:

LIST (" this is a very very very vvvvvvvvvvvvvvvvvvvvvvvvvvvvv –

very long string");

the continuation character is the single-byte character set (SBCS) hyphen (-).

If you want to end a line with a character that would be interpreted as a continua-
tion character, follow that character with another valid nonblank character. For
example, in C/C++, if you want to enter "i––", you could enter "(i––)" or "i––;".
When the current programming language setting is C/C++, the back slash character
(\) can also be used.

When Debug Tool is awaiting the continuation of a command in full-screen mode,
you receive a continuation prompt of "MORE..." until the command is completely
entered and processed. When continuation is indicated in line mode, you receive a
continuation prompt of "PENDING..." until the command is completely entered and
processed.

Using file input
The rules for line continuation when input comes from a commands file are
language-specific:

� When the current programming language setting is C/C++, identifiers,
keywords, and literals can be continued from one line to the next if the back

 Chapter 12. Using Debug Tool commands 195

 Using Debug Tool commands

slash continuation character is used. The following is an example of the contin-
uation character for C:

LIST (" this is a very very very vvvvvvvvvvvvvvvvvvvvvvvvvvvvv\

very long string");

� When the current programming language setting is COBOL, columns 1-6 are
ignored by Debug Tool and input can be continued from one line to the next if
the SBCS hyphen (-) is used in column 7 of the next line. Command text must
begin in column 8 or later and end in or before column 72.

In literal string continuation, an additional double (") or single (') quote is
required in the continuation line, and the character following the quote is con-
sidered to follow immediately after the last character in the continued line. The
following is an example of line continuation for COBOL:

123456 LIST (" this is a very very very vvvvvvvvvvvvvvvvvvvvvvv"

123456-"very long string");

Continuation is not allowed within a DBCS name or literal string when the
current programming language setting is COBOL.

Entering multiline commands without continuation
You can enter the following command parts on separate lines without using the
SBCS hyphen (-) continuation character:

� Subcommands and the END keyword in the PROCEDURE command

� When the current programming language setting is C, statements that are part
of a compound or block statement

� When the current programming language setting is COBOL:

 – EVALUATE

- Subcommands in WHEN and OTHER clauses
 - END-EVALUATE keyword

 – IF

- Subcommands in THEN and ELSE clauses
 - END-IF keyword

 – PERFORM

 - Subcommands
- Subcommands in UNTIL clause

 - END-PERFORM keyword

Significance of blanks
Blanks cannot occur within keywords, identifiers, and numeric constants; however,
they can occur within character strings. Blanks between keywords, identifiers, or
constants are ignored except as delimiters. Blanks are required when no other
delimiter exists and ambiguity is possible.

196 Debug Tool User's Guide and Reference

 Using Debug Tool commands

 Comments
Debug Tool lets you insert descriptive comments into the command stream (except
within constants and other comments); however, the comment format depends on
the current programming language.

For C++ only : Comments in the form "//" are not processed by Debug Tool in
C++.

� For all supported programming languages, comments can be entered by:

– Enclosing the text in comment brackets "/*" and "*/". Comments can
occur anywhere a blank can occur between keywords, identifiers, and
numeric constants. Comments entered in this manner do not appear in the
session log.

– Using the COMMENT command to insert commentary text in the session log.
Comments entered in this manner cannot contain embedded semicolons.

� When the current programming language setting is COBOL, comments can
also be entered by using an asterisk (*) in column 7. This is valid for file input
only.

Comments are most helpful in file input. For example, you can insert comments in
a USE file to explain and describe the actions of the commands.

 Constants
Constants are entered as required by the current programming language setting.
Most constants defined for each of the supported HLLs are also supported by
Debug Tool. See “C/C++ expressions” on page 145 or “Using constants in
expressions” on page 182 for more information.

Additionally, Debug Tool allows the use of hexadecimal constants in COBOL and
PL/I.

The COBOL H constant is a fullword value that can be specified in hex using
numeric-hex-literal format (hexadecimal characters only, delimited by either double
(") or single (') quotes and preceded by H). The value is right-justified and padded
on the left with zeros.

Note: The H constant can only be used where an address or POINTER variable
can be used. The COBOL hexadecimal notation for nonnumeric literals,
such as MOVE X'C1C2C3C4' TO NON-PTR-VAR, should be used for all other
situations where a hexadecimal value is needed.

The PL/I PX constant is a hexadecimal value, delimited by single quotes (') and
followed by PX. The value is right-justified and can be used in any context in which
a pointer value is allowed. For example, to display the contents at a given address
in hexadecimal format, specify:

LIST STORAGE (H'2ðCDð');

For COBOL only : You can use this type of constant with the SET command. For
example, to assign a hexadecimal value of 124BF to the variable ptr, specify:

SET ptr TO H"124BF";

 Chapter 12. Using Debug Tool commands 197

 Using Debug Tool commands

Retrieving commands from the log and source windows
When the SCREEN setting is ON, you can retrieve commands from your log and
source windows and have Debug Tool insert them on the command line.

To retrieve a line, move the cursor to the desired line in the log or source window,
modify it (delete the leading blank, for example), and press ENTER. The input line
appears on the command line so you can further modify it as necessary. Press
ENTER to issue the command.

When retrieving long or multiple Debug Tool commands, a full-screen pop-up
window is displayed, with the command as typed in so far. However, trailing blanks
on the last line are removed. The window can be expanded by placing the cursor
below the pop-up window and pressing ENTER. See also “RETRIEVE command
(full-screen mode)” on page 300.

Online command syntax help
Command syntax help is available to you. That is, if you are uncertain about the
proper syntax or exact keywords required by a command, type a question mark (?)
on the command line and press ENTER. For example, in COBOL, if you issue ?,
Debug Tool displays the output in the following format:

à ð
The next word can be one of:

; DECLARE IF SCROLL

reference DESCRIBE INPUT SELECT

register DISABLE LIST SET

ANALYZE DO MONITOR STEP

AT ENABLE PANEL SYSTEM

BEGIN END PROCEDURE name TRIGGER

CALL END QUALIFY TSO

CLEAR FIND QUERY USE

COMMENT GO QUIT WINDOW

CURSOR GO TO RETRIEVE

DCL GOTO RUN

á ñ

The above output sample is meant to illustrate a point and might not appear exactly
as shown.

Note: DECLARE is not a command but a method of making an interactive variable or
tag declaration.

Also, if you are in the process of entering a command and want to verify what the
next command element should be, you can enter as much of the command as you
know followed by a question mark. For example, let's assume you are issuing a
form of the SCROLL command (Full-Screen Mode only) and you want to know the
possible command elements, enter:

SCROLL ?

Debug Tool displays the output in the following format:

198 Debug Tool User's Guide and Reference

 Using Debug Tool commands

à ð
The partially parsed command is:

 SCROLL

The next word can be one of:

BOTTOM RIGHT

DOWN TO

LEFT TOP

NEXT UP

á ñ

The Debug Tool CMS, SYSTEM, and TSO commands followed by ? do not invoke the
syntax help; instead the ? is sent to the host as part of the system command. The
COMMENT command followed by ? also does not invoke the syntax help.

Common syntax elements
Several syntax elements are used in many Debug Tool commands. To reduce the
size of this document, they are described in this subsection. Some of the following
syntax elements are generic and do not include a syntax diagram.

 Block_Name
A block_name identifies:

� A C/C++ function or a block statement
� A COBOL nested program or method contained within a complete COBOL

program
� A PL/I block

The current block qualification can be changed using the SET QUALIFY BLOCK

command.

For C++ Only :

Include full declaration in block qualification.

For COBOL Only :

Enclose the block name in double (") or single (') quotes if it is case sensi-
tive. If the name is not inside quotes, Debug Tool will convert the name to
upper case.

If a name contains an internal double quote, you should enclose the name
in single quotes. Similarly, if the name contains an internal single quote,
you should enclose the name in double quotes.

You can only use block_name for blocks known in the current enclave.

 Block_Spec
A block_spec identifies a block in the program being debugged.

 ┌ ┐────────────────────
55─ ──┬ ┬ ──┬ ┬─block_name─ ───

6
┴┬ ┬──────────────── ────────────────────────────5%

 │ │└ ┘─%BLOCK───── └ ┘ ─:>──block_name─
 │ │┌ ┐───────────────────────────
 └ ┘───

6
┴─cu_spec─ ─:>──block_name─ ─────────

 Chapter 12. Using Debug Tool commands 199

 Using Debug Tool commands

block_name
A valid block name; see “Block_Name.”

%BLOCK

Represents the currently qualified block. See Table 3 on page 127.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201.

You can only use block_name for blocks known in the current enclave.

For C++ Only :

Block_spec must include the formal parameters for the function. The
correct block qualification is:

int function(int, int) is function(int, int)

Use Describe CUS to determine correct block_spec for blocks known in the
current enclave.

 Compile_Unit_Name
A compile_unit_name identifies:

� A C/C++ source file
� A COBOL program or class
� The external procedure name of a PL/I program.

For C/C++ Only :

The compile unit name must be enclosed in double quotes (") when there
is any chance of ambiguity between a block name and a compile unit
name. For example:

LIST CU2:>CU2:>var1

is ambiguous because the compile unit and a function in that compile unit
has same name.

To avoid the ambiguity, use:

LIST "CU2":>CU2:>var1

to correctly list the value of the variable var1 scoped to the function CU2.

Escape sequences in compile unit names that are specified as strings are
not processed if the string is part of a qualification statement.

For COBOL Only :

Enclose the compile unit name in double (") or single (') quotes if it is case
sensitive. If the name is not inside quotes, Debug Tool will convert the
name to upper case.

For PL/I only :

For consistency, the compile unit name can optionally be enclosed in single
quotes (').

If the compile unit name is not a valid identifier in the current programming lan-
guage, it must be entered as a character string constant in the current program-
ming language.

200 Debug Tool User's Guide and Reference

 Using Debug Tool commands

The current compile unit qualification can be changed using the SET QUALIFY CU

command.

 CU_Spec
A cu_spec identifies a compile unit in the application being debugged. In PL/I, the
compile unit name is the same as the outer-most procedure name in the program.

55─ ──┬ ┬──┬ ┬──────────────── ─compile_unit_name─ ───────────────────────────5%
 │ │└ ┘ ─load_spec──::>─
 ├ ┤─%CU───────────────────────────────────
 └ ┘─%PROGRAM──────────────────────────────

load_spec
A valid load module specification; see “Load_Spec” on page 202. If omitted,
the current load module qualification is used.

compile_unit_name
A valid compile unit name; see “Compile_Unit_Name” on page 200.

%CU

Represents the currently qualified compile unit. See Table 3 on page 127.
%CU is equivalent to %PROGRAM.

%PROGRAM

Is equivalent to %CU. See Table 3 on page 127.

You can only use cu_spec to specify compile units in an enclave that is currently
running. You can, therefore, only qualify variable names, function names, labels,
and statement_ids to blocks within compile units in the current enclave.

 Expression
An expression is a combination of references (see “References” on page 202 for
more information) and operators that result in a value. For example, it can be a
single constant, a program, session, or Debug Tool variable, a built-in function ref-
erence, or a combination of constants, variables, and built-in function references, or
operators and punctuation (such as parentheses).

Particular rules for forming an expression depend on the current programming lan-
guage setting and what release level of the language run-time library under which
Debug Tool is running. For example, if you upgrade your version of the HLL com-
piler without upgrading your version of Debug Tool, certain application programming
interface inconsistencies might exist.

For more about expressions with each particular HLL, see Chapter 9, “Using
Debug Tool with C/C++ programs” on page 138, “Debug Tool evaluation of COBOL
expressions” on page 181, or “PL/I expressions” on page 191.

You can only use expressions for variables contained in the current enclave.

 Chapter 12. Using Debug Tool commands 201

 Using Debug Tool commands

 Load_Module_Name
A load_module_name is the name of a file, object, or Dynamic Link Library (DLL)
that has been loaded by a supported HLL load service, or a subsystem. For
example, an enclave can contain load modules, which in turn contain compile units.

For C, escape sequences in load module names that are specified as strings are
not processed if the string is part of a qualification statement.

If omitted from a name that allows it as a qualifier, the current load module quali-
fication is assumed. It can be changed using the SET QUALIFY LOAD command.

If two enclaves contain duplicate modules, references to compile units in the
modules will be ambiguous, and will be flagged as errors. However, if the compile
unit is in the currently executing load module, that load module is assumed and no
check for ambiguity will be performed. Therefore, for Debug Tool, load module
names must be unique.

 Load_Spec
A load_spec identifies a load module in the program being debugged.

55─ ──┬ ┬─load_module_name─ ──5%
 └ ┘─%LOAD────────────

load_module_name
A valid load module name; see “Load_Module_Name.” This can be specified as
a string constant in the current programming language, for example, a string
literal in C or a character literal in COBOL. If not specified as such, it must be
a valid identifier in the current programming language.

%LOAD

Represents the currently qualified load module. See Table 3 on page 127.

 References
A reference is a subset of an expression that resolves to an area of storage, that is,
a possible target of an assignment statement. For example, it can be a program,
session, or Debug Tool variable, an array or array element, or a structure or struc-
ture element, and any of these can be pointer-qualified (in programming languages
that allow it). Any identifying name in a reference can be optionally qualified by
containing structure names and names of blocks where the item is visible. It is
optionally followed by subscript and substring modifiers, following the rules of the
current programming language.

The specification of a qualified reference includes all containing structures and
blocks as qualifiers, and can optionally begin with a load module name qualifier.
For example, when the current programming language setting is C,
mod::>cu:>proc:>struc1.struc2.array[23].

When the current programming language setting is C/C++, the term lvalue is used
in place of reference.

COBOL uses structure qualification (IN or OF keyword) and can have optional sub-
scripting and substringing of the form:

202 Debug Tool User's Guide and Reference

 Using Debug Tool commands

array OF struc2 OF struc1(subscript)(starting_position:length)

Particular rules for forming a reference depend on the current programming lan-
guage setting and what release level of the language run-time library Debug Tool is
running under. For example, if you upgrade your version of the HLL compiler
without upgrading your version of Debug Tool, certain application programming
interface inconsistencies might exist.

 Statement_Id
A statement_id identifies an executable statement in a manner appropriate for the
current programming language. This can be a statement number, sequence
number, or source line number. The statement id is an integer or integer.integer
(where the first integer is the line number and the second integer is the relative
statement number). For example, you can specify 3, 3.ð, or 3.1 to signify the first
relative statement on line 3. C/C++, COBOL, and PL/I allow multiple statements or
verbs within a source line.

You can only use statement identifiers for statements that are known in the current
enclave.

Statement_Id_Range and Stmt_Id_Spec
A statement_id_range identifies a source statement id or range of statement ids.
Stmt_id_spec identifies a statement id specification.

55──┤ stmt_id_spec ├─ ──┬ ┬───────────────────── ───────────────────────────5%
 └ ┘ ─-─ ──┬ ┬─statement_id─
 ├ ┤─%LINE────────
 └ ┘─%STATEMENT───

stmt_id_spec:
├─ ──┬ ┬──┬ ┬──────────────────── ─statement_id─ ──────────────────────────────┤
 │ │└ ┘ ──┬ ┬─block_spec─ ─:>─
 │ │└ ┘─cu_spec────
 ├ ┤─%LINE────────────────────────────────
 └ ┘─%STATEMENT───────────────────────────

block_spec
A valid block specification; see “Block_Spec” on page 199. The default is the
currently qualified block.

Note: For the currently supported programming languages, block qualification
is extraneous and will be ignored. This is because statement identifiers
are unique within a compile unit.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201. The default is
the currently qualified compile unit.

statement_id
A valid statement identifier number; see “Statement_Id.”

%LINE

Represents the currently suspended source statement or line. See Table 3 on
page 127. %LINE is equivalent to %STATEMENT.

 Chapter 12. Using Debug Tool commands 203

 Using Debug Tool commands

%STATEMENT

Is equivalent to %LINE. See Table 3 on page 127.

Specifying a range of statements: A range of statements can be identified by
specifying a beginning and ending statement id, separated by a hyphen (-). When
the current programming language setting is COBOL, blanks are required around
the hyphen (-). Blanks are optional for C/C++ and PL/I. Both statement ids must
be in the same block, the second statement cannot occur before the first in the
source program, and they cannot be equal.

A single statement id is also an acceptable statement id range and is considered to
begin and end at the same statement. This consists of only one statement or verb
even in a multistatement line.

 Statement_Label
A statement_label identifies a statement using its source label. The specification of
a qualified statement label includes all containing compile unit names or block
names, and can optionally begin with a load module name qualifier. For example:

mod::>proc1:>proc2:>block1:>start

The form of a label depends on the current programming language:

� In C/C++, labels must be valid identifiers.

� In COBOL, labels must be valid identifiers and can be qualified with the section
name.

� In PL/I, labels must be valid identifiers, which can include a label variable.

You can only use statement labels for labels that are known in the current enclave.

204 Debug Tool User's Guide and Reference

 ANALYZE

Chapter 13. Debug Tool commands

This chapter describes the syntax and usage of each Debug Tool command.

See “How to read the syntax diagrams” on page xv for an explanation of the syntax
notation used to define the commands.

ANALYZE command (PL/I)
The ANALYZE command displays the process of evaluating an expression and the
data attributes of any intermediate results. To display the results of the expression,
use the LIST command.

55──ANALYZE──EXPRESSION──(──expression──)──;─────────────────────────────5%

EXPRESSION

Requests that the accompanying expression be evaluated from the following
points of view:

� What are the attributes of each element during the evaluation of the
expression?

� What are the dimensions and bounds of the elements of the expression, if
applicable?

� What are the attributes of any intermediate results that will be created
during the processing of the expression?

expression
A valid Debug Tool PL/I expression.

Usage Notes:

� If SET SCREEN ON is in effect, and you want to issue ANALYZE EXPRESSION

for an expression in your program, you can bring the expression from
the source window up to the command line by typing over any character
in the line that contains the expression. Then, edit the command line to
form the desired ANALYZE EXPRESSION command.

� If SET WARNING ON is in effect, Debug Tool displays messages about PL/I
computational conditions that might be raised when evaluating the
expression. See “SET WARNING (C/C++ and PL/I)” on page 327 for
specific information.

� Although the PL/I compiler supports the concatenation of GRAPHIC

strings, Debug Tool does not.

Examples:

� This example is based on the following program segment:

DECLARE lo_point FIXED BINARY(31,5);

DECLARE hi_point FIXED BINARY(31,3);

DECLARE offset FIXED DECIMAL(12,2);

DECLARE percent CHARACTER(12);

lo_point = 5.4; hi_point = 28.13; offset = -6.77;

percent = '18';

 Copyright IBM Corp. 1995, 1998 205

 Assignment

� The following is an example of the information prepared by issuing
ANALYZE EXPRESSION. Specifically, the following shows the effect that
mixed precisions and scales have on intermediate and final results of an
expression:

ANALYZE EXPRESSION ((hi_point - lo_point) + offset / percent)

>>> Expression Analysis <<<

 (HI_POINT - LO_POINT) + OFFSET / PERCENT

| HI_POINT - LO_POINT

| | HI_POINT

| | FIXED BINARY(31,3) REAL

| | LO_POINT

| | FIXED BINARY(31,5) REAL

| FIXED BINARY(31,5) REAL

| OFFSET / PERCENT

| | OFFSET

| | FIXED DECIMAL(12,2) REAL

| | PERCENT

| | CHARACTER(12)

| FIXED DECIMAL(15,5) REAL

 FIXED BINARY(31,17) REAL

Assignment command (PL/I)
The Assignment command assigns the value of an expression to a specified refer-
ence.

55──reference──═──expression──;──5%

reference
A valid Debug Tool PL/I reference. See “References” on page 202.

expression
A valid Debug Tool PL/I expression.

Usage Notes:

� The PL/I repetition factor is not supported by Debug Tool.

For example, the following is not valid: rx = (16)'ð1'B;

� If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
the expected results. This is because Debug Tool cannot determine
variable values within statements, only at statement boundaries.

� The PL/I assignment statement option BY NAME is not valid in the
Debug Tool.

Examples:

� Assign the value 6 to variable x.

x = 6;

� Assign to the Debug Tool variable %GPR5 the address of name_table.

%GPR5 = ADDR (name_table);

� Assign to the prg_name variable the value of Debug Tool variable
%PROGRAM.

206 Debug Tool User's Guide and Reference

 AT

prg_name = %PROGRAM;

 AT command
The AT command defines a breakpoint or a set of breakpoints. By defining break-
points, you can temporarily suspend program execution and use Debug Tool to
perform other tasks. By specifying an AT-condition in the AT command, you instruct
Debug Tool when to gain control. You can also specify in the AT command what
action Debug Tool should take when the AT-condition occurs.

A breakpoint for the specified AT-condition remains established until either another
AT command establishes a new action for the same AT-condition or a CLEAR
command removes the established breakpoint. An informational message is issued
when the first case occurs. Some breakpoints might become obsolete during a
debug session and will be cleared automatically by Debug Tool. See the usage
notes for more details.

The various forms of the AT command are summarized in Table 10.

Table 10 (Page 1 of 2). Summary of AT Commands

AT ALLOCATE Gives Debug Tool control when storage for a named controlled
variable or aggregate is dynamically allocated by PL/I.

AT APPEARANCE Gives Debug Tool control:

� For C and PL/I, when the specified compile unit is found in
storage

� For COBOL, the first time the specified compile unit is called

AT CALL Gives Debug Tool control on an attempt to call the specified entry
point.

AT CHANGE Gives Debug Tool control when either the specified variable value
or storage location is changed.

AT CURSOR Defines a statement breakpoint by cursor pointing.

| AT DATE| For COBOL, gives Debug Tool control for each date processing
| statement within the specified block.

AT DELETE Gives Debug Tool control when a load module is deleted.

AT ENTRY/EXIT Defines a breakpoint at the specified entry point or exit.

AT GLOBAL Gives Debug Tool control for every instance of the specified
AT-condition.

AT LABEL Gives Debug Tool control at the specified statement label.

AT LINE Gives Debug Tool control at the specified line.

AT LOAD Gives Debug Tool control when the specified load module is
loaded.

AT OCCURRENCE Gives Debug Tool control on a language or Language Environ-
ment condition or exception.

AT PATH Gives Debug Tool control at a path point.

AT Prefix Defines a statement breakpoint via the source window prefix
area.

AT STATEMENT Gives Debug Tool control at the specified statement.

 Chapter 13. Debug Tool commands 207

 AT

Usage Notes:

� To set breakpoints at specific locations in a program, Debug Tool
depends on that program being loaded into storage. If you issue an AT
command for a specific ENTRY, EXIT, LABEL, LINE, or STATEMENT

breakpoint and the program is not known by Debug Tool, a warning
message is issued and the breakpoint is not set.

� To set a global breakpoint, you can specify an asterisk (*) with the AT
command or you can specify an AT GLOBAL command. For example, if
you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY \;

or

AT GLOBAL ENTRY;

� AT CHANGE, AT ENTRY, AT EXIT, AT LABEL, AT LINE, or AT STATEMENT
breakpoints (when entered for a specific block, label, line, or statement)
are automatically cleared when the containing compile unit is removed
from storage.

� AT CHANGE breakpoints are automatically cleared when the containing
blocks are no longer active or if the relevant variables are in dynamic
storage that is freed by a language construct in the program (for
example, a C call to free()).

� Clearing of a breakpoint is independent of whether the breakpoint is
ENABLESd or DISABLEd.

� When multiple AT conditions are raised at the same statement or line,
Debug Tool processes them in a predetermined order.

| � If you want breakpoints to only stop your program under certain condi-
| tions, you can use a combination of the AT command and the IF
| command to establish a conditional breakpoint. For more information,
| see the following sections titled “Stopping on a line only if a condition is
| true” : for C programs, page 51; for C++ programs, page 60; for COBOL
| programs, page 71; and for PL/I programs, page 80.

Table 10 (Page 2 of 2). Summary of AT Commands

AT TERMINATION Gives Debug Tool control when the application program is termi-
nated.

 Every_clause
Most forms of the AT command contain an optional every_clause that controls
whether the specified action is taken based on the number of times a situation has
occurred. For example, you might want an action to occur only every 10th time a
breakpoint is reached.

The syntax for every_clause is:

5─ ──┬ ┬ ──┬ ┬──────────────── ──┬ ┬─────────────── ──┬ ┬───────────── ────────────5
 │ │└ ┘ ─EVERY──integer─ └ ┘ ─FROM──integer─ └ ┘ ─TO──integer─
 └ ┘─EVERY──

208 Debug Tool User's Guide and Reference

 AT

EVERY integer
Specifies how frequently the breakpoint is taken. For example, EVERY 5 means
that Debug Tool is invoked every fifth time the AT-condition is met. The default
is EVERY 1.

FROM integer
Specifies when Debug Tool invocations are to begin. For example, FROM 8

means that Debug Tool is not invoked until the eighth time the AT-condition is
met. If the FROM value is not specified, its value is equal to the EVERY value.

TO integer
Specifies when Debug Tool invocations are to end. For example, TO 2ð means
that after the 20th time this AT-condition is met, it should no longer invoke
Debug Tool. If the TO value is not specified, the every_clause continues indefi-
nitely.

Usage Notes:

� FROM integer cannot exceed TO integer and all integers must be ≥ 1.
� EVERY by itself is the same as EVERY 1 FROM 1.
� The EVERY, FROM, and TO clauses can be specified in any order.

Examples:

� Break every third time statement 50 is reached, beginning with the 48th
time and ending after the 59th time. The breakpoint action is performed
the 48th, 51st, 54th, and 57th time statement 50 is reached.

AT EVERY 3 FROM 48 TO 59 STATEMENT 5ð;

� At the fifth change of structure field member of the structure named
mystruct, print a message saying that it has changed and list its new
value. In addition, clear the CHANGE breakpoint. The current program-
ming language setting is C.

AT FROM 5 CHANGE mystruct.member {

LIST ("mystruct.member has changed.

It is now", mystruct.member);

CLEAR AT CHANGE mystruct.member;

}

AT ALLOCATE (PL/I)
AT ALLOCATE gives Debug Tool control when storage for a named controlled vari-
able or aggregate is dynamically allocated by PL/I. When the AT ALLOCATE break-
point occurs, the allocated storage has not yet been initialized; initialization, if any,
occurs when control is returned to the program.

55──AT─ ──┬ ┬────────────── ─ALLOCATE─ ──┬ ┬─identifier─────────── ─command────5%
 └ ┘─every_clause─ │ │┌ ┐─,──────────
 ├ ┤ ─(─ ───

6
┴─identifier─ ─)─

 └ ┘─\────────────────────

every_clause
As described under “Every_clause” on page 208.

identifier
The name of a PL/I controlled variable whose allocation causes an invocation
of Debug Tool. If the variable is the name of a structure, only the major struc-
ture name can be specified.

 Chapter 13. Debug Tool commands 209

 AT

* Sets a breakpoint at every ALLOCATE.

command
A valid Debug Tool command.

Examples:

� When the major structure area_name is allocated, display the address of
the storage that was obtained.

AT ALLOCATE area_name LIST ADDR (area_name);

� List the changes to temp where the storage for temp has been allocated.

DECLARE temp CHAR(8ð) CONTROLLED INITIAL('abc');

AT ALLOCATE temp;

 BEGIN;

AT CHANGE temp;

 BEGIN;

 LIST (temp);

 GO;

 END;

 GO;

 END;

GO;

temp = 'The first time.';

temp = 'The second time.';

temp = 'The second time.';

When temp is allocated the value of temp has not yet been initialized.
When it is initialized to 'abc' by the INITIAL phrase, the first AT CHANGE

is recognized and 'abc' is listed. The three assignments to temp cause
the value to be set again but the third assignment doesn't change the
value. This example results in one ALLOCATE breakpoint and three
CHANGE breakpoints.

 AT APPEARANCE
Gives Debug Tool control when the specified compile unit is found in storage. This
is usually the result of a new load module being loaded. However, for modules
with the main compile unit in COBOL, the breakpoint does not occur until the
compile unit is first entered after being loaded.

55──AT─ ──┬ ┬────────────── ─APPEARANCE─ ──┬ ┬─cu_spec─────────── ─command─────5%
 └ ┘─every_clause─ │ │┌ ┐─,───────
 ├ ┤ ─(─ ───

6
┴─cu_spec─ ─)─

 └ ┘─\─────────────────

every_clause
As described under “Every_clause” on page 208.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201.

* Sets a breakpoint at every APPEARANCE of any compile unit.

210 Debug Tool User's Guide and Reference

 AT

command
A valid Debug Tool command.

Usage Notes:

� In a CICS environment, if an AT APPEARANCE breakpoint is set for a
program that is loaded via XCTL or LINK, the breakpoint will not be
raised.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

� If this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

� If the compile unit is qualified with a load module name, the AT

APPEARANCE breakpoint will only be recognized for the compile unit that
is contained in the specified load module. For example, if a compile
unit cux which is in load module loady appears, the breakpoint AT
APPEARANCE loadx::>cux will not be TRIGGERed.

� If the compile unit is not qualified with a load module name, the current
load module qualification is not used.

� Debug Tool gains control when the specified compile unit is first recog-
nized by Debug Tool. This can occur when a program is reached that
contains a reference to that compile unit. This occurs late enough that
the program can be operated on (setting breakpoints, for example), but
early enough that the program has not yet been executed. In addition,
for C, static variables can also be referenced.

� AT APPEARANCE is helpful when setting breakpoints in unknown compile
units. You can set breakpoints at locations currently unknown to Debug
Tool by using the proper qualification and embedding the breakpoints in
the command list associated with an APPEARANCE breakpoint. However,
there can be only one APPEARANCE breakpoint set at any time for a given
compile unit and you must include all breakpoints for that unknown
compile unit in a single APPEARANCE breakpoint.

� For C/C++, AT APPEARANCE is not triggered for compile units that reside
in a loaded module since the compile units are known at the time of the
load.

� For C/C++ and PL/I, an APPEARANCE breakpoint is triggered when Debug
Tool finds the specified compile unit in storage. To be triggered,
however, the APPEARANCE breakpoint must be set before the compile unit
is loaded.

At the time the APPEARANCE breakpoint is triggered, the compile unit you
are monitoring has not become the currently-running compile unit. The
compile unit that is current when the new compile unit appears in
storage, triggering the APPEARANCE breakpoint, remains the current
compile unit until execution passes to the new compile unit.

� For COBOL, an APPEARANCE breakpoint is triggered when Debug Tool
finds the specified compile unit in storage. To be triggered, however,
the APPEARANCE breakpoint must be set before the compile unit is called.

 Chapter 13. Debug Tool commands 211

 AT

At the time the APPEARANCE breakpoint is triggered, the compile unit you
are monitoring has not become the currently-running compile unit. The
compile unit that is current when the new compile unit appears in
storage, triggering the APPEARANCE breakpoint, remains the current
compile unit until execution passes to the new compile unit.

Examples:

� Establish an entry breakpoint when compile unit cu is found in storage.
The current programming language setting is C.

AT APPEARANCE cu {

AT ENTRY a;

 GO;

}

� Defer the AT EXIT and AT LABEL breakpoints until compile unit cuy is
first entered after being loaded into storage. The current programming
language setting is COBOL.

AT APPEARANCE cuy PERFORM

AT EXIT cuy:>blocky LIST ('Exiting blocky.');

AT LABEL cuy:>lab1 QUERY LOCATION;

END-PERFORM;

If cuy is later deleted from storage, the breakpoints that are dependent
on cuy are automatically cleared. However, if cuy is then loaded again,
the APPEARANCE breakpoint for cuy is triggered and the AT EXIT and AT
LABEL breakpoints are redefined.

 AT CALL
Gives Debug Tool control when the application code attempts to call the specified
entry point. Using CALL breakpoints, you can simulate the execution of unfinished
subroutines, create dummy or stub programs, or set variables to mimic resultant
values, allowing you to test sections of code before the whole is complete.

55──AT─ ──┬ ┬────────────── ─CALL─ ──┬ ┬─entry_name─────────── ─command────────5%
 └ ┘─every_clause─ │ │┌ ┐─,──────────
 ├ ┤ ─(─ ───

6
┴─entry_name─ ─)─

 └ ┘─\────────────────────

every_clause
As described under “Every_clause” on page 208.

entry_name
A valid external entry point name constant or zero (ð); however, ð can only be
specified if the current programming language setting is C or PL/I.

* Sets a breakpoint at every CALL of any entry point.

command
A valid Debug Tool command.

Usage Notes:

� AT CALL intercepts the call itself, not the subroutine entry point. C,
COBOL, and PL/I programs compiled with the compile-time TEST(PATH)
option identify call targets even if they are unresolved. For more infor-
mation on the compile-time TEST option, see “Compiling a C program

212 Debug Tool User's Guide and Reference

 AT

with the compile-time TEST option” on page 5, “Compiling a COBOL
program with the compile-time TEST option” on page 10, or “Compiling
a PL/I program with the compile-time TEST option” on page 13.

� A breakpoint set with AT CALL for a call to a C, C++, or PL/I built-in
function is never triggered.

� CALL statements within an INITIAL attribute on a PL/I variable declara-
tion will not trigger AT CALL breakpoints.

� AT CALL generally intercepts only calls to entry points known to Debug
Tool at compile time. Calls to entry variables are not intercepted,
except when the current programming language setting is either C or
COBOL (compiled with the run-time TEST option).

� AT CALL ð intercepts calls to unresolved entry points when the current
programming language setting is C or PL/I (compiled with the run-time
TEST option).

� AT CALL allows you to intercept or bypass the target program by using
GO BYPASS or GOTO. If resumed by a normal GO or STEP, execution
resumes by performing the call.

� If this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

� For COBOL, entry_name can refer to a method as well as a procedure.

� For COBOL, Remember to enclose the entry_name in double (") or
single (') quotes if it is case sensitive.

� To be able to set CALL breakpoints in C, you must compile your program
with either the PATH or ALL suboption of the compile-time TEST option.
The default is PATH.

� If your C/C++ program has unresolved entry points or entry variables,
issue AT CALL ð.

� To be able to set CALL breakpoints in C++, you must compile your
program with the compile-time TEST option.

� To be able to set CALL breakpoints in COBOL, you must compile your
program with either the PATH or ALL suboption of the compile-time TEST
option.

AT CALL ð is not supported for use with COBOL programs. However,
COBOL is able to identify CALL targets even if they are unresolved, and
also identify entry variables and intercept them. Therefore, not all
external references need be resolved for COBOL programs.

� To be able to set CALL breakpoints in PL/I, you must compile your
program with either the PATH or ALL suboptions of the compile-time TEST
option. AT CALL ð is supported and is invoked for unresolved external
references.

Examples:

� Intercept all calls and request input from the terminal.

 Chapter 13. Debug Tool commands 213

 AT

AT CALL \;

� If the program invokes function badsubr, intercept the call, set variable
varbl to 50, and then bypass the target function. The current program-
ming language setting is C.

AT CALL badsubr {

varbl = 5ð;

 GO BYPASS;

}

 AT CHANGE
Gives Debug Tool control when either the application program or Debug Tool
command changes the specified variable value or storage location.

55──AT─ ──┬ ┬────────────── ─CHANGE──5
 └ ┘─every_clause─

5─ ──┬ ┬──┬ ┬─reference────────────────────────────── ──────── ─command───────5%
 │ │└ ┘─%STORAGE──(──address─ ──┬ ┬─────────── ─)─
 │ │└ ┘ ─,──length─
 │ │┌ ┐─,──
 └ ┘ ─(─ ───

6
┴┬ ┬─reference────────────────────────────── ─)─

 └ ┘─%STORAGE──(──address─ ──┬ ┬─────────── ─(─
 └ ┘ ─,──length─

every_clause
As described under “Every_clause” on page 208.

reference
A valid Debug Tool reference in the current programming language; see
“References” on page 202.

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE

subject.

address
The starting address of storage to be watched for changes. This must be a
hex constant:

� 0x in C

� H in COBOL (using either double (") or single (') quotes)

� A PX constant in PL/I.

length
The number of bytes of storage being watched for changes. This must be
a positive integer constant. The default value is 1.

command
A valid Debug Tool command.

Usage Notes:

� Data is watched only in storage; hence a value that is being kept in a
register due to compiler optimization cannot be watched. In addition,
the Debug Tool variables %GPRn, %FPRn, %LPRn, and %EPRn cannot be
watched.

214 Debug Tool User's Guide and Reference

 AT

� Only entire bytes are watched; bits or bit strings within a byte cannot be
singled out.

� Since AT CHANGE breakpoints are identified by storage address and
length, it is not possible to have two AT CHANGE breakpoints for the same
area (address and length) of storage. That is, an AT CHANGE command
replaces a previous AT CHANGE command if the storage address and
length are the same. However, any other overlap is ignored and the
breakpoints are considered to be for two separate variables. For
example, if the storage address is the same, but the length is different,
the AT CHANGE command will not replace the previous AT CHANGE.

� When more than one AT CHANGE breakpoint is TRIGGERed at a time, AT
CHANGE breakpoints will be TRIGGERed in the order that they were
entered. However, if the TRIGGERing of one breakpoint causes a vari-
able watched by a different breakpoint to change, the ordering of the
TRIGGERs will not necessarily be according to when they were originally
entered. For example,

AT CHANGE y LIST y;

AT CHANGE x y = 4;

GO;

If the next statement to be executed in your program causes the value
of x to change, the CHANGE x breakpoint will be TRIGGERed when Debug
Tool gains control. Processing of CHANGE x causes the value of y to
change. If you type GO; after being informed that CHANGE x was
TRIGGERed, Debug Tool will TRIGGER the CHANGE y breakpoint (before
returning control to your program).

In this case, the CHANGE y breakpoint was entered first, but the CHANGE x

breakpoint was TRIGGERed first (because it caused the CHANGE y break-
point to be TRIGGERed).

� %STORAGE is a Debug Tool built-in function that is available only in the
CHANGE breakpoint commands.

� For a CICS application on Debug Tool, the CHANGE %STORAGE breakpoint
is cleared at the end of the last process in the application. For a
non-CICS application on Debug Tool, it is cleared at the end of a
process.

� The referenced variables must exist when the AT CHANGE breakpoint is
defined. One way to ensure this is to embed the AT CHANGE in an AT

ENTRY.

� An AT CHANGE breakpoint gets removed automatically when the specified
variable is no longer defined. AT CHANGEs for C static variables are
removed when the module defining the variable is removed from
storage. For C storage that is allocated using malloc() or calloc(),
this occurs when the dynamic storage is freed using free().

� Changes are not detected immediately, but only at the completion of
any command that has the potential of changing storage or variable
values. If you issue a Debug Tool command that modifies a variable
being watched, the CHANGE condition is raised immediately. You can
force more or less frequent checking by using the SET CHANGE

command.

� C/C++ AT CHANGE breakpoint requirements

 Chapter 13. Debug Tool commands 215

 AT

– The variable must be an lvalue or an array.

– The variable must be declared in an active block if the variable is a
parameter or has a storage class of auto.

– If you specify the address of the storage containing the variable, it
must be specified with a hexadecimal constant.

– A CHANGE breakpoint defined for a static variable is automatically
removed when the file in which the variable was declared is no
longer active. A CHANGE breakpoint defined for an external variable
is automatically removed when the module where the variable was
declared is no longer active.

� COBOL AT CHANGE breakpoint requirements

– AT CHANGE using a storage address should not reference a data item
that follows a variable-size element or subgroup within a group.
COBOL dynamically remaps the group when a variable-size
element changes size.

– If you specify the address of the storage containing the variable, it
must be with an H constant, delimited by either quotation marks or
apostrophes. The H constant can only be used where an address
or POINTER variable can be used. The COBOL hexadecimal
notations for nonnumeric literals should be used for all other situ-
ations. For details on the H constant, see “Using constants in
expressions” on page 182.

– Be careful when examining a variable whose allocated storage
follows that of a variable-size element. COBOL dynamically remaps
the storage for the element any time it changes size. This could
alter the address of the variable you want to examine.

– You cannot set a CHANGE breakpoint for a COBOL file record before
the file is opened.

– The variable, when in the local storage section, must be declared in
an active block.

� PL/I AT CHANGE breakpoint requirements

– CHANGE breakpoint is removed for based or controlled variables
when they are FREEd and for parameters and AUTOMATIC variables
when the block in which they are declared is no longer active.

– CHANGE monitors only structures with single scalar elements. Struc-
tures containing more than one scalar element are not supported.

– The variable must be a valid reference for the current block.

– The breakpoint is automatically removed after the referenced vari-
able ceases to exist. The CHANGE breakpoint is removed for based
or controlled variables when they are FREEd and for parameters and
AUTOMATIC variables when the block in which they were declared is
no longer active.

– A CHANGE breakpoint monitors the storage allocated to the current
generation of a controlled variable. If you subsequently allocate
new generations, they are not automatically monitored.

216 Debug Tool User's Guide and Reference

 AT

– If you specify the address of storage containing the variable, you
must do so with a PX constant, delimited by single or double quota-
tion marks. The PX constant can only be used where an address or
pointer variable can be used.

Examples:

� Identify the current location each time variable varbl1 or varbl2 is found
to have a changed value. The current programming language setting is
COBOL.

AT CHANGE (varbl1, varbl2) PERFORM

 QUERY LOCATION;

 GO;

END-PERFORM;

� When storage at the hex address 22222 changes, print a message in
the log. Eight bytes of storage are to be watched. The current pro-
gramming language setting is C.

AT CHANGE %STORAGE (ðxððð22222, 8)

LIST "Storage has changed at hex address 22222";

� Set two breakpoints when storage at the hex address 1000 changes.
The variable x is defined at hex address 1000 and is 20 bytes in length.
In the first breakpoint, 20 bytes of storage are to be watched. In the
second breakpoint, 50 bytes of storage are to be watched. The current
programming language setting is C.

AT CHANGE %STORAGE (ðxðððð1ððð, 2ð) /\ Breakpoint 1 set \/

AT CHANGE %STORAGE (ðxðððð1ððð, 5ð) /\ Breakpoint 2 set \/

AT CHANGE x /\ Replaces breakpoint 1, since x is at \/

/\ hex address 1ððð and is 2ð bytes long \/

AT CURSOR (full-screen mode)
Provides a cursor controlled method for setting a statement breakpoint. It is most
useful when assigned to a PF key.

 ┌ ┐─CURSOR─
55──AT─ ──┬ ┬──────── ──┴ ┴──────── ──5%
 └ ┘─TOGGLE─

TOGGLE
Specifies that if the cursor-selected statement already has an associated state-
ment breakpoint then the breakpoint is removed rather than replaced.

Usage Notes:

� AT CURSOR does not allow specification of an every_clause or a
command, and must not have a semicolon coded.

� The cursor must be in the source window and positioned on a line
where an executable statement begins. An AT STATEMENT command for
the first executable statement in the line is generated and executed (or
cleared if one is already defined and TOGGLE is specified).

Example:

Define a PF key to toggle the breakpoint setting at the cursor position.

SET PF1ð = AT TOGGLE CURSOR;

 Chapter 13. Debug Tool commands 217

 AT

| AT DATE (COBOL)
| Gives Debug Tool control for each date processing statement within the specified
| block. A date processing statement is a statement that references a date field, or
| an EVALUATE or SEARCH statement WHEN phrase that references a date field.
|

| 55──AT─ ──┬ ┬────────────── ─DATE─ ──┬ ┬─block_spec─────────── ─command────────5%
| └ ┘─every_clause─ │ │┌ ┐─,──────────
| ├ ┤| ─(─ ───

6
┴─block_spec─ ─)─

| └ ┘─\────────────────────

| every_clause
| As described under “Every_clause” on page 208.

| block_spec
| A valid block specification; see “Block_Spec” on page 199.

| * Sets a breakpoint at every date processing statement.

| command
| A valid Debug Tool command.

| Usage Note:

| When AT DATE is set, execution is halted only for COBOL compile units
| compiled with the DATEPROC compiler option.

| Examples:

| � Each time a date processing statement is encountered in the nested
| subprogram subrx, display the location of the statement.

| AT DATE subrx QUERY LOCATION;

| � Each time a date processing statement is encountered in the compile
| unit, display the name of the compile unit.

| AT DATE \ LIST %CU;

| � Each time a date processing statement is encountered in the compile
| unit, display the location of the statement, list a specific variable, and
| resume running the program.

| AT DATE \ PERFORM

| QUERY LOCATION;

| LIST DATE-FIELD

| GO;

| END-PERFORM;

 AT DELETE
Gives Debug Tool control when a load module is removed from storage by a Lan-
guage Environment delete service, such as on completion of a successful C
release(), COBOL CANCEL, or PL/I RELEASE.

55──AT─ ──┬ ┬────────────── ─DELETE─ ──┬ ┬─load_spec─────────── ─command───────5%
 └ ┘─every_clause─ │ │┌ ┐─,─────────
 ├ ┤ ─(─ ───

6
┴─load_spec─ ─)─

 └ ┘─\───────────────────

218 Debug Tool User's Guide and Reference

 AT

every_clause
As described under “Every_clause” on page 208.

load_spec
A valid load module specification; see “Load_Spec” on page 202.

* Sets a breakpoint at every DELETE of any load module.

command
A valid Debug Tool command.

Usage Notes:

� Debug Tool gains control for deletes that are affected by the Language
Environment delete service. If a load module is deleted using the OS
DELETE macro, Debug Tool is not informed. This can cause errors if
Debug Tool attempts to operate on any part of the deleted load module.

� AT DELETE cannot specify the initial load module.

� If this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

Examples:

� Each time a load module is deleted, request input from the terminal.

AT DELETE \;

� Stop watching variable var1:>x when load module mymod is deleted.

AT DELETE mymod CLEAR AT CHANGE (var1:>x);

 AT ENTRY/EXIT
Defines a breakpoint at the specified entry point or exit in the specified block.

55──AT─ ──┬ ┬────────────── ──┬ ┬─ENTRY─ ──┬ ┬─block_spec─────────── ─command───5%
 └ ┘─every_clause─ └ ┘─EXIT── │ │┌ ┐─,──────────
 ├ ┤ ─(─ ───

6
┴─block_spec─ ─)─

 └ ┘─\────────────────────

every_clause
As described under “Every_clause” on page 208.

block_spec
A valid block specification; see “Block_Spec” on page 199.

* Sets a breakpoint at every ENTRY or EXIT of any block.

command
A valid Debug Tool command.

Usage Notes:

� AT ENTRY/EXIT can only be set for programs that are currently fetched
or loaded. If you want to set an entry or exit breakpoint for a currently
unknown compile unit, see “AT APPEARANCE” on page 210.

 Chapter 13. Debug Tool commands 219

 AT

� An ENTRY or EXIT breakpoint set for a compile unit that becomes nonac-
tive (one that is not in the current enclave), is suspended until the
compile unit becomes active. An ENTRY/EXIT breakpoint set for a
compile unit that is deleted from storage is suspended until the compile
unit is restored. A suspended breakpoint cannot be triggered or oper-
ated on with breakpoint commands.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

� Both ENTRY and EXIT breakpoints for blocks in a fetched or loaded
program are removed when that program is released.

Examples:

� At the entry of program subrx, initialize variable ix and continue
program execution. The current programming language setting is
COBOL.

AT ENTRY subrx PERFORM

SET ix TO 5;

 GO;

END-PERFORM;

� At exit of main, print a message and TRIGGER the SIGUSR1 condition.
The current programming language setting is C.

AT EXIT main {

puts("At exit of the program");

 TRIGGER SIGUSR1;

 GO;

}

 AT GLOBAL
Gives Debug Tool control for every instance of the specified AT-condition. These
breakpoints are independent of their nonglobal counterparts (except for AT PATH,
which is identical to AT GLOBAL PATH). Global breakpoints are always performed
before their specific counterparts.

55──AT─ ──┬ ┬────────────── ─GLOBAL─ ──┬ ┬─ALLOCATE─── ─command────────────────5%
 └ ┘─every_clause─ ├ ┤─APPEARANCE─
 ├ ┤─CALL───────

| ├ ┤─DATE───────
 ├ ┤─DELETE─────
 ├ ┤─ENTRY──────
 ├ ┤─EXIT───────
 ├ ┤─LABEL──────
 ├ ┤─LINE───────
 ├ ┤─LOAD───────
 ├ ┤─PATH───────
 └ ┘─STATEMENT──

every_clause
As described under “Every_clause” on page 208.

220 Debug Tool User's Guide and Reference

 AT

command
A valid Debug Tool command.

You should use GLOBAL breakpoints where you don't have specific information of
where to set your breakpoint. For example, you want to halt at entry to block
Abcdefg_Unknwn but cannot remember the name, you can issue AT GLOBAL ENTRY

and Debug Tool will halt every time a block is being entered. If you want to halt at
every function call, you can issue AT GLOBAL CALL.

Usage Notes:

� To set a global breakpoint, you can specify an asterisk (*) with the AT
command or you can specify an AT GLOBAL command.

� Although you can define GLOBAL breakpoints to coexist with singular
breakpoints of the same type at the same location or event, COBOL
does not allow you to define two or more single breakpoints of the
same type for the same location or event. The last breakpoint you
define replaces any previous breakpoint.

Examples:

� If you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY \;

or

AT GLOBAL ENTRY;

� At every statement or line, display a message identifying the statement
or line. The current programming language setting is COBOL.

AT GLOBAL STATEMENT LIST ('At Statement:', %STATEMENT);

� If you enter (for COBOL):

AT EXIT table1 PERFORM

LIST TITLED (age, pay);

GO;

END-PERFORM;

then enter:

AT EXIT table1 PERFORM

LIST TITLED (benefits, scale);

GO;

END-PERFORM;

only benefits and scale are listed when your program reaches the exit
point of block table1. The second AT EXIT replaces the first because
the breakpoints are defined for the same location. However, if you
define the following GLOBAL breakpoint:

AT GLOBAL EXIT PERFORM

LIST TITLED (benefits, scale);

GO;

END-PERFORM;

in conjunction with the first EXIT breakpoint, when your program reaches
the exit from table1, all four variables (age, pay, benefits, and scale)
are listed with their values, because the GLOBAL EXIT breakpoint can
coexist with the EXIT breakpoint set for table1.

 Chapter 13. Debug Tool commands 221

 AT

 AT LABEL
Gives Debug Tool control when execution has reached the specified statement
label or group of labels. For C and PL/I, if there are multiple labels associated with
a single statement, you can specify several labels and Debug Tool gains control at
each label. For COBOL, AT LABEL lets you specify several labels, but for any group
of labels that are associated with a single statement, Debug Tool gains control for
that statement only once.

55──AT─ ──┬ ┬────────────── ─LABEL─ ──┬ ┬─statement_label─────────── ─command──5%
 └ ┘─every_clause─ │ │┌ ┐─,───────────────
 ├ ┤ ─(─ ───

6
┴─statement_label─ ─)─

 └ ┘─\─────────────────────────

every_clause
As described under “Every_clause” on page 208.

statement_label
A valid source label constant; see “Statement_Label” on page 204.

* Sets a breakpoint at every LABEL.

command
A valid Debug Tool command.

Usage Notes:

� A COBOL statement_label can have either of the following forms:

 – name

This form can be used in COBOL for reference to a section name
or for a COBOL paragraph name that is not within a section or is in
only one section of the block.

– name1 OF name2 or name1 IN name2

This form must be used for any reference to a COBOL paragraph
(name1) that is within a section (name2), if the same name also
exists in other sections in the same block. You can specify either
OF or IN, but Debug Tool always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load
module qualifiers.

� For C/C++ or PL/I, you can set a LABEL breakpoint at each label located
at a statement. This is the only circumstance where you can set more
than one breakpoint at the same location.

� A LABEL breakpoint set for a nonactive compile unit (one that is not in
the current enclave), is suspended until the compile unit becomes
active. A LABEL breakpoint set for a compile unit that is deleted from
storage is suspended until the compile unit is restored. A suspended
breakpoint cannot be triggered or operated on with breakpoint com-
mands.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

� You cannot set LABEL breakpoints at, for example, PL/I label variables.

222 Debug Tool User's Guide and Reference

 AT

� LABEL breakpoints for label constants in a fetched, loaded program or
DLL are removed when that program is released.

� To be able to set LABEL breakpoints in C or PL/I, you must compile your
program with either the PATH and SYM suboptions or the ALL suboption of
the compile-time TEST option.

� You can set breakpoints for more than one label at the same location.
Debug Tool is entered for each specified label.

� To be able to set LABEL breakpoints in COBOL, you must compile your
program with either the STMT, PATH, or ALL suboption and the SYM sub-
option of the compile-time TEST option.

When defining specific LABEL breakpoints Debug Tool sets a breakpoint
for each label specified, unless there are several labels on the same
statement. In this case, only the last LABEL breakpoint defined is set.

� For COBOL, a reference to a label or a label constant can take either of
the following forms:

 – name

This form is used to refer to a section name or the name of a para-
graph contained in not more than one section of the block.

– name1 OF name2 or name1 IN name2

This form is used to refer to a paragraph contained within a section
if the paragraph name exists in other sections in the same block.
You can use either OF or IN, but Debug Tool only uses OF for output
to the log file.

Examples:

� Set a breakpoint at label create in the currently qualified block.

AT LABEL create;

� At program label para OF sect1 display variable names x and y and
their values, and continue program execution. The current program-
ming language setting is COBOL.

AT LABEL para OF sect1 PERFORM

LIST TITLED (x, y);

 GO;

END-PERFORM;

� Set a breakpoint at labels label1 and label2, even though both labels
are associated to the same statement. The current programming lan-
guage setting is C.

AT LABEL label1 LIST 'Stopped at label1'; /\ Label1 is first \/

AT LABEL label2 LIST 'Stopped at label2'; /\ Label2 is second \/

 AT LINE
See “AT STATEMENT” on page 230.

 Chapter 13. Debug Tool commands 223

 AT

 AT LOAD
Gives Debug Tool control when the specified load module is brought into storage.
For example, on completion of a successful C fetch(), a PL/I FETCH, or during a
COBOL dynamic CALL. Once the breakpoint is raised for the specified load module,
it is not raised again unless either the load module is released and fetched again or
another load module with the specified name is fetched.

You can set LOAD breakpoints regardless of what compile-time options are in effect.

55──AT─ ──┬ ┬────────────── ─LOAD─ ──┬ ┬─load_spec─────────── ─command─────────5%
 └ ┘─every_clause─ │ │┌ ┐─,─────────
 ├ ┤ ─(─ ───

6
┴─load_spec─ ─)─

 └ ┘─\───────────────────

every_clause
As described under “Every_clause” on page 208.

load_spec
A valid load module specification; see “Load_Spec” on page 202.

* Sets a breakpoint at every LOAD of any load module.

command
A valid Debug Tool command.

Usage Notes:

� Debug Tool gains control for loads that are affected by the Language
Environment load service. If a load module is loaded using the OS LOAD

macro or EXEC CICS LOAD, Debug Tool is not informed.

� AT LOAD can be used to detect the loading of specific language library
load modules; however, the loading of language library load modules
does not TRIGGER an AT GLOBAL LOAD or AT LOAD \.

� AT LOAD cannot specify the initial load module because it is already
loaded when Debug Tool is invoked.

� A LOAD breakpoint is triggered when a new enclave is entered.

� If this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

� AT LOAD on an implicitly or explicitly loaded DLL is not supported by
Debug Tool.

� Debug Tool recognizes an implicitly loaded DLL only after a compile
unit in that DLL is called. For example, if LIST NAMES CUS is issued after
an implicit load of a DLL, there will be no entry in the output of the
command of the DLL.

� Depending on the version of the C/C++ compiler used, Debug Tool
might recognize a compile unit in a DLL only after it has had a function
in it called. For example, if a DLL contains a function fn1 in CU file1
and it contains a function fn2 in CU file2, a call to fn1 will not enable

224 Debug Tool User's Guide and Reference

 AT

Debug Tool to recognize file2, only file1. Similarly, a call to fn2 will
not enable Debug Tool to recognize file1.

� At the triggering of a LOAD breakpoint for C/C++ and PL/I, Debug Tool
has enough information about the loaded module to set breakpoints and
examine variables of static and extern storage classes.

� At the triggering of a LOAD breakpoint for COBOL and C/C++ DLL's,
Debug Tool does not have enough information about the loaded module
to set breakpoints in blocks contained within the module. At the trig-
gering of an APPEARANCE breakpoint, however, you can set such break-
points.

Examples:

� Print a message when load module mymod is loaded. The current pro-
gramming language setting is either C/C++ or COBOL.

AT LOAD mymod LIST ("Load module mymod has been loaded");

� Establish an entry breakpoint when load module a is fetched and then
resume execution. The current programming language setting is C.

AT LOAD a {

AT ENTRY a;

 GO;

}

 AT OCCURRENCE
Gives Debug Tool control on a language or Language Environment condition or
exception.

55──AT─ ──┬ ┬────────────── ─OCCURRENCE─ ──┬ ┬─condition─────────── ─command───5%
 └ ┘─every_clause─ │ │┌ ┐─,─────────
 └ ┘ ─(─ ───

6
┴─condition─ ─)─

every_clause
As described under “Every_clause” on page 208.

condition
A valid condition or exception. This can be either an Language Environment
symbolic feedback code, or a language-oriented keyword or code, depending
on the current programming language setting.

Following are the C/C++ condition constants; they must be uppercase and not
abbreviated:

When a C++ user specifies AT CONDITION THROWOBJ, Debug Tool transfers
control to the user at the point of the throw in C++ code.

PL/I condition constants can be used as well. See “ON command (PL/I)” on
page 289 for information about valid condition names.

There are no COBOL condition constants. Instead, an Language Environment
symbolic feedback code must be used, for example, CEE347. For symbolic

SIGABND
SIGABRT
SIGFPE

SIGILL
SIGINT
SIGIOERR
SIGSEGV

SIGTERM
SIGUSR1
SIGUSR2
THROWOBJ

 Chapter 13. Debug Tool commands 225

 AT

feedback codes for Language Environment callable services, see OS/390 Lan-
guage Environment Programming Guide.

command
A valid Debug Tool command.

Program conditions and condition handling vary from language to language. The
methods the OCCURRENCE breakpoint uses to adapt to each language are described
below.

For C/C++ :

When a C/C++ or an Language Environment condition occurs during your session,
the following series of events takes place:

1. Debug Tool is invoked before any C/C++ signal handler.

2. If you set an OCCURRENCE breakpoint for that condition, Debug Tool processes
that breakpoint and executes any commands you have specified. If you did not
set an OCCURRENCE breakpoint for that condition, and:

� If the current test-level setting is ALL, Debug Tool prompts you for com-
mands or reads them from a commands file.

� If the current test-level setting is ERROR, and the condition has an error
severity level (that is, anything but SIGUSR1, SIGUSR2, SIGINT, or SIGTERM),
Debug Tool gets commands by prompting you or by reading from a com-
mands file.

� If the current test-level setting is NONE, Debug Tool ignores the condition
and returns control to the program.

You can set OCCURRENCE breakpoints for equivalent C/C++ signals and Language
Environment conditions. For example, you can set AT OCCURRENCE CEE345 and AT
OCCURRENCE SIGSEGV during the same debugging session. Both indicate an
addressing exception and, if you set both breakpoints, no error occurs. However, if
you set OCCURRENCE breakpoints for a condition using both its C/C++ and Language
Environment designations, the Language Environment breakpoint is the only break-
point triggered. Any command list associated with the C condition is not executed.
Table 22 on page 348 lists the Language Environment conditions and their C/C++
equivalents. Also see OS/390 Language Environment Programming Guide.

You can use OCCURRENCE breakpoints to control your program's response to errors.

Usage Notes:

� If the application program also has established an exception handler for
the condition then that handler is entered when Debug Tool releases
control, unless return is by use of GO BYPASS or GOTO or a specific state-
ment.

� OCCURRENCE breakpoints for COBOL IGZ conditions can only be set
after a COBOL run-time module has been initialized.

� For C/C++ and PL/I, certain Language Environment conditions map to
C/C++ SIGxxx values and PL/I condition constants. It is possible to
enter two AT OCCURRENCE breakpoints for the same condition. For
example, one could be entered with the Language Environment condi-
tion name and the other could be entered with the C/C++ SIGxxx condi-
tion constant. In this case, the AT OCCURRENCE breakpoint for the

226 Debug Tool User's Guide and Reference

 AT

Language Environment condition name is TRIGGERed and the AT

OCCURRENCE breakpoint for the C/C++ condition constant is not.
However, if an AT OCCURRENCE breakpoint for the Language Environment
condition name is not defined, the corresponding mapped C/C++ or PL/I
condition constant is TRIGGERed.

� If this breakpoint is set in a parent enclave it can be triggered and oper-
ated on with breakpoint commands while the application is in a child
enclave.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

� For COBOL, Debug Tool detects Language Environment conditions. If
a Language Environment condition occurs during your session, the fol-
lowing series of events takes place:

1. Debug Tool is invoked before any condition handler.

2. If you set an OCCURRENCE breakpoint for that condition, Debug Tool
processes that breakpoint and executes any commands you have
specified. If you have not set an OCCURRENCE breakpoint for that
condition, and:

– If the current test-level setting is ALL, Debug Tool prompts you
for commands or reads them from a commands file.

– If the current test-level setting is ERROR, and the condition has a
severity level of 2 or higher, Debug Tool gets commands by
prompting you or by reading from a commands file.

– If the current test-level setting is NONE, Debug Tool ignores the
condition and returns control to the program.

You can use OCCURRENCE breakpoints to control your program's response
to errors.

See OS/390 Language Environment Debugging Guide and Run-Time
Messages for a list of Language Environment conditions.

� For PL/I, Debug Tool detects Language Environment and PL/I condi-
tions. If a condition occurs, Debug Tool is invoked before any condition
handler. If you have issued an ON command or set an OCCURRENCE
breakpoint for the specified condition, Debug Tool runs the associated
commands. See “ON command (PL/I)” on page 289.

� If there is no AT OCCURRENCE or ON set, then:

– If the current test-level setting is ALL, Debug Tool prompts you for
commands or reads them from a commands file.

– If the current test-level setting is ERROR, and the condition has an
error severity level of 2 or higher, Debug Tool gets commands by
prompting you or by reading from a commands file.

– If the current test-level setting is NONE, Debug Tool ignores the con-
dition and returns control to the program.

� Once Debug Tool returns control to the program, any relevant PL/I
ON-unit is run. PL/I condition handling is described in PL/I for MVS &

 Chapter 13. Debug Tool commands 227

 AT

VM Language Reference. Also see OS/390 Language Environment
Programming Guide.

Examples:

� When a data exception occurs, query the current location. The current
programming language setting is either C or COBOL.

AT OCCURRENCE CEE347 QUERY LOCATION;

� When the SIGSEGV condition is raised, set an error flag and call a user
termination routine. The current programming language setting is C.

AT OCCURRENCE SIGSEGV {

error = 1;

 terminate (error);

}

� Suppose SIGFPE maps to CEE347 and the following breakpoints are
defined. The current programming language setting is C.

AT OCCURRENCE SIGFPE LIST "SIGFPE condition";

AT OCCURRENCE CEE347 LIST "CEE347 condition";

If the Language Environment condition CEE347 is raised, the CEE347
breakpoint is TRIGGERed.

However, if a breakpoint had not been defined for CEE347 and the
CEE347 condition is raised, the SIGFPE breakpoint is TRIGGERed (since it
is mapped to CEE347).

 AT PATH
Gives Debug Tool control when the flow of control changes (at a path point). AT

PATH is identical to AT GLOBAL PATH.

55──AT─ ──┬ ┬────────────── ─PATH──command──────────────────────────────────5%
 └ ┘─every_clause─

every_clause
As described under “Every_clause” on page 208.

command
A valid Debug Tool command.

Usage Notes:

� For an explanation of path points and possible values for %PATHCODE,
which vary according to the language of your program, see “Using
Debug Tool variables in C/C++” on page 140 “Using Debug Tool vari-
ables in COBOL” on page 175, or “Using Debug Tool variables in PL/I”
on page 187.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

� For C, COBOL and PL/I, you can set PATH breakpoints if you compiled
with the PATH suboption. For more information, see:

– “Compiling a C program with the compile-time TEST option” on
page 5

228 Debug Tool User's Guide and Reference

 AT

– “Compiling a COBOL program with the compile-time TEST option”
on page 10

– “Compiling a PL/I program with the compile-time TEST option” on
page 13

� For C++, you can set PATH breakpoints at any time. For more informa-
tion, see “Compiling a C++ program with the compile-time TEST option”
on page 9.

� For COBOL and PL/I, you can set PATH breakpoints at any time (default
is PATH), but setting of other breakpoints is different for each suboption
of the compile-time TEST option. For more information, see “Compiling a
COBOL program with the compile-time TEST option” on page 10 or
“Compiling a PL/I program with the compile-time TEST option” on
page 13.

Examples:

� Whenever a path point has been reached, display the five most recently
processed breakpoints and conditions.

AT PATH LIST LAST 5 HISTORY;

� Whenever a path point has been reached, display a message and
query the current location. The current programming language setting
is COBOL.

AT PATH PERFORM

LIST "Path point reached";

 QUERY LOCATION;

 GO;

END-PERFORM;

� Whenever a path point has been reached, the value of %PATHCODE con-
tains the code representing the type of path point stopped at. If the
program is stopped at the entry to a block, display the %PATHCODE.

AT PATH LIST %PATHCODE;

AT Prefix (full-screen mode)
Sets a statement breakpoint when you issue this command via the source window
prefix area. When one or more breakpoints have been set on a line, the prefix
area for that line is highlighted.

55──AT─ ──┬ ┬───────── ───5%
 └ ┘─integer─

integer
Selects a relative statement (for C/C++ and PL/I) or a relative verb (for COBOL)
within the line. The default value is 1.

Example:

Set a breakpoint at the third statement or verb in the line (typed in the prefix
area of the line where the statement is found).

AT 3

No space is needed as a delimiter between the keyword and the integer;
hence, AT 3 is equivalent to AT3.

 Chapter 13. Debug Tool commands 229

 AT

 AT STATEMENT
Gives Debug Tool control at each specified statement or line within the given set of
ranges.

55──AT─ ──┬ ┬────────────── ──┬ ┬─────────── ──────────────────────────────────5
 └ ┘─every_clause─ ├ ┤─LINE──────
 └ ┘─STATEMENT─

5─ ──┬ ┬─statement_id_range─────────── ─command─────────────────────────────5%
 │ │┌ ┐─,──────────────────
 ├ ┤ ─(─ ───

6
┴─statement_id_range─ ─)─

 └ ┘─\────────────────────────────

every_clause
As described under “Every_clause” on page 208.

statement_id_range
A valid statement id or statement id range; see “Statement_Id_Range and
Stmt_Id_Spec” on page 203.

* Sets a breakpoint at every STATEMENT or LINE.

command
A valid Debug Tool command.

Usage Notes:

� A STATEMENT breakpoint set for a nonactive compile unit (one that is not
in the current enclave), is suspended until the compile unit becomes
active. A STATEMENT breakpoint set for a compile unit that is deleted
from storage is suspended until the compile unit is restored. A sus-
pended breakpoint cannot be triggered or operated on with breakpoint
commands.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

� You can specify the first relative statement on each line in any one of
three ways. If, for example, you want to set a STATEMENT breakpoint at
the first relative statement on line three, you can enter AT 3, AT 3.ð, or
AT 3.1. However, Debug Tool logs them differently according to the
current programming language as follows:

 – For C/C++

The first relative statement on a line is specified with "0". All of the
above breakpoints are logged as AT 3.ð.

– For COBOL or PL/I

The first relative statement on a line is specified with "1". All of the
above breakpoints are logged as AT 3.1.

Examples:

� Set a breakpoint at statement or line number 23. The current program-
ming language setting is COBOL.

AT 23 LIST 'About to close the file';

230 Debug Tool User's Guide and Reference

 AT

� Set breakpoints at statements 5 through 9 of compile unit mycu. The
current programming language setting is C.

AT STATEMENT "mycu":>5 - 9;

� Set breakpoints at lines 19 through 23 and at statements 27 and 31.

AT LINE (19 - 23, 27, 31);

or

AT LINE (27, 31, 19 - 23);

 AT TERMINATION
Gives Debug Tool control when the application program is terminated.

55──AT──TERMINATION──command───5%

command
A valid Debug Tool command.

Usage Notes:

� AT TERMINATION does not allow specification of an every_clause
because termination can only occur once.

� If Debug Tool has been initialized for any reason, the following default
form of this command is automatically in effect:

AT TERMINATION;

This definition causes control to be given to your terminal (or primary
commands file) when the program ends. This termination breakpoint
can be replaced or cleared at any time with the AT TERMINATION or
CLEAR AT TERMINATION command.

� If this breakpoint is set in a parent enclave, it can be triggered and
operated on with breakpoint commands while the application is in a
child enclave.

� When Debug Tool gains control, normal execution of the program is
complete; however, a CALL or function invocation from Debug Tool can
continue to perform program code. When the AT TERMINATION break-
point gives control to Debug Tool:

– Fetched load modules have not been released
– Files have not been closed
– Language-specific termination has been invoked yet no action has

been taken

In C, the user atexit() lists have already been called.

In PL/I, the FINISH condition was already raised.

� You are allowed to enter any command with AT TERMINATION. However,
normal error messages are issued for any command that cannot be
completed successfully because of lack of information about your
program.

� The TERMINATION breakpoint is set automatically at Debug Tool initializa-
tion. It remains in effect for the entire Debug Tool session. Changes

 Chapter 13. Debug Tool commands 231

 BEGIN

made to this breakpoint in one enclave will remain in effect when control
is passed to another enclave.

� You can enter DISABLE AT TERMINATION; or CLEAR AT TERMINATION; at
any time to disable or clear the breakpoint. It remains disabled or
cleared until you reenable or reset it.

� For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

Examples:

� When the program ends, check the Debug Tool environment to see
what files have not been closed.

AT TERMINATION DESCRIBE ENVIRONMENT;

� When the program ends, display the message "Program has ended"
and end the Debug Tool session. The current programming language
setting is C.

AT TERMINATION {

LIST "Program has ended";

 QUIT;

}

BEGIN command (PL/I)
BEGIN and END delimit a sequence of one or more commands to form one longer
command. The BEGIN and END keywords cannot be abbreviated.

 ┌ ┐───────────
55──BEGIN──;─ ───

6
┴─command─ ─END──;──5%

command
A valid Debug Tool command.

Usage Notes:

� The BEGIN command is most helpful when used in AT, IF, or ON com-
mands.

� The BEGIN command does not imply a new block or name scope. It is
equivalent to a PL/I simple DO.

Examples:

� Set a breakpoint at statement 320 listing the value of variable x and
assigning the value of 2 to variable a.

AT 32ð BEGIN;

 LIST (x);

a = 2;

END;

� When the PL/I condition FIXEDOVERFLOW is raised—that is, when the
length of the result of a fixed-point arithmetic operation exceeds the
maximum length allowed—list the value of variable x and assign the
value of 2 to variable a. The current programming language setting is
PL/I.

232 Debug Tool User's Guide and Reference

 break

ON FIXEDOVERFLOW BEGIN; LIST (x); a=2; END;

block command (C/C++)
The block command allows you to group any number of Debug Tool commands
into one command. When you enclose Debug Tool commands within a single set
of braces ({}), everything within the braces is treated as a single command. You
can place a block anywhere a command is allowed.

55──{─ ──┬ ┬───────────── ─}──5%
 │ │┌ ┐───────────
 └ ┘ ───

6
┴─command─

command
A valid Debug Tool command.

Usage Notes:

� Declarations are not allowed within a nested block.

� The C block command does not end with a semicolon. A semicolon
after the closing brace is treated as a Null command.

Example:

Establish an entry breakpoint when load module a is fetched.

AT LOAD a {

AT ENTRY a;

 GO;

}

break command (C/C++)
The break command allows you to terminate and exit a loop (that is, do, for, and
while) or switch command from any point other than the logical end. You can
place a break command only in the body of a looping command or in the body of a
switch command. The break keyword must be lowercase and cannot be abbrevi-
ated.

55──break──;───5%

In a looping statement, the break command ends the loop and moves control to the
next command outside the loop. Within nested statements, the break command
ends only the smallest enclosing do, for, switch, or while commands.

In a switch body, the break command ends the execution of the switch body and
gives control to the next command outside the switch body.

Examples:

� The following example shows a break command in the action part of a
for command. If the i-th element of the array string is equal to '\ð',
the break command causes the for command to end.

 Chapter 13. Debug Tool commands 233

 CALL

for (i = ð; i < 5; i++) {
if (string[i] ══ '\ð')

 break;

 length++;

}

� The following switch command contains several case clauses and one
default clause. Each clause contains a function call and a break
command. The break commands prevent control from passing down
through subsequent commands in the switch body.

char key;

key = '-';

AT LINE 15 switch (key)

{

 case '+':

 add();

 break;

 case '-':

 subtract();

 break;

 default:

 printf("Invalid key\n");

 break;

}

 CALL command
The CALL command invokes either a procedure, entry name, or program name, or it
requests that an Language Environment run-time dump be produced. The C/C++
equivalent for CALL is a function reference. PL/I subroutines or functions cannot be
called dynamically during a Debug Tool session. The CALL keyword cannot be
abbreviated.

In C++, calls can be made to any user function as long as the function is declared
as:

extern "C"

In COBOL, the CALL command cannot be issued when Debug Tool is at initializa-
tion.

The various forms of the CALL command are summarized in Table 11.

Table 11. Summary of CALL Commands

CALL %DUMP Invokes the Language Environment dump service to obtain
a formatted dump.

CALL entry_name (COBOL) Invokes an entry name in the application program
(COBOL).

CALL procedure Invokes a procedure that has been defined with the
PROCEDURE command.

234 Debug Tool User's Guide and Reference

 CALL

 CALL %DUMP
Invokes the Language Environment dump service to obtain a formatted dump.

55──CALL──%DUMP─ ──┬ ┬──────────────────────────────────── ─;───────────────5%
 └ ┘ ─(──options_string─ ──┬ ┬────────── ─)─
 └ ┘ ─,──title─

title
Specifies the identification printed at the top of each page of the dump. It must
be a fixed-length character string, conforming to the current programming lan-
guage syntax for a character string constant (that is, enclosed in quotes
according to the rules of that programming language). The string length cannot
exceed 80 bytes.

options_string
A fixed-length character string, conforming to the current programming lan-
guage syntax for a character string constant, which specifies the type, format,
and destination of dump information. The string length cannot exceed 247
bytes.

Options are declared as a string of keywords separated by blanks or commas.
Some options have suboptions that follow the option keyword and are con-
tained in parentheses. The options can be specified in any order, but the last
option declaration is honored if there is a conflict between it and any preceding
options.

The options_string can include the following:

THREAD(ALL|CURRENT)

Dumps the current thread or all threads associated with the current
enclave. The default is to dump only the current thread. Only one thread
is supported in Language Environment. For enclaves that consist of a
single thread, THREAD(ALL) and THREAD(CURRENT) are equivalent.

THREAD can be abbreviated as THR.

CURRENT can be abbreviated as CUR.

TRACEBACK

Requests a traceback of active procedures, blocks, condition handlers, and
library modules on the call chain. The traceback shows transfers of control
from either calls or exceptions. The traceback extends backwards to the
main program of the current thread.

TRACEBACK can be abbreviated as TRACE.

NOTRACEBACK

Suppresses traceback.

NOTRACEBACK can be abbreviated as NOTRACE.

FILES

Requests a complete set of attributes of all files that are open and the con-
tents of the buffers used by the files.

FILES can be abbreviated as FILE.

 Chapter 13. Debug Tool commands 235

 CALL

NOFILES

Suppresses file attributes of files that are open.

NOFILES can be abbreviated as NOFILE.

VARIABLES

Requests a symbolic dump of all variables, arguments, and registers.

Variables include arrays and structures. Register values are those saved
in the stack frame at the time of call. There is no way to print a subset of
this information.

Variables and arguments are printed only if the symbol tables are avail-
able. A symbol table is generated if a program is compiled using the
compile options shown below for each language:

The variables, arguments, and registers are dumped starting with Debug
Tool. The dump proceeds up the chain for the number of routines speci-
fied by the STACKFRAME option.

VARIABLES can be abbreviated as VAR.

NOVARIABLES

Suppresses dump of variables, arguments, and registers.

NOVARIABLES can be abbreviated as NOVAR.

BLOCKS

Produces a separate hexadecimal dump of control blocks used in Lan-
guage Environment and member language libraries.

Global control blocks and control blocks associated with routines on the
call chain are printed. Control blocks are printed for Debug Tool. The
dump proceeds up the call chain for the number of routines specified by
the STACKFRAME option.

If FILES is specified, this is used to produce a separate hexadecimal dump
of control blocks used in the file analysis.

BLOCKS can be abbreviated as BLOCK.

NOBLOCKS

Suppresses the hexadecimal dump of control blocks.

NOBLOCKS can be abbreviated as NOBLOCK.

STORAGE

Dumps the storage used by the program.

The storage is displayed in hexadecimal and character format. Global
storage and storage associated with each routine on the call chain is
printed. Storage is dumped for Debug Tool. The dump proceeds up the

Language Compile Option

C TEST(SYM)

C++ TEST

COBOL TEST or TEST(h,SYM)

PL/I TEST(,SYM)

236 Debug Tool User's Guide and Reference

 CALL

call chain for the number of routines specified by the STACKFRAME option.
Storage for all file buffers is also dumped if the FILES option is specified.

STORAGE can be abbreviated as STOR.

NOSTORAGE

Suppresses storage dumps.

NOSTORAGE can be abbreviated as NOSTOR.

STACKFRAME(n|ALL)

Specifies the number of stack frames dumped from the call chain.

If STACKFRAME(ALL) is specified, all stack frames are dumped. No stack
frame storage is dumped if STACKFRAME(ð) is specified.

The particular information dumped for each stack frame depends on the
VARIABLE, BLOCK, and STORAGE option declarations specified. The first stack
frame dumped is the one associated with Debug Tool, followed by its
caller, and proceeding backwards up the call chain.

STACKFRAME can be abbreviated to SF.

PAGESIZE(n)

Specifies the number of lines on each page of the dump.

This value must be greater than 9. A value of zero (ð) indicates that there
should be no page breaks in the dump.

PAGESIZE can be abbreviated to PAGE.

FNAME(s)

Specifies the ddname of the file where the dump report is written.

The default ddname CEEDUMP is used if this option is not specified.

CONDITION

Specifies that for each condition active on the call chain, the following
information is dumped from the Condition Information Block (CIB):

� The address of the CIB

� The message associated with the current condition token

� The message associated with the original condition token, if different
from the current one

� The location of the error

� The machine state at the time the condition manager was invoked

� The ABEND code and REASON code, if the condition occurred
because of an ABEND.

The particular information that is dumped depends on the condition that
caused the condition manager to be invoked. The machine state is
included only if a hardware condition or ABEND occurred. The ABEND
and REASON codes are included only if an ABEND occurred.

CONDITION can be abbreviated as COND.

NOCONDITION

Suppresses dump condition information for active conditions on the call
chain.

 Chapter 13. Debug Tool commands 237

 CALL

NOCONDITION can be abbreviated as NOCOND.

ENTRY

Includes in the dump a description of the Debug Tool routine that called
the Language Environment dump service and the contents of the registers
at the point of the call. For the currently supported programming lan-
guages, ENTRY is extraneous and will be ignored.

NOENTRY

Suppresses the description of the Debug Tool routine that called the Lan-
guage Environment dump service and the contents of the registers at the
point of the call.

The defaults for the preceding options are:

 CONDITION

 FILES

 FNAME(CEEDUMP)

 NOBLOCKS

 NOENTRY

 NOSTORAGE

 PAGESIZE(6ð)

 STACKFRAME(ALL)

 THREAD(CURRENT)

 TRACEBACK

 VARIABLES

Usage Notes:

� If incorrect options are used, a default dump is written.

� Debug Tool does not analyze any of the CALL %DUMP options, but just
passes them along to the Language Environment dump service. Some
of these options might not be very appropriate, because the call is
being made from Debug Tool rather than from your program.

See OS/390 Language Environment Programming Guide for additional
details on the CEE3DMP dump options.

� When you use CALL %DUMP, one of the following ddnames must be allo-
cated for you to receive a formatted dump:

 – CEEDUMP (default)
 – SYSPRINT.

Control might not be returned to Debug Tool after the dump is
produced, depending on the option string specified.

� COBOL does not do anything if the FILES option is specified; the BLOCKS
option gives the file information instead.

For detailed descriptions of dump output for the different HLLs, see
OS/390 Language Environment Debugging Guide and Run-Time Mes-
sages.

� Using a small n (like 1 or 2) with the STACKFRAME option will not produce
useful results because only the Debug Tool stack frames appear in your
dump. Larger values of n or ALL should be used to ensure that applica-
tion stack frames are shown.

Examples:

238 Debug Tool User's Guide and Reference

 CALL

� Request a formatted dump that traces active procedures, blocks, condi-
tion handlers, and library modules. Identify the dump as "Dump after
read".

CALL %DUMP ("TRACEBACK", "Dump after read");

� Call the Language Environment dump service to obtain a formatted
dump including traceback information, file attributes, and buffers.

CALL %DUMP ("TRACEBACK FILES");

CALL entry_name (COBOL)
Invokes an entry name in the application program. The entry name must be a valid
external entry point name (that is, CALLable from other compile units).

55──CALL─ ──┬ ┬─identifier─ ──┬ ┬────────────────────────────────── ─;───────────────────────────5%
 └ ┘─literal──── │ │┌ ┐─────────────────────────
 └ ┘─USING─ ───

6
┴─┤ identifier_clause ├─

identifier_clause:
 ┌ ┐──────────────
├─ ──┬ ┬ ──┬ ┬─────────────────── ──┬ ┬───────────── ───

6
┴─identifier─ ───────────────────────────────┤

 │ │└ ┘ ──┬ ┬──── ─REFERENCE─ └ ┘ ─ADDRESS──OF─
 │ │└ ┘─BY─
 │ │┌ ┐───────────────────────────────────
 └ ┘ ──┬ ┬──── ─CONTENT─ ───

6
┴──┬ ┬ ──┬ ┬───────────── ─identifier─ ──

 └ ┘─BY─ │ │├ ┤ ─ADDRESS──OF─
 │ │└ ┘─LENGTH──OF──
 └ ┘─literal─────────────────────

identifier
A valid Debug Tool COBOL identifier.

literal
A valid COBOL literal.

Usage Notes:

� If you have a COBOL entry point name that is the same as a Debug
Tool procedure name, the procedure name takes precedence when
using the CALL command. If you want the entry name to take preced-
ence over the Debug Tool procedure name, you must qualify the entry
name when using the CALL command.

� You can use the CALL entry_name command to change program flow
dynamically. You can pass parameters to the called module.

� The CALL follows the same rules as CALLs within the COBOL language.

� The COBOL ON OVERFLOW and ON EXCEPTION phrases are not supported,
so END-CALL is not supported.

� Only CALLs to separately compiled programs are supported; nested pro-
grams are not CALLable by this Debug Tool command (they can of
course be invoked by GOTO or STEP to a compiled-in CALL).

� All CALLs are dynamic, that is, the CALLed program (whether specified as
a literal or as an identifier) is loaded when it is CALLed.

� See COBOL Language Reference publications for an explanation of the
following COBOL keywords: ADDRESS, BY, CONTENT, LENGTH, OF,

REFERENCE, USING.

� An entry_name cannot refer to a method.

 Chapter 13. Debug Tool commands 239

 CLEAR

| � A windowed date field cannot be specified as either the identifier con-
| taining the entry name, or an identifier in the USING phrase.

Example:

Call the entry name sub1 passing the variables a, b, and c.

CALL "sub1" USING a b c;

 CALL procedure
Invokes a procedure that has been defined with the PROCEDURE command.

55──CALL──procedure_name──;──5%

procedure_name
The name given to a sequence of Debug Tool commands delimited by a
PROCEDURE command and a corresponding END command.

Usage Notes:

� Since the Debug Tool procedure names are always uppercase, the pro-
cedure name is converted to uppercase even for programming lan-
guages that have mixed-case symbols.

� The CALL keyword is required even for programming languages that do
not use CALL for subroutine invocations.

� The CALL command is restricted to calling procedures in the currently
executing enclave.

Example: Create and call the procedure named proc1.

proc1: PROCEDURE;

LIST (r, c);

END;

AT 54 CALL proc1;

 CLEAR command
The CLEAR command removes the actions of previously issued Debug Tool com-
mands. Some breakpoints are removed automatically when Debug Tool deter-
mines that they are no longer meaningful. For example, if you set a breakpoint in a
fetched or loaded compile unit, the breakpoint is discarded when the compile unit is
released.

240 Debug Tool User's Guide and Reference

 CLEAR

55──CLEAR─ ──┬ ┬──┬ ┬─AT───────────────── ───────────────── ─;────────────────5%
 │ │├ ┤─AT_command─────────
 │ │└ ┘─generic_AT_command─
 ├ ┤ ─DECLARE─ ──┬ ┬────────────────────── ──────
 │ │├ ┤─identifier───────────
 │ ││ │┌ ┐─,──────────
 │ │└ ┘ ─(─ ───

6
┴─identifier─ ─)─

 ├ ┤ ─EQUATE─ ──┬ ┬────────────────────── ───────
 │ │├ ┤─identifier───────────
 │ ││ │┌ ┐─,──────────
 │ │└ ┘ ─(─ ───

6
┴─identifier─ ─)─

 ├ ┤─LOG─────────────────────────────────────
 ├ ┤ ─MONITOR─ ──┬ ┬────────────────── ──────────
 │ │├ ┤─number───────────
 │ ││ │┌ ┐─,──────
 │ │└ ┘ ─(─ ───

6
┴─number─ ─)─

 ├ ┤ ─ON─ ──┬ ┬───────────────────────── ────────
 │ │├ ┤─pli_condition───────────
 │ ││ │┌ ┐─,─────────────
 │ │└ ┘ ─(─ ───

6
┴─pli_condition─ ─)─

 ├ ┤ ─PROCEDURE─ ──┬ ┬──────────────────────────
 │ │├ ┤─procedure_name───────────
 │ ││ │┌ ┐─,──────────────
 │ │└ ┘ ─(─ ───

6
┴─procedure_name─ ─)─

 └ ┘ ─VARIABLES─ ──┬ ┬────────────────────── ────
 ├ ┤─identifier───────────
 │ │┌ ┐─,──────────
 └ ┘ ─(─ ───

6
┴─identifier─ ─)─

AT Removes all breakpoints from previously issued AT commands (including
GLOBAL breakpoints).

AT_command

A valid AT command that includes at least one operand. See Table 10 on
page 207 for a list of valid AT commands. The AT command must be com-
plete except that the every_clause and command are omitted.

generic_AT_command

A valid AT command without operands. It can be one of the following:
| ALLOCATE, APPEARANCE, CALL, CHANGE, CURSOR, DATE, DELETE, ENTRY, EXIT,
| LABEL, LOAD, OCCURRENCE, PATH, STATEMENT (the LINE keyword can be used in

place of STATEMENTS), or TERMINATION.

DECLARE

Removes previously defined variables and tags. If no identifier follows DECLARE,
all session variables and tags are cleared. DECLARE is equivalent to VARIABLES.

identifier
The name of a session variable or tag declared during the Debug Tool
session. This operand must follow the rules for the current programming
language.

EQUATE

Removes previously defined symbolic references. If no identifier follows
EQUATE, all existing SET EQUATE synonyms are cleared.

identifier
The name of a previously defined reference synonym declared during the
Debug Tool session using SET EQUATE. This operand must follow the rules
for the current programming language.

 Chapter 13. Debug Tool commands 241

 CLEAR

LOG

Erases the log file and clears out the data being retained for scrolling. In line
mode, CLEAR LOG clears only the log file.

For MVS Only : If the log file is directed to a SYSOUT type file, CLEAR LOG will
not clear the log contents in the file.

MONITOR

Clears the commands defined for MONITOR. If no number follows MONITOR, the
entire list of commands affecting the monitor window is cleared; the monitor
window is empty.

number
A positive integer that refers to a monitored command. If a list of integers
is specified, all commands represented by the specified list are cleared.

ON (PL/I)
Removes the effect of an earlier ON command. If no pli_condition follows ON,
all existing ON commands are cleared.

pli_condition
Identifies an exception condition for which there is an ON command defined.

PROCEDURE

Clears previously defined Debug Tool procedures. If no procedure_name
follows PROCEDURE, all inactive procedures are cleared.

procedure_name
The name given to a sequence of Debug Tool commands delimited by a
PROCEDURE command and a corresponding END command. The procedure
must be currently in storage and not active.

VARIABLES

Removes previously defined variables and tags. If no identifier follows
VARIABLES, all session variables and tags are cleared. VARIABLES is equivalent
to DECLARE.

identifier
The name of a session variable or tag declared during the Debug Tool
session. This operand must follow the rules for the current programming
language.

Usage Notes:

� Only an AT LINE or AT STATEMENT breakpoint can be cleared with a
CLEAR AT CURSOR command.

� To clear every single breakpoint in the Debug Tool session, issue CLEAR

AT followed by CLEAR AT TERMINATION.

� To clear a global breakpoint, you can specify an asterisk (*) with the
CLEAR AT command or you can specify a CLEAR AT GLOBAL command.

If you have only a global breakpoint set and you specify CLEAR AT

ENTRY without the asterisk (*) or GLOBAL keyword, you get a message
saying there are no such breakpoints.

Examples:

� Remove the LABEL breakpoint set in the program at label create.

CLEAR AT LABEL create;

242 Debug Tool User's Guide and Reference

 CLEAR

� Remove previously defined variables x, y, and z.

CLEAR DECLARE (x, y, z);

� Remove the effect of the ninth command defined for MONITOR.

CLEAR MONITOR 9;

� Remove the structure type definition tagone (assuming all variables
declared interactively using the structure tag have been cleared). The
current programming language setting is C.

CLEAR VARIABLES struct tagone;

� Establish some breakpoints with the AT command and then remove
them with the CLEAR command (checking the results with the LIST

command).

AT 5ð;

AT 56;

AT 55 LIST (r, c);

LIST AT;

CLEAR AT 5ð;

LIST AT;

CLEAR AT;

LIST AT;

� If you want to clear an AT ENTRY \ breakpoint, specify:

CLEAR AT ENTRY \;

or

CLEAR AT GLOBAL ENTRY;

CLEAR prefix (full-screen mode)
Clears a breakpoint when you issue this command via the source window prefix
area.

 Chapter 13. Debug Tool commands 243

 CMS

55──CLEAR─ ──┬ ┬──┬ ┬─AT───────────────── ───────────────── ─;────────────────5%
 │ │├ ┤─AT_command─────────
 │ │└ ┘─generic_AT_command─
 ├ ┤ ─DECLARE─ ──┬ ┬────────────────────── ──────
 │ │├ ┤─identifier───────────
 │ ││ │┌ ┐─,──────────
 │ │└ ┘ ─(─ ───

6
┴─identifier─ ─)─

 ├ ┤ ─EQUATE─ ──┬ ┬────────────────────── ───────
 │ │├ ┤─identifier───────────
 │ ││ │┌ ┐─,──────────
 │ │└ ┘ ─(─ ───

6
┴─identifier─ ─)─

 ├ ┤─LOG─────────────────────────────────────
 ├ ┤ ─MONITOR─ ──┬ ┬────────────────── ──────────
 │ │├ ┤─number───────────
 │ ││ │┌ ┐─,──────
 │ │└ ┘ ─(─ ───

6
┴─number─ ─)─

 ├ ┤ ─ON─ ──┬ ┬───────────────────────── ────────
 │ │├ ┤─pli_condition───────────
 │ ││ │┌ ┐─,─────────────
 │ │└ ┘ ─(─ ───

6
┴─pli_condition─ ─)─

 ├ ┤ ─PROCEDURE─ ──┬ ┬──────────────────────────
 │ │├ ┤─procedure_name───────────
 │ ││ │┌ ┐─,──────────────
 │ │└ ┘ ─(─ ───

6
┴─procedure_name─ ─)─

 └ ┘ ─VARIABLES─ ──┬ ┬────────────────────── ────
 ├ ┤─identifier───────────
 │ │┌ ┐─,──────────
 └ ┘ ─(─ ───

6
┴─identifier─ ─)─

integer
Selects a relative statement (for C and PL/I) or a relative verb (for COBOL)
within the line to remove the breakpoint if there are multiple statements on that
line. The default value is 1.

Example:

Clear a breakpoint at the third statement or verb in the line (typed in the
prefix area of the line where the statement is found).

CLEAR 3

No space is needed as a delimiter between the keyword and the integer;
hence, CLEAR 3 is equivalent to CLEAR3.

CMS command (VM)
The CMS command lets you issue certain CMS subset commands during a Debug
Tool session. The CMS keyword cannot be abbreviated.

55──CMS─ ──┬ ┬───────────── ─;──5%
 └ ┘─cms_command─

cms_command
A CMS system command that can be issued while in the CMS editor. If omitted,
CMS subset mode is entered.

Usage Notes:

� When not operating interactively, a cms_command must be supplied.

244 Debug Tool User's Guide and Reference

 COMPUTE

� When operating interactively, if no cms_command is specified, CMS
subset mode is entered. While in CMS subset mode, a subset of CMS
commands (that is, CMS system commands that can be issued while in
the CMS editor) can be performed repeatedly. To return to Debug Tool,
type RETURN.

� See also “SYSTEM command” on page 333.

Example:

� List all the files that are named free on the a disk.

CMS LIST free \ a;

� Copy the contents of myprog script a into ourprog script a.

CMS COPYFILE myprog script a ourprog script a;

 COMMENT command
The COMMENT command can be used to insert commentary in to the session log.
The COMMENT keyword cannot be abbreviated.

55──COMMENT─ ──┬ ┬──────────── ─;───5%
 └ ┘─commentary─

commentary
Commentary text not including a semicolon. An embedded semicolon is not
allowed; text after a semicolon is treated as another Debug Tool command.
DBCS characters can be used within the commentary.

The COMMENT command can be used as an executable command, that is it can be
the subject of a conditional command, but it is treated as a Null command.

Examples:

� Comment that varblxx seems to have the wrong value.

COMMENT At this point varblxx seems to have the wrong value;

� Combine a commentary with valid Debug Tool commands.

COMMENT Entering subroutine testrun; LIST (x); GO;

COMPUTE command (COBOL)
The COMPUTE command assigns the value of an arithmetic expression to a specified
reference. The COMPUTE keyword cannot be abbreviated.

55──COMPUTE──reference──=──expression──;─────────────────────────────────5%

reference
A valid Debug Tool COBOL numeric reference.

expression
A valid Debug Tool COBOL numeric expression.

 Chapter 13. Debug Tool commands 245

 CURSOR

Usage Notes:

� If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
expected results. This is due to the uncertainty of variable values within
statements as opposed to their values at statement boundaries.

� COMPUTE assigns a value only to a single receiver; unlike COBOL, mul-
tiple receiver variables are not supported.

� Floating-point receivers are not supported; however, floating-point
values can be set by using the MOVE command (see “MOVE command
(COBOL)” on page 288).

� The COBOL EQUAL keyword is not supported ("═" must be used).

� The COBOL ROUNDED and SIZE ERROR phrases are not supported, so
END-COMPUTE is not supported.

| � COMPUTE cannot be used to perform a computation with a windowed date
| field if the expression consists of more than one operand.

| � Any expanded date field specified as an operand in the expression is
| treated as a nondate field.

| � The result of the evaluation of the expression is always considered to
| be a nondate field.

� If the expression consists of a single numeric operand, the COMPUTE will
be treated as a MOVE and therefore subject to the same rules as the
MOVE command.

Examples:

� Assign to variable x the value of a + 6.

COMPUTE x = a + 6;

� Assign to the variable mycode the value of the Debug Tool variable
%PATHCODE + 1.

COMPUTE mycode = %PATHCODE + 1;

CURSOR command (full-screen mode)
The CURSOR command moves the cursor between the last saved position on the
Debug Tool session panel (excluding the header fields) and the command line.

55──CURSOR──;──5%

Usage Notes:

� The cursor position can be saved by typing the CURSOR command on the
command line and moving the cursor before pressing ENTER, or by
moving the cursor and pressing a PF key with the CURSOR command
assigned to it.

� If the CURSOR command precedes any command on the command line,
the cursor is moved before the other command is performed. This can
be useful in saving cursor movement for commands that are performed
repeatedly in one of the windows.

246 Debug Tool User's Guide and Reference

 Declarations

� The CURSOR command is not logged.

Example:

Move the cursor between the last saved position on the Debug Tool session
panel and the command line.

CURSOR;

 Declarations (C/C++)
Use declarations to declare temporary variables and tags effective during a Debug
Tool session. Session variables remain in effect for the entire debug session, or
process in which they were declared. Variables and tags declared with
declarations can be used in other Debug Tool commands as if they were declared
to the compiler. Declared variables and tags are removed when your Debug Tool
session ends or when the CLEAR command is used to remove them. The keywords
must be the correct case and cannot be abbreviated.

You can also declare enum, struct, and union data types. The syntax is identical
to C except that enum members can only be initialized to an optionally signed
integer constant.

 Chapter 13. Debug Tool commands 247

 Declarations

 ┌ ┐─,──────────────
55─ ──┬ ┬─┤ scalar_def ├─ ───

6
┴─┤ declarator ├─ ──────── ─;──5%

 └ ┘──┬ ┬─┤ enum_def ├─── ──┬ ┬────────────────────
├ ┤─┤ struct_def ├─ │ │┌ ┐─,──────────────
└ ┘─┤ union_def ├── └ ┘───

6
┴─┤ declarator ├─

scalar_def:
├─ ──┬ ┬─char─ ──┬ ┬────────── ────────────── ──┤
 │ │├ ┤─signed───
 │ │└ ┘─unsigned─
 ├ ┤ ─double─ ──┬ ┬────── ────────────────
 │ │└ ┘─long─
 ├ ┤─float────────────────────────────
 ├ ┤ ─int─ ──┬ ┬────────── ──┬ ┬─────── ────
 │ │├ ┤─signed─── ├ ┤─long──
 │ │└ ┘─unsigned─ └ ┘─short─
 ├ ┤ ─long─ ──┬ ┬ ──┬ ┬────────── ──┬ ┬───── ─
 │ ││ │├ ┤─signed─── └ ┘─int─
 │ ││ │└ ┘─unsigned─
 │ │└ ┘─double────────────────
 ├ ┤ ─short─ ──┬ ┬────────── ──┬ ┬───── ────
 │ │├ ┤─signed─── └ ┘─int─
 │ │└ ┘─unsigned─
 ├ ┤ ─signed─ ──┬ ┬ ──┬ ┬─────── ──┬ ┬───── ──
 │ ││ │├ ┤─long── └ ┘─int─
 │ ││ │└ ┘─short─
 │ │└ ┘─char───────────────
 ├ ┤ ─unsigned─ ──┬ ┬ ──┬ ┬─────── ──┬ ┬─────
 │ ││ │├ ┤─long── └ ┘─int─
 │ ││ │└ ┘─short─
 │ │└ ┘─char───────────────
 └ ┘─void──\──────────────────────────

declarator:
├─ ──┬ ┬─────── ──┬ ┬─identifier──────────────────── ──┤
 │ │┌ ┐───── ├ ┤─(──identifier──)──────────────
 └ ┘ ───

6
┴─\─ │ │┌ ┐─────────────────

 └ ┘─identifier─ ───
6

┴─[──integer──]─

enum_def:
 ┌ ┐─,────────────────────────────────
├──enum─ ──┬ ┬──────────── ─{─ ───

6
┴─identifier─ ──┬ ┬────────────────── ─}───────────────────────────────────────┤

 └ ┘─identifier─ └ ┘ ─═──constant_expr─

struct_def:
 ┌ ┐─,──────────
├─ ──┬ ┬───────── ─struct─ ──┬ ┬──────────── ──┬ ┬───

6
┴─identifier─ ──────────── ───────────────────────────────────┤

 └ ┘─_Packed─ └ ┘─identifier─ │ │┌ ┐─;────────────────
 └ ┘─{─ ───

6
┴┬ ┬─┤ enum_def ├─── ─}─

├ ┤─┤ scalar_def ├─
├ ┤─┤ struct_def ├─
└ ┘─┤ union_def ├──

union_def:
 ┌ ┐─,──────────
├─ ──┬ ┬───────── ─union─ ──┬ ┬──────────── ──┬ ┬───

6
┴─identifier─ ──────────── ────────────────────────────────────┤

 └ ┘─_Packed─ └ ┘─identifier─ │ │┌ ┐─;────────────────
 └ ┘─{─ ───

6
┴┬ ┬─┤ enum_def ├─── ─}─

├ ┤─┤ scalar_def ├─
├ ┤─┤ struct_def ├─
└ ┘─┤ union_def ├──

* A C indirect operator.

identifier
A valid C identifier.

integer
A valid C array bound integer constant.

constant_expr
A valid C integer constant.

Usage Notes:

� As in C/C++, the keywords can be specified in any order. For example,
unsigned long int is equivalent to int unsigned long. Some permutations
are shown in the syntax diagram to make sure that every keyword is
shown at least once in the initial position.

� As in ccx., the identifiers are case-sensitive; that is, "X" and "x" are
different names.

248 Debug Tool User's Guide and Reference

 Declarations

� A structure definition must have either an identifier, a declarator, or
both specified.

� Initialization is not supported.

� A declaration cannot be used in a command list; for example, as the
subject of an if command or case clause.

� Declarations of the form struct tag identifier must have the tag pre-
viously declared interactively.

� Only variables with attributes listed in the Table 12 on page 250 table
can be declared.

� See the C and C++ Language References for an explanation the fol-
lowing keywords:

 char short

 double signed

 enum struct

 float union

 int unsigned

 long void

 _Packed(1)

(1) _Packed is not supported in C++.

C/C++ compatible attributes
Debug Tool allows you, while working in one language, to declare session variables
you can continue to use after calling in a load module of a different language.
Table 12 on page 250 shows how session data attributes are mapped across pro-
gramming languages. Attributes not shown in the table cannot be mapped to other
programming languages.

Remember that, when declaring session variables, C variables are case-sensitive.
This means that only C session variables whose names are all uppercase can con-
tinue to be accessed when the programming language setting is changed to
COBOL or PL/I. Those declared when the programming language setting is
COBOL or PL/I are converted to uppercase and are accessible when the program-
ming language is C.

Variables with incompatible attributes cannot be accessed from the other program-
ming languages, but replace variables with the same names in the other languages
(if uppercase). For example, COBOL has no equivalent to C's long double. If a
COBOL session variable x is declared, it is converted to X; if the current program-
ming language setting is changed to C and a C session variable X is declared as a
long double, C's variable X replaces COBOL's variable X. If x is declared instead of
X when the programming language setting is changed to C, COBOL's variable X will
not be replaced. There exists no COBOL counterpart to the C variable.

 Chapter 13. Debug Tool commands 249

 Declarations

Examples:

� Define two C integers.

int myvar, hisvar;

� Define an enumeration variable status that represents the following
values:

Enumeration Constant Integer Representation
 run 0
 create 1
 delete 5
 suspend 6

enum statustag {run, create, delete=5, suspend} status;

� Define a variable in a struct declaration.

struct atag {

 char foo;

 int var1;

} avar;

� Interactively declare variables using structure tags.

struct tagone {int a; int b;} c;

then specify:

struct tagone d;

Table 12. C/C++ Attribute Mappings

Machine Value C/C++ Value COBOL Value PL/I Value

byte unsigned char PICTURE X CHAR(1)

byte string unsigned char[j] PICTURE X(j) CHAR(j)

halfword signed short int PICTURE S9(j<=4)
 USAGE BINARY

FIXED BIN(15,ð)

fullword signed long int PICTURE S9(4<j<=9)
 USAGE BINARY

FIXED BIN(31,ð)

floating point float USAGE COMP-1 FLOAT BIN(21) or
FLOAT DEC(6)

long floating point double USAGE COMP-2 FLOAT BIN(53) or
FLOAT DEC(16)

extended floated point long double n/a FLOAT BIN(1ð9) or
FLOAT DEC(33)

fullword pointer void \ USAGE POINTER POINTER

Note: When registering session variables in PL/I, the DECIMAL type is always the default. For
example, if C declares a float, PL/I registers the variable as a FLOAT DEC(6) rather than a FLOAT
BIN(21).

 Declarations (COBOL)
Use declarations to declare temporary variables effective during a Debug Tool
session. Session variables remain in effect for the entire debug session, or
process in which they were declared. Variables declared with declarations can be
used in other Debug Tool commands as if they were declared to the compiler.
Declared variables are removed when your Debug Tool session ends or when the
CLEAR command is used to remove them. The keywords cannot be abbreviated.

250 Debug Tool User's Guide and Reference

 Declarations

 ┌ ┐─;──
55─ ───

6
┴─level──identifier─ ──┬ ┬─────────────────── ─;──────────────────────5%

 │ │┌ ┐─────────────────
 └ ┘───

6
┴─┤ attribute ├─

attribute:
├─ ──┬ ┬ ──┬ ┬─PIC───── ──┬ ┬──── ─picture─────────── ────────────────────────────┤
 │ │└ ┘─PICTURE─ └ ┘─IS─
 └ ┘ ──┬ ┬─────────────── ──┬ ┬─POINTER─────────
 └ ┘ ─USAGE─ ──┬ ┬──── ├ ┤─BINARY──────────
 └ ┘─IS─ ├ ┤─COMP────────────
 ├ ┤─COMPUTATIONAL───
 ├ ┤─COMP-1──────────
 ├ ┤─COMPUTATIONAL-1─
 ├ ┤─COMP-2──────────
 └ ┘─COMPUTATIONAL-2─

level
1 or 77.

identifier
A valid COBOL data name (including DBCS data names).

picture
A sequence of characters from the set: S X 9 (replication factor is optional).

If picture is not X(\), the COBOL USAGE clause is required.

Usage Notes:

� A declaration cannot be used in a command list; for example, as the
subject of an IF command or WHEN clause.

� BINARY and COMP are equivalent.

� Use BINARY or COMP for COMPUTATIONAL-4.

� COMP-1 is short floating point (4 bytes).

� COMP-2 is long floating point (8 bytes).

� Only COBOL PICTURE and USAGE clauses are supported.

� Short forms of COMPUTATIONAL (COMP) are supported.

� Only variables with attributes listed in Table 13 on page 252 can be
declared.

� See COBOL Language Reference publications for an explanation of the
following COBOL keywords:

 BINARY

 COMP

 COMPUTATIONAL

 IS

 PIC

 PICTURE

 POINTER

 USAGE

 Chapter 13. Debug Tool commands 251

 Declarations

COBOL compatible attributes
You can declare session variables, while working in one language, that you can
continue to use after calling in a load module of a different language. Table 13
shows how session data attributes are mapped across programming languages.
Attributes not shown in the table cannot be mapped to other programming lan-
guages.

Remember when declaring session variables that C/C++ variables are case-
sensitive. This means that only C/C++ session variables whose names are all
uppercase can continue to be accessed when the programming language setting is
changed to COBOL. Session variables declared when the programming language
setting is COBOL are converted to uppercase and are accessible when the pro-
gramming language is C/C++.

Variables with incompatible attributes cannot be accessed from the other program-
ming languages, but replace variables with the same names in the other languages
(if uppercase). For example, COBOL has no equivalent to C's long double. If a
COBOL session variable x is declared, it is converted to X; if the current program-
ming language setting is changed to C and a C session variable X is declared as a
long double, C's variable X replaces COBOL's variable X. If x is declared instead of
X when the programming language setting is changed to C, COBOL's variable X will
not be replaced. There exists no COBOL counterpart to the C variable.

Examples:

� Define a variable named floattmp to hold a floating-point number.

ð1 floattmp USAGE COMP-1;

� Define an integer variable name temp.

77 temp PIC S9(9) USAGE COMP;

Table 13. COBOL Attribute Mappings

Machine Value COBOL Value C/C++ Value PL/I Value

byte PICTURE X unsigned char CHAR(1)

byte string PICTURE X(j) unsigned char[j] CHAR(j)

halfword PICTURE S9(j<=4)
 USAGE BINARY

signed short int FIXED BIN(15,ð)

fullword
PICTURE S9(j<=4)

PICTURE S9(4<j<=9)
 USAGE BINARY

signed long int FIXED BIN(31,ð)

floating point USAGE COMP-1 float FLOAT BIN(21) or
FLOAT DEC(6)

long floating point USAGE COMP-2 double FLOAT BIN(53) or
FLOAT DEC(16)

extended floating point n/a long double FLOAT BIN(1ð9) or
FLOAT DEC(33)

fullword pointer USAGE POINTER void \ POINTER

Note:

When registering session variables in PL/I, the DECIMAL type is always the default. For example, if C
declares a float, PL/I registers the variable as a FLOAT DEC(6) rather than a FLOAT BIN(21).

252 Debug Tool User's Guide and Reference

 DECLARE

DECLARE command (PL/I)
The DECLARE command declares temporary variables effective during a Debug Tool
session. Variables declared this way can be used in other Debug Tool commands
as if they were declared to the compiler. They are removed with the CLEAR
command or when your Debug Tool session ends. The keywords cannot be abbre-
viated.

 ┌ ┐─,─────────────────────
55─ ──┬ ┬─DCL───── ───

6
┴┬ ┬─┤ major_structure ├─ ─;────────────────────────────5%

└ ┘─DECLARE─ └ ┘─┤ scalar ├──────────

major_structure:
 ┌ ┐─,──────────────────────────────
├─ ───

6
┴─level──name─ ──┬ ┬─────────────── ────────────────────────────────────┤

 │ │┌ ┐─────────────
 └ ┘ ───

6
┴─attribute─

scalar:
 ┌ ┐─,─────────────────────────────────────
├─ ───

6
┴──┬ ┬─name─────────── ──┬ ┬─────────────── ─────────────────────────────┤

 │ │┌ ┐─,──── │ │┌ ┐─────────────
 └ ┘ ─(─ ───

6
 ┴─name─ ─)─ └ ┘ ───

6
┴─attribute─

level
An unsigned positive integer. Level 1 must be specified for major structure
names.

name
A valid PL/I identifier. The name must be unique within a particular structure
level.

When name conflicts occur, Debug Tool uses session variables before using
other variables of the same name that appear in the running programs. Use
qualification to refer to the program variable during a Debug Tool session. For
example, to display the variable a declared with the DECLARE command as well
as the variable a in the program, issue the LIST command as follows:

LIST (a, %BLOCK:a);

If a name conflict occurs because the variable was declared earlier with a
DECLARE command, the new declaration overrides the previous one.

attribute
A PL/I data or storage attribute.

Acceptable PL/I data attributes include:

BINARY CPLX FIXED LABEL PTR

 BIT DECIMAL FLOAT OFFSET REAL

CHARACTERS EVENT GRAPHIC POINTER VARYING

 COMPLEX

Acceptable PL/I storage attributes include:

BASED ALIGNED UNALIGNED

Pointers cannot be specified with the BASED option.

Only simple factoring of attributes is allowed. DECLAREs such as the following
are not allowed:

 Chapter 13. Debug Tool commands 253

 DECLARE

DCL (a(2), b) PTR;

DCL (x REAL, y CPLX) FIXED BIN(31);

Also, the precision attribute and scale factor as well as the bounds of a dimen-
sion can be specified. If a temporary variable has dimensions and bounds,
these must be declared following PL/I Language rules. See PL/I Language
Reference for more details.

Usage Notes:

� DECLARE is not valid as a subcommand. That is, it cannot be used as
part of a DO/END or BEGIN/END block.

� Initialization is not supported.

� Program DEFAULT statements do not affect the DECLARE command.

� Only variables with attributes listed in Table 14 on page 255 can be
shared.

� See PL/I Language Reference for an explanation of the following PL/I
data and storage attributes:

ALIGNED

BASED

BINARY

BIT

CHARACTER

COMPLEX

CPLX

DECIMAL

EVENT

FIXED

FLOAT

GRAPHIC

LABEL

OFFSET

POINTER

PTR

REAL

UNALIGNED

VARYING

PL/I compatible attributes
While working in one language, you can declare session variables that you can
continue to use after calling in a load module of a different language. Table 14 on
page 255 shows how session data attributes are mapped across programming lan-
guages. Attributes not shown in the table cannot be mapped to other programming
languages.

Remember when declaring session variables that C/C++ variable names are case-
sensitive. When the current programming language is C/C++, only variables that
are declared with uppercase names can be shared with COBOL or PL/I. When the
current programming language is COBOL or PL/I, variable names in mixed or low-
ercase are mapped to uppercase. These COBOL or PL/I variables can be declared
or referenced using any mixture of lowercase and uppercase characters and it
makes no difference. However, if the variable is shared with C/C++, within C/C++,
it can only be referred to with all uppercase characters (since a variable name com-
posed of the same characters, but with one or more characters in lowercase, is a
different variable name in C/C++).

Variables with incompatible attributes cannot be shared between other program-
ming languages, but they do cause variables with the same names to be deleted.
For example, COBOL has no equivalent to PL/I's FLOAT DEC(33) or C's long
double. With the current programming language COBOL, if a session variable X is
declared PICTURE S9(4), it will exist when the current programming language
setting is PL/I with the attributes FIXED BIN(15,ð) and when the current program-
ming language setting is C with the attributes signed short int. If the current
programming language setting is changed to PL/I and a session variable X is
declared FLOAT DEC(33), the X declared by COBOL will no longer exist. The vari-
able X declared by PL/I will exist when the current programming language setting is
C with the attributes long double.

254 Debug Tool User's Guide and Reference

 DESCRIBE

Examples:

� Declare x, y, and z as variables that can be used as pointers.

DECLARE (x, y, z) POINTER;

� Declare a as a variable that can represent binary, fixed-point data items
of 15 bits.

DECLARE a FIXED BIN(15);

� Declare dð3 as a variable that can represent binary, floating-point,
complex data items.

DECLARE dð3 FLOAT BIN COMPLEX;

This dð3 will have the attribute of FLOAT BINARY(21).

� Declare x as a pointer, and setx as a major structure with structure ele-
ments a and b as fixed-point data items.

DECLARE x POINTER, 1 setx, 2 a FIXED, 2 b FIXED;

This a and b will have the attributes of FIXED DECIMAL(5).

Table 14. PL/I Attribute Mappings

Machine Value PL/I Value C/C++ Value COBOL Value

byte CHAR(1) unsigned char PICTURE X

byte string CHAR(j) unsigned char[j] PICTURE X(j)

halfword FIXED BIN(15,ð) signed short int PICTURE S9(j≤4)
USAGE BINARY

fullword FIXED BIN(31,ð) signed long int PICTURE S9(4<j≤9)
USAGE BINARY

floating point FLOAT BIN(21) or
FLOAT DEC(6)

float USAGE COMP-1

long floating point FLOAT BIN(53) or
FLOAT DEC(16)

double USAGE COMP-2

extended floating point FLOAT BIN(1ð9) or
FLOAT DEC(33)

long double n/a

fullword pointer POINTER * USAGE POINTER

Note:

When registering session variables in PL/I, the DECIMAL type is always the default. For example, if C
declares a float, PL/I registers the variable as a FLOAT DEC(6) rather than a FLOAT BIN(21).

 DESCRIBE command
The DESCRIBE command displays the attributes of references, compile units, and the
execution environment.

 Chapter 13. Debug Tool commands 255

 DESCRIBE

 ┌ ┐─CURSOR─────────────────────────────────────
55──DESCRIBE─ ──┼ ┼── ────────────5%
 └ ┘ ──┬ ┬ ─ATTRIBUTES─ ──┬ ┬───────────────────── ─;─
 │ │├ ┤─reference───────────
 │ ││ │┌ ┐─,─────────
 │ │├ ┤ ─(─ ───

6
┴─reference─ ─)─

 │ │└ ┘─\───────────────────
 ├ ┤ ──┬ ┬─CUS────── ──┬ ┬───────────────────
 │ │└ ┘─PROGRAMS─ ├ ┤─cu_spec───────────
 │ ││ │┌ ┐─,───────
 │ │├ ┤ ─(─ ───

6
┴─cu_spec─ ─)─

 │ │└ ┘─\─────────────────
 └ ┘─ENVIRONMENT─────────────────────────

CURSOR (Full-Screen Mode only)
Provides a cursor-controlled method for describing variables, structures, and
arrays. If you have assigned DESCRIBE to a PF key, you can display the attri-
butes of a selected variable by positioning the cursor at that variable and
pressing the assigned PF key.

ATTRIBUTES

Displays the attributes of a specified variable or, in C/C++, a tag or expression.
The attributes are ordinarily those that appeared in the declaration of a variable
or are assumed because of the defaulting rules. DESCRIBE ATTRIBUTES works
only for variables accessible to the current programming language. All vari-
ables in the currently qualified block are described if no operand is specified.

reference
A valid Debug Tool reference in the current programming language. Note
the following points:

In C/C++, this can be a valid expression, enumeration tag, structure tag, or
union tag identifier. For a C/C++ expression, the type is the only attribute
displayed. You must use enum, struct, or union when referencing the
C/C++ tag; see “Declarations (C/C++)” on page 247 for more information.

In COBOL, this can be any user-defined name appearing in the DATA

DIVISION. Names can be subscripted or substringed per their definitions
(that is, if they are defined as alphanumeric data or as arrays).

In PL/I, if the variable is in a structure, it can have inherited dimensions
from a higher level parent. The inherited dimensions appear as if they
have been part of the declaration of the variable.

For more information, see “References” on page 202.

\

Describes all variables in the compile unit.

CUS

Describes the attributes of compile units, including such things as the compile-
time options and list of internal blocks. The information returned is dependent
on the HLL that the compile unit was compiled under. CUS is equivalent to
PROGRAMS.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201. The
default is the currently qualified compile unit.

256 Debug Tool User's Guide and Reference

 DISABLE

\ Describes all compile units.

PROGRAMS

Is equivalent to CUS.

ENVIRONMENT

The information returned includes a list of the currently opened files. Names of
files that have been opened but are not currently closed are excluded from the
list. COBOL does not provide any information for DESCRIBE ENVIRONMENT.

Usage Notes:

� Cursor pointing can be used by typing the DESCRIBE CURSOR command
on the command line and moving the cursor to a variable in the source
window before pressing ENTER, or by moving the cursor and pressing
a PF key with the DESCRIBE CURSOR command assigned to it.

� When using the DESCRIBE CURSOR command for a variable that is located
by the cursor position, the variable's name cannot be split across dif-
ferent lines of the source listing.

� In C/C++ and COBOL, expressions containing parentheses () must be
enclosed in another set of parentheses when used with the DESCRIBE

ATTRIBUTES command. For example, DESCRIBE ATTRIBUTES ((x + y) /

z);.

� For COBOL, if DESCRIBE ATTRIBUTES \ is specified and your compile
unit is large, you might receive an out of storage error message.

� For PL/I, DESCRIBE ATTRIBUTES will return only the top-level names for
structures. DESCRIBE ATTRIBUTES \ is not supported for PL/I. To get
more detail, specify the structure name as the reference.

Examples:

� Display the attributes of the enumeration variable sum.

DESCRIBE ATTRIBUTES enum sum;

� Describe the attributes of argc, argv, boolean, i, ld, and structure.

DESCRIBE ATTRIBUTES (argc, argv, boolean, i, ld, structure);

� Describe the current environment.

DESCRIBE ENVIRONMENT;

� Display information describing program myprog.

DESCRIBE PROGRAMS myprog;

 DISABLE command
The DISABLE command makes the AT breakpoint inoperative, but does not clear it;
you can ENABLE it later without typing the entire command again.

55──DISABLE──AT_command──5%

AT_command
An enabled AT command. The AT command must be complete except that the
every_clause and command are omitted. Valid forms are the same as those
allowed with CLEAR AT.

 Chapter 13. Debug Tool commands 257

 DISABLE

Usage Notes:

� To reenable a disabled AT command, use the ENABLE command.

� Disabling an AT command does not affect its replacement by a new
(enabled) version if an overlapping AT command is later specified. It
also does not prevent removal by a CLEAR AT command.

� Breakpoints already disabled within the range(s) specified in the specific
AT command are unaffected; however, a warning message is issued for
any specified range found to contain no enabled breakpoints.

Examples:

� Disable the breakpoint that was set by the command AT ENTRY myprog

CALL proc1;.

DISABLE AT ENTRY myprog;

� If statement 25 is in a loop and you set the following breakpoint:

AT EVERY 5 FROM 1 TO 1ðð STATEMENT 25 LIST x;

to disable it, enter:

DISABLE AT STATEMENT 25;

You do not need to reenter the every_clause or the command list. To
restore the breakpoint, enter:

ENABLE AT STATEMENT 25;

DISABLE prefix (full-screen mode)
Disables a statement breakpoint when you issue this command via the source
window prefix area.

55──DISABLE─ ──┬ ┬───────── ──5%
 └ ┘─integer─

integer
Selects a relative statement (for C/C++ or PL/I) or a relative verb (for COBOL)
within the line. The default value is 1.

Example:

Disable the breakpoint at the third statement or verb in the line (typed in the
prefix area of the line where the statement is found).

DIS 3

For an example of the prefix area, see Figure 13 on page 89.

No space is needed as a delimiter between the keyword and the integer;
hence, DIS 3 is equivalent to DIS3.

258 Debug Tool User's Guide and Reference

 DO

do/while command (C/C++)
The do/while command performs a command before evaluating the test
expression. Due to this order of execution, the command is performed at least
once. The do and while keywords must be lowercase and cannot be abbreviated.

55──do──command──while──(──expression──)──;──────────────────────────────5%

command
A valid Debug Tool command.

expression
A valid Debug Tool C/C++ expression.

The body of the loop is performed before the while clause (the controlling part) is
evaluated. Further execution of the do/while command depends on the value of
the while clause. If the while clause does not evaluate to false, the command is
performed again. Otherwise, execution of the command ends.

A break command can cause the execution of a do/while command to end, even
when the while clause does not evaluate to false.

Example:

The following command prompts you to enter a 1. If you enter a 1, the
command ends execution. Otherwise, the command displays another
prompt.

int reply1;

do {

printf("Enter a 1.\n");

 scanf("%d", &reply1);

} while (reply1 !═ 1);

DO command (PL/I)
The DO command allows one or more commands to be collected into a group which
can (optionally) be repeatedly executed. The DO and END keywords delimit a group
of commands collectively called a DO group. The keywords cannot be abbreviated.

Simple

55──DO──;─ ──┬ ┬───────────── ─END──;───────────────────────────────────────5%
 │ │┌ ┐───────────
 └ ┘ ───

6
┴─command─

command
A valid Debug Tool command.

Repeating

 Chapter 13. Debug Tool commands 259

 DO

55──DO─ ──┬ ┬─WHILE──(──expression──)─ ──┬ ┬───────────────────────── ─;───────5
 │ │└ ┘─UNTIL──(──expression──)─
 └ ┘─UNTIL──(──expression──)─ ──┬ ┬─────────────────────────
 └ ┘─WHILE──(──expression──)─

5─ ──┬ ┬───────────── ─END──;───5%
 │ │┌ ┐───────────
 └ ┘ ───

6
┴─command─

WHILE

Specifies that expression is evaluated before each execution of the command
list. If the expression evaluates to true, the commands are executed and the
DO group begins another cycle; if it evaluates to false, execution of the DO group
ends.

expression
A valid Debug Tool PL/I Boolean expression.

UNTIL

Specifies that expression is evaluated after each execution of the command list.
If the expression evaluates to false, the commands are executed and the DO
group begins another cycle; if it evaluates to true, execution of the DO group
ends.

command
A valid Debug Tool command.

Iterative

 ┌ ┐─,─────────────
55──DO──reference──═─ ───

6
┴─┤ iteration ├─ ─;─ ──┬ ┬───────────── ─END──;──────5%

 │ │┌ ┐───────────
 └ ┘ ───

6
┴─command─

iteration:
├──expression─ ──┬ ┬──────────────────────────────────── ────────────────────5
 ├ ┤ ─BY──expression─ ──┬ ┬────────────────
 │ │└ ┘ ─TO──expression─
 ├ ┤ ─TO──expression─ ──┬ ┬────────────────
 │ │└ ┘ ─BY──expression─
 └ ┘─REPEAT──expression─────────────────

5─ ──┬ ┬── ──────────────┤
 ├ ┤─WHILE──(──expression──)─ ──┬ ┬─────────────────────────
 │ │└ ┘─UNTIL──(──expression──)─
 └ ┘─UNTIL──(──expression──)─ ──┬ ┬─────────────────────────
 └ ┘─WHILE──(──expression──)─

reference
A valid Debug Tool PL/I reference.

expression
A valid Debug Tool PL/I expression.

BY Specifies that expression is evaluated at entry to the DO specification and
saved. This saved value specifies the increment to be added to the control
variable after each execution of the DO group.

If BY expression is omitted from a DO specification and if TO expression is speci-
fied, expression defaults to the value of 1.

260 Debug Tool User's Guide and Reference

 DO

If BY ð is specified, the execution of the DO group continues indefinitely unless it
is halted by a WHILE or UNTIL option, or control is transferred to a point outside
the DO group.

The BY option allows you to vary the control variable in fixed positive or nega-
tive increments.

TO Specifies that expression is evaluated at entry of the DO specification and
saved. This saved value specifies the terminating value of the control variable.

If TO expression is omitted from a DO specification and if BY expression is speci-
fied, repetitive execution continues until it is terminated by the WHILE or UNTIL
option, or until some statement transfers control to a point outside the DO group.

The TO option allows you to vary the control variable in fixed positive or nega-
tive increments.

REPEAT

Specifies that expression is evaluated and assigned to the control variable after
each execution of the DO group. Repetitive execution continues until it is termi-
nated by the WHILE or UNTIL option, or until some statement transfers control to
a point outside the DO group.

The REPEAT option allows you to vary the control variable nonlinearly. This
option can also be used for nonarithmetic control variables, such as pointers.

WHILE

Specifies that expression is evaluated before each execution of the command
list. If the expression evaluates to true, the commands are executed and the
DO group begins another cycle; if it evaluates to false, execution of the DO group
ends.

UNTIL

Specifies that expression is evaluated after each execution of the command list.
If the expression evaluates to false, the commands are executed and the DO
group begins another cycle; if it evaluates to true, execution of the DO group
ends.

command
A valid Debug Tool command.

Examples:

� At statement 25, initialize variable a and display the values of variables
x, y, and z.

AT 25 DO; %BLOCK:>a = ð; LIST (x, y, z); END;

� Execute the DO group until ctr is greater than 4 or less than 0.

DO UNTIL (ctr > 4) WHILE (ctr >= ð); END;

� Execute the DO group with i having the values 1, 2, 4, 8, 16, 32, 64,
128, and 256.

DO i = 1 REPEAT 2\i UNTIL (i = 256); END;

� Repeat execution of the DO group with j having values 1 through 20, but
only if k has the value 1.

DO j = 1 TO 2ð BY 1 WHILE (k = 1); END;

 Chapter 13. Debug Tool commands 261

 EVALUATE

 ENABLE command
The ENABLE command makes the AT breakpoints operative after they have been
DISABLEd.

55──ENABLE──AT_command───5%

AT_command

A disabled AT command. The AT command must be complete except that the
every_clause and command are omitted. Valid forms are the same as those
allowed with CLEAR AT.

Usage Notes:

� To disable an AT command, use the DISABLE command.

� Breakpoints already enabled within the range(s) specified in the specific
AT command are unaffected; however, a warning message is issued for
any specified range found to contain no disabled breakpoints.

Example:

Reenable the previously disabled command AT ENTRY mysub CALL proc1;.

ENABLE AT ENTRY mysub;

ENABLE prefix (full-screen mode)
Enables a disabled statement breakpoint when you issue this command via the
source window prefix area.

55──ENABLE─ ──┬ ┬───────── ───5%
 └ ┘─integer─

integer
Selects a relative statement (for C/C++ or PL/I) or a relative verb (for COBOL)
within the line. The default value is 1.

Example:

Enable the breakpoint at the third statement or verb in the line (typed in the
prefix area of the line where the statement is found).

ENABLE 3

No space is needed as a delimiter between the keyword and the integer;
hence, ENABLE 3 is equivalent to ENABLE3.

EVALUATE command (COBOL)
The EVALUATE command provides a shorthand notation for a series of nested IF
statements. The keywords cannot be abbreviated.

262 Debug Tool User's Guide and Reference

 EVALUATE

 ┌ ┐─────────────────────────────────────
 │ │┌ ┐───────────
55──EVALUATE─ ──┬ ┬─constant─── ───

6
┴─WHEN──┤ any_clause ├─ ───

6
┴─command─ ──────────────5

 ├ ┤─expression─
 ├ ┤─reference──
 ├ ┤─TRUE───────
 └ ┘─FALSE──────

5─ ──┬ ┬────────────────────────── ─END-EVALUATE──;─────────────────────────────────5%
 │ │┌ ┐───────────
 └ ┘ ─WHEN──OTHER─ ───

6
┴─command─

any_clause:
├─ ──┬ ┬──┬ ┬─ANY─────── ─── ────────────────────┤
 │ │├ ┤─condition─
 │ │├ ┤─TRUE──────
 │ │└ ┘─FALSE─────
 └ ┘ ──┬ ┬───── ──┬ ┬─constant── ──┬ ┬────────────────────────────
 └ ┘─NOT─ └ ┘─reference─ └ ┘ ──┬ ┬─THROUGH─ ──┬ ┬─constant──
 └ ┘─THRU──── └ ┘─reference─

constant
A valid Debug Tool COBOL constant.

expression
A valid Debug Tool COBOL arithmetic expression.

reference
A valid Debug Tool COBOL reference.

condition
A simple relation condition.

command
A valid Debug Tool command.

Usage Notes:

� Only a single subject is supported.

� Consecutive WHENs without associated commands are not supported.

� THROUGH/THRU ranges can be specified as constants or references.

� See COBOL Language Reference publications for an explanation of the
following COBOL keywords:

 ANY

 FALSE

 NOT

 OTHER

 THROUGH

 THRU

 TRUE

 WHEN

Example:

The following example shows an EVALUATE command and the equivalent
coding for an IF command:

 Chapter 13. Debug Tool commands 263

 Expression

EVALUATE menu-input

 WHEN "ð"

 CALL init-proc

WHEN "1" THRU "9"

 CALL process-proc

 WHEN "R"

 CALL read-parms

 WHEN "X"

 CALL cleanup-proc

 WHEN OTHER

 CALL error-proc

END-EVALUATE;

The equivalent IF command:

IF (menu-input = "ð") THEN
 CALL init-proc

ELSE

IF (menu-input >═ "1") AND (menu-input <═ "9") THEN

 CALL process-proc

 ELSE

IF (menu-input ═ "R") THEN

 CALL read-parms

 ELSE

IF (menu-input ═ "X") THEN

 CALL cleanup-proc

 ELSE

 CALL error-proc

 END-IF;

 END-IF;

 END-IF;

END-IF;

Expression command (C/C++)
The Expression command evaluates the given expression. The expression can be
used to either assign a value to a variable or to call a function.

55──expression──;──5%

expression
A valid Debug Tool C/C++ expression. Assignment is affected by including one
of the C/C++ assignment operators in the expression. No use is made of the
value resulting from a stand-alone expression.

Usage Note:

Function invocations in expressions are restricted to functions contained in
the currently executing enclave.

Examples:

� Initialize the variables x, y, z and note that function invocations are sup-
ported.

x = 3 + 4/5;
y ═ 7;

z ═ 8 \ func(x, y);

264 Debug Tool User's Guide and Reference

 FIND

� Increment y and assign the remainder of the integer division of omega by
4 to alpha.

alpha = (y++, omega % 4);

 FIND command
The FIND command provides full-screen, line, and batch mode search capability in
source and listing files, and full-screen searching of log and monitor objects as well.

55─ ──┬ ┬──────── ──┬ ┬───────── ─;───5%
 └ ┘─string─ ├ ┤─CURSOR──
 ├ ┤─LOG─────
 ├ ┤─MONITOR─
 └ ┘─SOURCE──

string
The string searched for, conforming to the current programming language
syntax for a character string constant. The string length cannot exceed 128
bytes, excluding the quotes.

If string is not specified, the string from the previous FIND command is used.

Some examples of possible strings follow:

CURSOR (Full-Screen Mode)
Specifies that the current cursor position selects the window searched.

LOG (Full-Screen Mode)
Selects the session log window.

MONITOR (Full-Screen Mode)
Selects the monitor window.

SOURCE (Full-Screen Mode)
Selects the source listing window.

Usage Notes:

� Window defaulting can be controlled by the SET DEFAULT WINDOW

command.

� If the current programming language setting is C/C++, the search is
case-sensitive. Otherwise, the search is not case-sensitive.

� In full-screen mode, the search begins at the top line displayed in the
window or at the location of the last found search argument if a pre-
vious FIND was issued for any search string. If the end of the object is
reached without finding the search argument, FIND wraps to the top of
the object and continues the search. A message notifies you that wrap-
ping has occurred.

If the search argument is found, the window is scrolled until it is visible.
If the search target is DBCS, it is displayed as is. If the search target is
not DBCS, it is highlighted as specified by the SET COLOR command and

C C++ COBOL
"ABC" "IntLink::*" "A5"
 'A5'

 Chapter 13. Debug Tool commands 265

 for

the cursor is placed at the beginning of the target. If the search target
is not found, the screen position is unchanged and the cursor is not
moved.

� FIND can be made immediately effective in full-screen mode with the
IMMEDIATE command.

� In line or batch mode, the search begins at the first line of the source
listing or source file, or at the location of the last found search argument
if a previous FIND was issued for the same string. If the end of the
listing is reached without finding the search argument, FIND wraps to
the top of the listing and continues the search without notification.
However, the line number is identified in the output.

If the search argument is found, the line containing it is displayed with a
vertical bar character (|) beneath the search target.

� For PL/I, if the line found is not the first line of the statement, all lines
from the start of the statement are displayed, up to and including the
target line.

� The full-screen FIND command is not logged; however, the FIND
command is logged in line and batch mode.

Example:

Indicate that you want to search the monitor window for the name myvar.
The current programming language setting is either C/C++ or COBOL.

FIND "myvar" MONITOR;

for command (C/C++)
The for command provides iterative looping similar to the C/C++ for statement. It
enables you to do the following:

� Evaluate an expression before the first iteration of the command
("initialization").

� Specify an expression to determine whether the command should be performed
again ("controlling part").

� Evaluate an expression after each iteration of the command.

� Perform the command, or block, if the controlling part does not evaluate to
false.

The for keyword must be lowercase and cannot be abbreviated.

55──for──(─ ──┬ ┬──────────── ─;─ ──┬ ┬──────────── ─;─ ──┬ ┬──────────── ─)───────5
 └ ┘─expression─ └ ┘─expression─ └ ┘─expression─

5──command───5%

expression
A valid Debug Tool C/C++ expression.

266 Debug Tool User's Guide and Reference

 GO

command
A valid Debug Tool command.

Debug Tool evaluates the first expression only before the command is performed
for the first time. You can use this expression to initialize a variable. If you do not
want to evaluate an expression before the first iteration of the command, you can
omit this expression.

Debug Tool evaluates the second expression before each execution of the
command. If this expression evaluates to false, the command does not run and
control moves to the command following the for command. Otherwise, the
command is performed. If you omit the second expression, it is as if the
expression has been replaced by a nonzero constant and the for command is not
terminated by failure of this expression.

Debug Tool evaluates the third expression after each execution of the command.
You might use this expression to increase, decrease, or reinitialize a variable. If
you do not want to evaluate an expression after each iteration of the command, you
can omit this expression.

A break command can cause the execution of a for command to end, even when
the second expression does not evaluate to false. If you omit the second
expression, you must use a break command to stop the execution of the for
command.

Examples:

� The following for command lists the value of count 20 times. The for
command initially sets the value of count to 1. After each execution of
the command, count is incremented.

for (count = 1; count <= 2ð; count++)
LIST TITLED count;

Alternatively, the preceding example can be written with the following
sequence of commands to accomplish the same task.

count = 1;
while (count <═ 2ð) {

printf("count ═ %d\n", count);

 count++;

}

� The following for command does not contain an initialization
expression.

for (; index > 1ð; --index) {
varlist[index] ═ var1 + var2;

printf("varlist[%d] ═ %d\n", index, varlist[index]);

}

 GO command
The GO command causes Debug Tool to start or resume running your program.

55──GO─ ──┬ ┬──────── ─;──5%
 └ ┘─BYPASS─

 Chapter 13. Debug Tool commands 267

 GOTO

BYPASS
Bypasses the user or system action for the AT-condition that caused the break-
point. It is valid only when Debug Tool is entered for an:

 AT CALL breakpoint

HLL or Language Environment condition

Usage Notes:

� If GO is specified in a command list (for example, as the subject of an IF
command or WHEN clause), all subsequent commands in the list are
ignored.

� If GO is specified within the body of a loop, it causes the execution of the
loop to end.

� To suppress the logging of GO commands, use the SET ECHO command.

� GO with no operand specified does not actually resume the program if
there are additional AT-conditions that have not yet been processed.
See the usage notes for the AT commands on page 208 for an explana-
tion on processing multiple AT-conditions.

Examples:

 � Resume execution.

GO;

� Resume execution and bypass user and system actions for the AT-con-
dition that caused the breakpoint.

GO BYPASS;

� Your application has abended with a protection exception, so an
OCCURRENCE breakpoint has been triggered. Correct the results of the
instruction which caused the exception and issue GO BYPASS; to con-
tinue processing as if the abend had not occurred.

 GOTO command
The GOTO command causes Debug Tool to resume program execution at the speci-
fied statement id. The GOTO keyword cannot be abbreviated. If you want Debug
Tool to return control to you at a target location, make sure there is a breakpoint at
that location.

55─ ──┬ ┬─GOTO─── ─statement_id──;──5%
 └ ┘ ─GO──TO─

statement_id
A valid statement id; see “Statement_Id” on page 203.

Usage Notes:

� If GOTO is specified in a command list (for example, as the subject of an
IF command or WHEN clause), all subsequent commands in the list are
ignored.

� PL/I allows GOTO in a command list on a call to PLITEST or CEETEST.

268 Debug Tool User's Guide and Reference

 GOTO LABEL

� For COBOL, the GOTO command follows the COBOL language rules for
the GOTO statement.

� In PL/I, out-of-block GOTOs are allowed. However, qualification might be
needed.

� Statement GOTO's are not restricted if the program is compiled with
minimum optimization.

� Because statements can be removed by the compiler during optimiza-
tion, specify a reference or statement with the GOTO command that can
be reached during program execution. You can issue the LIST
STATEMENT NUMBERS command to determine the reachable statements.
See “Qualifying variables and changing the point of view” on page 131.

Examples:

� Resume execution at statement 23, where statement 23 is in a currently
active block.

GOTO 23;

If there's no breakpoint at statement 23, Debug Tool will run from state-
ment 23 until a breakpoint is hit.

� Resume execution at statement 45, where statement 45 is in a currently
active block.

AT 45

GOTO 45

GOTO LABEL command
The GOTO LABEL command causes Debug Tool to resume program execution at the
specified statement label. The specified label must be in the same block. If you
want Debug Tool to return control to you at the target location, make sure there is a
breakpoint at that location.

55─ ──┬ ┬─GOTO─── ──┬ ┬─────── ─statement_label──;────────────────────────────5%
 └ ┘ ─GO──TO─ └ ┘─LABEL─

statement_label
A valid statement label within the currently executing program or, in PL/I, a
label variable. See “Statement_Label” on page 204.

Usage Notes:

� In PL/I, out-of-block GOTOs are allowed. However, qualification might be
needed. See “Qualifying variables and changing the point of view” on
page 131.

� The LABEL keyword is optional when either the target statement_label is
nonnumeric or if it is qualified (whether the actual label was nonnumeric
or not).

� A COBOL statement_label can have either of the following forms:

 – name

 Chapter 13. Debug Tool commands 269

 if

This form can be used in COBOL for reference to a section name
or for a COBOL paragraph name that is not within a section or is in
only one section of the block.

– name1 OF name2 or name1 IN name2

This form must be used for any reference to a COBOL paragraph
(name1) that is within a section (name2), if the same name also exists
in other sections in the same block. You can specify either OF or
IN, but Debug Tool always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load
module qualifiers.

� For C, you can use GOTO LABEL only if you compiled your program with
either the PATH or ALL suboption and the SYM suboption of the compile-
time TEST option. There are no restrictions on using labels with GOTO
LABEL.

� For COBOL, you can use GOTO LABEL only if you compiled your program
with either PATH or ALL suboption and the SYM suboption of the compile-
time TEST option. The label itself can take either of two forms:

– name, where name is a section name, or the name of a paragraph not
within a section or in only one section of the block.

– name1 OF name2 or name1 IN name2, where name1 is duplicated by
one or more other paragraphs in one or more other sections in the
block. You can use either OF or IN, but Debug Tool always logs OF.

� For PL/I, you can use GOTO LABEL only if you compiled your program
with either the PATH or ALL suboption and the SYM suboption of the
compile-time TEST option. There are no restrictions on using labels with
GOTO LABEL and label variables are supported.

Examples:

� Go to the label constant laba in block suba in program prog1.

GOTO prog1:>suba:>laba;

� Go to the label constant para OF sect1. The current programming lan-
guage setting is COBOL.

GOTO LABEL para OF sect1;

if command (C/C++)
The if command lets you conditionally perform a command. You can optionally
specify an else clause on the if command. If the test expression evaluates to
false and an else clause exists, the command associated with the else clause is
performed. The if and else keywords must be lowercase and cannot be abbrevi-
ated.

55──if──(──expression──)──command─ ──┬ ┬─────────────── ────────────────────5%
 └ ┘ ─else──command─

expression

A valid Debug Tool C/C++ expression.

270 Debug Tool User's Guide and Reference

 IF

command

A valid Debug Tool command.

When if commands are nested and else clauses are present, a given else is
associated with the closest preceding if clause within the same block.

Usage Note:

� An else clause should always be included if the if clause causes
Debug Tool to get more input (for example, an if containing USE or
other commands that cause Debug Tool to be reinvoked because an
AT-condition occurs).

Examples:

� The following example causes grade to receive the value "A" if the
value of score is greater than or equal to 90.

if (score >= 9ð)
grade ═ "A";

� The following example shows a nested if command.

if (paygrade == 7) {
if (level >═ ð && level <═ 8)

salary \═ 1.ð5;

 else

salary \═ 1.ð4;

}

else

salary \═ 1.ð6;

IF command (COBOL)
The IF command lets you conditionally perform a command. You can optionally
specify an ELSE clause on the IF command. If the test expression evaluates to
false and an ELSE clause exists, the command associated with the ELSE clause is
performed. The keywords cannot be abbreviated.

 ┌ ┐───────────
55──IF──condition─ ──┬ ┬────── ───

6
┴─command─ ──┬ ┬─────────────────── ─END-IF───5

 └ ┘─THEN─ │ │┌ ┐───────────
 └ ┘ ─ELSE─ ───

6
┴─command─

5──;───5%

condition

A simple relation condition.

command

A valid Debug Tool command.

When IF commands are nested and ELSE clauses are present, a given ELSE or
END-IF is associated with the closest preceding IF clause within the same block.

Unlike COBOL, Debug Tool requires terminating punctuation (;) after commands.
The END-IF keyword is required.

Usage Notes:

 Chapter 13. Debug Tool commands 271

 IF

� An ELSE clause should always be included if the IF clause causes
Debug Tool to get more input (for example, an IF containing USE or
other commands that cause Debug Tool to be reinvoked because an
AT-condition occurs).

� The COBOL NEXT SENTENCE phrase is not supported.

| � Comparison combinations with windowed date fields are not supported.

| � Comparisons between expanded date fields with different DATE
| FORMAT clauses are not supported.

� Only the comparison combinations listed in “Allowable comparisons for
the Debug Tool IF command” on page 350, are supported.

Example:

To substitute the input that would have come from the ddname specified by
the SET INTERCEPT ON command with your desired input, enter:

INPUT text you want to input ;

Program input is recorded in your Log window.

A closing semicolon (;) is required for this command. Everything between
the INPUT keyword and the semicolon is considered input text. If you want
to include a semicolon in your input, or if the first character of your input is
a quote, you must enter your input as a valid character string for your pro-
gramming language.

IF command (PL/I)
The IF command lets you conditionally perform a command. You can optionally
specify an ELSE clause on the IF command. If the test expression evaluates to
false and an ELSE clause exists, the command associated with the ELSE clause is
performed. The keywords cannot be abbreviated.

55──IF──expression──THEN──command─ ──┬ ┬─────────────── ────────────────────5%
 └ ┘ ─ELSE──command─

expression
A valid Debug Tool PL/I expression.

If necessary, the expression is converted to a BIT string.

command
A valid Debug Tool command.

When IF commands are nested and ELSE clauses are present, a given ELSE is
associated with the closest preceding IF clause within the same block.

Usage Note:

� An ELSE clause should always be included if the IF clause causes
Debug Tool to get more input (for example, an IF containing USE or
other commands that cause Debug Tool to be reinvoked because an
AT-condition occurs).

Examples:

272 Debug Tool User's Guide and Reference

 IMMEDIATE

� If the value of array1 is equal to the value of array2, go to the state-
ment with label constant label_1. Execution of the user program con-
tinues at label_1. If array1 does not equal array2, the GOTO is not
performed and control is passed to the user program.

IF array1 = array2 THEN GOTO LABEL label_1; ELSE GO;

� Set a breakpoint at statement 23, which will test if variable j is equal to
10, display the names and values of variables rmdr, totodd, and
terms(j). If variable j is not equal to 10, continue program execution.

AT 23 IF j = 1ð THEN LIST TITLED (rmdr, totodd, terms(j)); ELSE GO;

IMMEDIATE command (full-screen mode)
The IMMEDIATE command causes a command within a command list to be per-
formed immediately. It is intended for use with commands assigned to a PF key.

IMMEDIATE can only be entered as an unnested command or within a compound
command.

It is recommended that PF key definitions for FIND, RETRIEVE, SCROLL, and WINDOW
commands be prefixed with IMMEDIATE. This makes it possible to do things like
SCROLL even when entering a group of commands.

55──IMMEDIATE──command───5%

command
One of the following Debug Tool commands:

 FIND

 RETRIEVE

 SCROLL commands
 BOTTOM

 DOWN

 LEFT

 NEXT

 RIGHT

 TO

 TOP

 UP

 WINDOW commands
 CLOSE

 OPEN

 SIZE

 ZOOM

Usage Note: The IMMEDIATE command is not logged.

Examples:

� Specify that the WINDOW OPEN LOG command be immediately effective.

IMMEDIATE WINDOW OPEN LOG;

� Specify that the SCROLL BOTTOM command be immediately effective.

IMMEDIATE SCROLL BOTTOM;

 Chapter 13. Debug Tool commands 273

 LIST

INPUT command (C/C++ and COBOL)
The INPUT command provides input for an intercepted read and is valid only when
there is a read pending for an intercepted file. The INPUT keyword cannot be
abbreviated.

55──INPUT──text──;───5%

text
Specifies text input to a pending read.

Usage Notes:

� The INPUT text consists of everything between the INPUT keyword and
the semicolon (or end-of-line). Any leading or trailing blanks are
removed by Debug Tool.

� If a semicolon is included as part of the INPUT text, or if the first char-
acter of the INPUT text is a quote, the INPUT text must conform to the
current programming language syntax for a character string constant
(that is, enclosed in quotes, with internal quotes entered according to
the rules of that programming language).

� This command is not supported for CICS.

� See “SET INTERCEPT (C/C++ and COBOL)” on page 314 for informa-
tion about setting interception to and from a file.

Example:

You have used SET INTERCEPT ON to make Debug Tool prompt you for input
to a sequential file. The prompt and the file's name appears in the
Command Log.

Indicate that the phrase "quick brown fox" is input to a pending read. The
phrase is written to the file.

INPUT quick brown fox;

 LIST command
The LIST command displays information about a program such as values of speci-
fied variables, structures, arrays, registers, statement numbers, frequency informa-
tion, and the flow of program execution. The LIST command can be used to
display information in any enclave. All information displayed will be saved in the
log file.

The various forms of the LIST command are summarized in Table 15.

Table 15 (Page 1 of 2). Summary of LIST Commands

LIST (blank) Displays Source Identification panel

LIST AT Lists the currently defined breakpoints.

LIST CALLS Displays the dynamic chain of active blocks.

LIST CURSOR Displays the variable pointed to by the cursor.

274 Debug Tool User's Guide and Reference

 LIST

Table 15 (Page 2 of 2). Summary of LIST Commands

LIST expression Displays values of expressions.

LIST FREQUENCY Lists statement execution counts.

LIST LAST Displays a list of recent entries in the history table.

LIST LINE NUMBERS Lists all line numbers that are valid locations for an AT LINE

breakpoint.

LIST LINES Lists one or more lines from the current listing or source file
displayed in the Source window.

LIST MONITOR Lists the current set of MONITOR commands.

LIST NAMES Lists the names of variables, programs, or Debug Tool pro-
cedures.

LIST ON Lists the action (if any) currently defined for the specified
PL/I conditions.

LIST PROCEDURES Lists the commands contained in the specified Debug Tool
procedure.

LIST REGISTERS Displays the current register contents.

LIST STATEMENT NUMBERS Lists all statement numbers that are valid locations for an
AT STATEMENT breakpoint.

LIST STATEMENTS Lists one or more statements from the current listing or
source file displayed in the Source window.

LIST STORAGE Provides a dump-format display of storage.

 LIST (blank)
Displays the Source Identification Panel, where associations are made between
source listings or source files shown in the source window and their program units.
LIST is equivalent to LISTINGS which is equivalent to SOURCES. See “PANEL
command (full-screen mode)” on page 291 for additional information.

 LIST AT
Lists the currently defined breakpoints, including the action taken when the speci-
fied breakpoint is activated.

 Chapter 13. Debug Tool commands 275

 LIST

| 55──LIST─ ──┬ ┬─AT_command─────────────────────────────────── ─;────────────────────5%
 └ ┘ ─AT─ ──┬ ┬────────── ──┬ ┬────────────────────────
 ├ ┤─ENABLED── ├ ┤─ALLOCATE───────────────
 └ ┘─DISABLED─ ├ ┤─APPEARANCE─────────────
 ├ ┤─CALL───────────────────
 ├ ┤─CHANGE─────────────────

| ├ ┤─DATE───────────────────
 ├ ┤─DELETE─────────────────
 ├ ┤─ENTRY──────────────────
 ├ ┤─EXIT───────────────────
 ├ ┤ ─GLOBAL─ ──┬ ┬─ALLOCATE───
 │ │├ ┤─APPEARANCE─
 │ │├ ┤─CALL───────

| │ │├ ┤─DATE───────
 │ │├ ┤─DELETE─────
 │ │├ ┤─ENTRY──────
 │ │├ ┤─EXIT───────
 │ │├ ┤─LABEL──────
 │ │├ ┤─LINE───────
 │ │├ ┤─LOAD───────
 │ │├ ┤─PATH───────
 │ │└ ┘─STATEMENT──
 ├ ┤─LABEL──────────────────
 ├ ┤─LINE───────────────────
 ├ ┤─LOAD───────────────────
 ├ ┤─OCCURRENCE─────────────
 ├ ┤─PATH───────────────────
 ├ ┤─STATEMENT──────────────
 └ ┘─TERMINATION────────────

AT_command

A valid AT command that includes at least one operand. See Table 10 on
page 207 for a list of valid AT commands. The AT command must be complete
except that the every_clause and command are omitted.

ENABLED

Restricts the list to enabled breakpoints. The default is to list both enabled and
disabled breakpoints.

DISABLED

Restricts the list to disabled breakpoints. The default is to list both enabled and
disabled breakpoints.

ALLOCATE

Lists currently defined AT ALLOCATE breakpoints.

APPEARANCE

Lists currently defined AT APPEARANCE breakpoints.

CALL

Lists currently defined AT CALL breakpoints.

CHANGE

Lists currently defined AT CHANGE breakpoints. This displays the storage
address and length for all AT CHANGE subjects, and shows how they were speci-
fied (if other than by the %STORAGE function).

| DATE

| Lists currently defined AT DATE breakpoints.

DELETE

Lists currently defined AT DELETE breakpoints.

276 Debug Tool User's Guide and Reference

 LIST

ENTRY

Lists currently defined AT ENTRY breakpoints.

EXIT

Lists currently defined AT EXIT breakpoints.

GLOBAL

Lists currently defined AT GLOBAL breakpoints for the specified AT-condition.

LABEL

Lists currently defined AT LABEL breakpoints.

LINE

Lists currently defined AT LINE or AT STATEMENT breakpoints. LINE is equiv-
alent to STATEMENT.

LOAD

Lists currently defined AT LOAD breakpoints.

OCCURRENCE

Lists currently defined AT OCCURRENCE breakpoints.

PATH

Lists currently defined AT PATH breakpoints.

STATEMENT

Is equivalent to LINE.

TERMINATION

Lists currently defined AT TERMINATION breakpoint.

If the AT command type (for example, LOAD) is not specified, LIST AT lists all cur-
rently defined breakpoints (both DISABLEd and ENABLEd).

Usage Note:

� To display a global breakpoint, you can specify an asterisk (*) with the
LIST AT command or you can specify a LIST AT GLOBAL command. For
example, if you want to display an AT ENTRY \ breakpoint, specify:

LIST AT ENTRY \;

or

LIST AT GLOBAL ENTRY;

If you have only a global breakpoint set and you specify LIST AT ENTRY

without the asterisk (*) or GLOBAL keyword, you get a message saying
there are no such breakpoints.

Examples:

� Display information about enabled breakpoints defined at block entries.

LIST AT ENABLED ENTRY;

| � Display information about global DATE breakpoint entries.

| LIST AT DATE \;

� Display breakpoint information for all disabled AT CHANGE breakpoints
within the currently executing program.

LIST AT DISABLED CHANGE;

 Chapter 13. Debug Tool commands 277

 LIST

� The current programming language setting is C. Here are some
assorted LIST AT commands.

LIST AT LINE 22;

or

LIST AT OCCURRENCE SIGSEGV;

or

LIST AT CHANGE structure.un.m;

 LIST CALLS
Displays the dynamic chain of active blocks. For languages without block structure,
this is the CALL chain. Under MVS batch and MVS with TSO, LIST CALLS lists the
call chain of every active enclave in the process.

55──LIST──CALLS──;───5%

Usage Notes:

� For programs containing interlanguage communication (ILC), routines
from previous enclaves are only listed if they are written in a language
that is active in the current enclave.

� This command also lists compile units in parent enclaves under CMS if
the enclave was created using SVC LINK. If the enclave was created
with the system() function or the CMSCALL macro, compile units in parent
enclaves will not be listed.

Example:

Display the current dynamic chain of active blocks.

LIST CALLS;

LIST CURSOR (full-screen mode)
Provides a cursor controlled method for displaying variables, structures, and arrays.
It is most useful when assigned to a PF key.

 ┌ ┐─CURSOR─
55──LIST─ ──┴ ┴──────── ──5%

Usage Notes:

� Cursor pointing can be used by typing the LIST CURSOR command on
the command line and moving the cursor to a variable in the source
window before pressing ENTER, or by moving the cursor and pressing
a PF key with the LIST CURSOR command assigned to it.

� When using the LIST CURSOR command for a variable that is located by
the cursor position, the variable's name cannot be split across different
lines of the source listing.

Example:

Display the value of the variable at the current cursor position.

LIST CURSOR

278 Debug Tool User's Guide and Reference

 LIST

 LIST expression
Displays values of expressions.

55──LIST─ ──┬ ┬──┬ ┬────────── ──┬ ┬─expression─────────── ─;──────────────────5%
 │ │├ ┤─TITLED─── │ │┌ ┐─,──────────
 │ │└ ┘─UNTITLED─ └ ┘ ─(─ ───

6
┴─expression─ ─)─

 └ ┘ ─TITLED─ ──┬ ┬─── ─────────────────────────
 └ ┘─\─

TITLED

Displays each expression in the list with its value. For PL/I, this is the default.
For C/C++, this is the default for expressions that are lvalues. For COBOL, this
is the default except for expressions consisting of only a single constant.

If TITLED is issued with no keyword specified, all variables in the currently quali-
fied block are listed.

* (C/C++ and COBOL)
Lists all variables in the currently qualified compile unit.

UNTITLED

Lists expression values without displaying the expressions themselves. For
C/C++, this is the default for expressions that are not lvalues. For COBOL, this
is the default for expressions consisting of only a single constant.

expression

A valid Debug Tool expression in the current programming language with the
exceptions described in “Expression” on page 201. For the LIST command, an
expression also includes character strings enclosed in either double (") or
single (') quotes, depending on the current programming language.

In C and COBOL, expressions containing parentheses () must be enclosed in
another set of parentheses when used with the LIST command as in example
LIST ((x + y) / z);.

In COBOL, an expression can be the GROUP keyword followed by a reference.
If specified, the GROUP keyword causes the reference to be displayed as if it
were an elementary item. If GROUP is specified for an elementary item, it has no
effect. The operand of a GROUP keyword can only be a reference (expressions
are not allowed) as in example LIST TITLED GROUP y;.

Usage Notes:

� If LIST TITLED \ is specified and your compile unit is large, slow per-
formance might result.

� For COBOL, if LIST TITLED \ is specified and your compile unit is large,
you might receive an out of storage error message.

� When using LIST TITLED with no parameters within the PL/I compile
unit, only the first element of any array will be listed. If the entire array
needs to be listed, use LIST and specify the array name (i.e., LIST
array where array is the name of an array).

Examples:

� Display the values for variables size and r and the expression c + r,
with their respective names.

LIST TITLED (size, r, c + r);

 Chapter 13. Debug Tool commands 279

 LIST

� Display the COBOL references as if they were elementary items. The
current programming language setting is COBOL.

LIST (GROUP x OF z(1,2), GROUP a, w);

� Display the value of the Debug Tool variable %ADDRESS.

LIST %ADDRESS;

 LIST FREQUENCY
Lists statement execution counts.

55──LIST──FREQUENCY─ ──┬ ┬─statement_id_range─────────── ─;─────────────────5%
 │ │┌ ┐─,──────────────────
 ├ ┤ ─(─ ───

6
┴─statement_id_range─ ─)─

 └ ┘─\────────────────────────────

statement_id_range
A valid statement id or statement id range; see “Statement_Id_Range and
Stmt_Id_Spec” on page 203.

* Lists frequency for all statements in the currently qualified compile unit. If cur-
rently executing at the AT TERMINATION breakpoint where there is no qualifica-
tion available, it will list frequency for all statements in all the compile units in
the terminating enclave where frequency data exists.

Note: See also “SET FREQUENCY” on page 312.

Examples:

� List frequency for statements 1-20.

LIST FREQUENCY 1 - 2ð;

� List frequency for all statements in the currently qualified compile unit.

LIST FREQUENCY \;

� List frequency for all statements in all compilation units.

AT TERMINATION LIST FREQUENCY \;

 LIST LAST
Displays a list of recent entries in the history table.

55──LIST─ ──┬ ┬─────────────────── ──┬ ┬─HISTORY──── ─;───────────────────────5%
 │ │┌ ┐─LAST─ ├ ┤─LINES──────
 └ ┘── ──┴ ┴────── integer ├ ┤─PATHS──────
 └ ┘─STATEMENTS─

integer
Specifies the number of most recently processed breakpoints and conditions
displayed.

HISTORY

Displays all processed breakpoints and conditions.

LINES

Displays processed statement or line breakpoints. LINES is equivalent to
STATEMENTS.

280 Debug Tool User's Guide and Reference

 LIST

PATHS

Displays processed path breakpoints.

STATEMENTS

Is equivalent to LINES.

Note: See also “SET HISTORY” on page 313.

Examples:

� Display all processed path breakpoints in the history table.

LIST PATHS;

� Display all program breakpoints and conditions for the last five times
Debug Tool gained control.

LIST LAST 5 HISTORY;

LIST LINE NUMBERS
See “LIST STATEMENT NUMBERS” on page 284.

 LIST LINES
See “LIST STATEMENTS” on page 285.

 LIST MONITOR
Lists all or selected members of the current set of MONITOR commands.

55──LIST──MONITOR─ ──┬ ┬───────────────────────── ─;────────────────────────5%
 └ ┘──integer ──┬ ┬────────────

└ ┘── - integer

integer
An unsigned integer identifying a MONITOR command. If two integers are speci-
fied, the first must not be greater than or equal to the second. If omitted, all
MONITOR commands are displayed.

Usage Note:

� When the current programming language setting is COBOL, blanks are
required around the hyphen (-). Blanks are optional for C.

Example:

List the fifth through the seventh commands currently being monitored.

LIST MONITOR 5 - 7;

 LIST NAMES
Lists the names of variables, programs, or Debug Tool procedures. If LIST NAMES

is issued with no keyword specified, the names of all program and session vari-
ables that can be referenced in the current programming language and that are
visible to the currently qualified block are displayed. A subset of the names can be
specified by supplying a pattern to be matched.

 Chapter 13. Debug Tool commands 281

 LIST

55──LIST──NAMES─ ──┬ ┬───────── ──┬ ┬─────────────────────────────────── ─;───5%
 └ ┘─pattern─ ├ ┤ ─BLOCK─ ──┬ ┬─block_spec─────────────
 │ │├ ┤─cu_spec────────────────
 │ ││ │┌ ┐─,────────────
 │ │└ ┘ ─(─ ───

6
┴┬ ┬─block_spec─ ─)─

 │ │└ ┘─cu_spec────
 ├ ┤─CUS───────────────────────────────
 ├ ┤─PROCEDURES────────────────────────
 ├ ┤─PROGRAMS──────────────────────────
 └ ┘─TEST──────────────────────────────

pattern
The pattern searched for, conforming to the current programming language
syntax for a character string constant. The pattern length cannot exceed 128
bytes, excluding the quotes.

If the DBCS setting is ON, the pattern can contain DBCS characters. DBCS
shift codes are not considered significant characters in the pattern. Within the
pattern, an SBCS or DBCS asterisk represents a string of zero or more insignif-
icant SBCS or DBCS characters. As many as eight asterisks can be included
in the pattern, but adjacent asterisks are equivalent to a single asterisk.

Some examples of possible strings follow:

Pattern matching is not case-sensitive outside of DBCS. Both the pattern and
potential names outside of shift codes are effectively uppercased, except when
the current programming language setting is C. Letters in the pattern must be
the correct case when the current programming language setting is C.

BLOCK

Displays variable names that are defined within one or more specified blocks.

block_spec
A valid block specification; see “Block_Spec” on page 199.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201. cu_spec
can be used to list the variable and function names that are defined within
the specified compile unit.

CUS

Displays the compile unit names. CUS is equivalent to PROGRAMS.

PROCEDURES

Displays the Debug Tool procedure names.

PROGRAMS

Is equivalent to CUS.

TEST

Displays the Debug Tool session variable names.

Usage Notes:

� LIST NAMES CUS applies to compile unit names.

C COBOL PL/I
"ABC" "A5" 'MY'
 'A5'

282 Debug Tool User's Guide and Reference

 LIST

� LIST NAMES TEST shows only those session variable names that can be
referenced in the current programming language.

� The output of LIST NAMES without any options depends on both the
current qualification and the current programming language setting. If
the current programming language differs from the programming lan-
guage of the current qualification, the output of the command shows
only those session variable names that can be referenced in the current
programming language.

� For structures, the pattern is tested against the complete name, hence
"B" is not satisfied by "C OF B OF A" (COBOL).

Examples:

� Display all compile unit names that begin with the letters "MY" and end
with "5". The current programming language setting is either C or
COBOL.

LIST NAMES "MY\5" PROGRAMS;

� Display the names of all the Debug Tool procedures that can be
invoked.

LIST NAMES PROCEDURES;

� Display the names of variables whose names begin with 'R' and are in
the mainprog block. The current programming language setting is
COBOL.

LIST NAMES 'R\' BLOCK (mainprog);

LIST ON (PL/I)
Lists the action (if any) currently defined for the specified PL/I conditions.

55──LIST──ON─ ──┬ ┬─────────────── ─;───────────────────────────────────────5%
 └ ┘─pli_condition─

pli_condition

A valid PL/I condition specification. If omitted, all currently defined ON
command actions are listed. See “ON command (PL/I)” on page 289.

Example:

List the action for the ON ZERODIVIDE command.

LIST ON ZERODIVIDE;

 LIST PROCEDURES
Lists the commands contained in the specified Debug Tool PROCEDURE definitions.

55──LIST──PROCEDURES─ ──┬ ┬──────────────── ─;──────────────────────────────5%
 ├ ┤─name───────────
 │ │┌ ┐─,────
 └ ┘ ─(─ ───

6
┴─name─ ─)─

 Chapter 13. Debug Tool commands 283

 LIST

name
A valid Debug Tool procedure name. If no procedure name is specified, the
commands contained in the currently running procedure are displayed. If no
procedure is currently running, an error message is issued.

Examples:

� Display the commands in the Debug Tool procedure p2.

LIST PROC p2;

� List the procedures abc and proc7.

LIST PROCEDURES (abc, proc7);

 LIST REGISTERS
Displays the current register contents.

55──LIST─ ──┬ ┬─REGISTERS────────────────────────── ─;──────────────────────5%
 │ │┌ ┐─LONG──
 └ ┘ ──┼ ┼─────── ─FLOATING─ ──┬ ┬───────────
 └ ┘─SHORT─ └ ┘─REGISTERS─

REGISTERS

Displays the general-purpose registers

LONG

Displays the decimal value of the long-precision floating-point registers.

SHORT

Displays the decimal value of the short-precision floating-point registers.

FLOATING

Displays the long-precision floating-point registers.

Examples:

� Display the general-purpose registers at the point of a program
interruption:

LIST REGISTERS;

� Display the floating-point registers.

LIST FLOATING REGISTERS;

LIST STATEMENT NUMBERS
Lists all statement or line numbers that are valid locations for an AT LINE or AT
STATEMENT breakpoint.

55──LIST─ ──┬ ┬─LINE────── ─statement_id_range──;───────────────────────────5%
 └ ┘─STATEMENT─

NUMBERS

Displays the statement numbers that can be used to set STATEMENT break-
points, assuming the compile options used to generate statement hooks were
specified at compile time. The list can also be used for the GOTO command,
however, you might not be able to GOTO all of the statement numbers listed.

284 Debug Tool User's Guide and Reference

 LIST

block_spec
A valid block specification; see “Block_Spec” on page 199. This operand
lists all statement or line numbers in the specified block.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201. For C pro-
grams, cu_spec can be used to list the statement numbers that are defined
within the specified compile unit before the first function definition.

statement_id_range
A valid statement id or statement id range; see “Statement_Id_Range and
Stmt_Id_Spec” on page 203.

Examples:

� List the statement or line numbers in the currently qualified block.

LIST STATEMENT NUMBERS;

� Display the statement or line number of every statement in block
earnings.

LIST STATEMENT NUMBERS earnings;

 LIST STATEMENTS
Lists one or more statements or lines from a file. It is primarily intended for viewing
portions of the source listing or source file in line mode, but can also be used in
full-screen mode to copy a portion of a source listing or source file to the log.

55──LIST─ ──┬ ┬─LINE────── ─statement_id_range──;───────────────────────────5%
 └ ┘─STATEMENT─

statement_id_range
A valid statement id or statement id range in the same block or different blocks;
see “Statement_Id_Range and Stmt_Id_Spec” on page 203.

Usage Notes:

� The specified lines are displayed in the same format as they would
appear in the full-screen source window, except that wide lines are trun-
cated.

� You might need to specify a range of line numbers to ensure that con-
tinued statements are completely displayed.

� This command is not to be confused with the LIST LAST STATEMENTS

command.

Examples:

� List lines 25 through 30 in the source file associated with the currently
qualified compile unit.

LIST LINES 25 - 3ð;

� List statement 100 from the current program listing file.

LIST STATEMENT 1ðð;

 Chapter 13. Debug Tool commands 285

 LIST

 LIST STORAGE
Displays the contents of storage at a particular address in hex format.

55──LIST──STORAGE─ ──┬ ┬───────────────────────────────────── ─;────────────5%
 └ ┘ ─(─ ──┬ ┬─address─── ──┬ ┬──────────── ─)─
 └ ┘─reference─ └ ┘ ─,──integer─

address
The starting address of storage to be watched for changes. This must be a
hex constant: 0x in C, H in COBOL (using either double (") or single (')
quotes), or PX in PL/I.

reference
A valid Debug Tool reference in the current programming language; see
“References” on page 202.

For C/C++, if the referenced variable is an array, Debug Tool displays the
storage at the address of that array. However, if the referenced variable is a
pointer, Debug Tool displays the storage at the address given by that pointer.

integer
The number of bytes of storage displayed. The default is 16 bytes.

Usage Notes:

� Using Debug Tool, cursor pointing can be used by typing the LIST

STORAGE command on the command line and moving the cursor to a var-
iable in the source window before pressing ENTER, or by moving the
cursor and pressing a PF key with the LIST STORAGE command assigned
to it.

� When using the LIST STORAGE command in Debug Tool for a variable
that is located by the cursor position, the variable's name cannot be
split across different lines of the source listing.

� If no operand is specified with LIST STORAGE, the command is cursor-
sensitive.

Examples:

� Display the first 64 bytes of storage beginning at the address of variable
table.

LIST STORAGE (table, 64);

� Display 16 bytes of storage at the address given by pointer table(1).

LIST STORAGE (table(1));

� Display the 16 bytes contained at locations 20CD0-20CDF. The current
programming language setting is COBOL.

LIST STORAGE (H'2ðCDð');

� Display the 16 bytes contained at locations 20CD0-20CDF. The current
programming language setting is PL/I.

LIST STORAGE ('2ðCDð'PX);

286 Debug Tool User's Guide and Reference

 MONITOR

 MONITOR command
The MONITOR command defines or redefines a command whose output is displayed
in the monitor window (full-screen mode), terminal output (line mode), or log file
(batch mode). Only DESCRIBE, LIST, Null, and QUERY command values are main-
tained.

 ┌ ┐─GLOBAL─────────────
55──MONITOR─ ──┼ ┼──────────────────── ──┬ ┬───────── ─command────────────────5%
 └ ┘ ─LOCAL─ ──┬ ┬───────── └ ┘─integer─
 └ ┘─cu_spec─

GLOBAL

Specifies that the monitor definition is global. That is, it is not associated with a
particular compile unit.

LOCAL

Specifies that the monitor definition is local to a specific compile unit. Using
Debug Tool, the specified output is displayed only when the current qualifica-
tion is within the associated compile unit.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201. This spec-
ifies the compile unit associated with the monitor definition. The default is
the currently qualified compile unit.

integer
An integer in the range 1 to 99, indicating what command in the list is replaced
with the specified command and the order that the monitored commands are
evaluated. If omitted, the next monitor integer is assigned. An error message
is displayed if the maximum number of monitoring commands already exists.

command
A DESCRIBE, LIST, Null, or QUERY command whose output is displayed in the
monitor window, terminal output, or log file.

Usage Notes:

� A monitor number identifies a global monitor command, a local monitor
command, or neither.

� Using Debug Tool, monitor output is presented in monitor number
sequence.

� If a number is provided and a command omitted, a null command is
inserted on the line corresponding to the number in the monitor window.
This reserves the monitor number.

� You can only specify a monitor number that is at most one greater than
the highest existing monitor number.

� The MONITOR command displays up to a maximum of 1000 lines of
output in the monitor window.

� Replacement only occurs if the command identified by the monitor
number already exists.

� The MONITOR LIST command does not allow the POPUP, TITLED, and
UNTITLED options.

 Chapter 13. Debug Tool commands 287

 MOVE

� When using the MONITOR LIST command, simple references (or C
lvalues) display identifying information with the values, whereas
expressions and literals do not.

� The GLOBAL and LOCAL keywords also affect the default qualification for
evaluation of an expression. GLOBAL indicates that the default qualifica-
tion is the currently executing point in the program. LOCAL indicates
that the default qualification is to the compile unit specified.

Examples:

� Replace the 10th command in the monitor list with QUERY LOCATION.
This is a global definition; therefore, it is always present in the monitor
output.

MONITOR 1ð QUERY LOCATION;

� Add a monitor command that displays the variable abc and is local to
compile unit myprog. The monitor number is the next available number.

MONITOR LOCAL myprog LIST abc;

MOVE command (COBOL)
The MOVE command transfers data from one area of storage to another. The
keywords cannot be abbreviated.

55──MOVE─ ──┬ ┬─reference─ ─TO──reference──;────────────────────────────────5%
 └ ┘─literal───

reference
A valid Debug Tool COBOL reference.

literal
A valid COBOL literal.

Usage Notes:

� If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
expected results. This is due to the uncertainty of variable values within
statements as opposed to their values at statement boundaries.

� MOVE assigns a value only to a single receiver; unlike COBOL, multiple
receiver variables are not supported.

� The COBOL CORRESPONDING phrase is not supported.

| � MOVE does not support date windowing. Therefore, you cannot use the
| MOVE command to assign the value of a windowed date field to an
| expanded date field or to a nondate field.

| � You cannot use the MOVE command to assign the value of one
| expanded date field to another expanded date field with a different
| DATE FORMAT clause, or to assign the value of one windowed date
| field to another windowed date field with a different DATE FORMAT
| clause.

288 Debug Tool User's Guide and Reference

 ON

� Only the sender/receiver combinations listed in Appendix D, “Using
COBOL Reference Information with Debug Tool” on page 350, are sup-
ported.

Examples:

� Move the string constant "Hi There" to the variable field.

MOVE "Hi There" TO field;

� Move the value of session variable temp to the variable b.

MOVE temp TO b;

� To assign a new value to a DBCS variable when the current program-
ming language is COBOL, enter MOVE G"D B C S V A L U E" in the
Command/Log window:

 Null command
The Null command is a semicolon written where a command is expected. It is
used for such things as an IF command with no action in its THEN clause.

55──;──5%

Example:

Do nothing if array[x] > ð; otherwise, set a to 1. The current programming
language setting is C.

if (array[x] > ð); else a = 1;

ON command (PL/I)
The ON command establishes the actions to be executed when the specified PL/I
condition is raised. This command is equivalent to AT OCCURRENCE; see page 225.

55──ON─ ──┬ ┬─CONDITION──(──condition_name──)───────── ─command─────────────5%
 ├ ┤──┬ ┬─ENDFILE─────── ─(──file_reference──)─
 │ │├ ┤─ENDPAGE───────
 │ │├ ┤─KEY───────────
 │ │├ ┤─NAME──────────
 │ │├ ┤─PENDING───────
 │ │├ ┤─RECORD────────
 │ │├ ┤─TRANSMIT──────
 │ │└ ┘─UNDEFINEDFILE─
 ├ ┤─AREA────────────────────────────────────
 ├ ┤─ATTENTION───────────────────────────────
 ├ ┤─CONVERSION──────────────────────────────
 ├ ┤─ERROR───────────────────────────────────
 ├ ┤─FINISH──────────────────────────────────
 ├ ┤─FIXEDOVERFLOW───────────────────────────
 ├ ┤─OVERFLOW────────────────────────────────
 ├ ┤─SIZE────────────────────────────────────
 ├ ┤─STRINGRANGE─────────────────────────────
 ├ ┤─STRINGSIZE──────────────────────────────
 ├ ┤─SUBSCRIPTRANGE──────────────────────────
 ├ ┤─UNDERFLOW───────────────────────────────
 └ ┘─ZERODIVIDE──────────────────────────────

 Chapter 13. Debug Tool commands 289

 ON

condition_name
A valid PL/I CONDITION condition name.

file_reference
A valid PL/I file constant or file variable (can be qualified).

command
A valid Debug Tool command.

Usage Notes:

� You must abide by the PL/I restrictions for the particular condition. See
PL/I Language Reference for an explanation of the restrictions.

� An ON action for a specified PL/I condition remains established until:

– Another ON command establishes a new action for the same condi-
tion. In other words, the breakpoint is replaced.

– A CLEAR command removes the ON definition.

� The ON command occurs before any existing ON-unit in your application
program. The ON-unit is processed after Debug Tool returns control to
the language.

� The following are accepted PL/I abbreviations for the PL/I condition
constants:

ATTENTION or ATTN
FIXEDOVERFLOW or FOFL
OVERFLOW or OFL
STRINGRANGE or STRG
STRINGSIZE or STRZ
SUBSCRIPTRANGE or SUBRG
UNDEFINEDFILE([file_reference]) or UNDF([file_reference])

 UNDERFLOW or UFL
 ZERODIVIDE or ZDIV

� The preferred form of the ON command is AT OCCURRENCE. For compat-
ibility with PLITEST and INSPECT, however, it is recognized and proc-
essed. ON should be considered a synonym of AT OCCURRENCE. Any ON
commands entered are logged as AT OCCURRENCE commands.

Examples:

� Display a message if a division by zero is detected.

ON ZERODIVIDE BEGIN;

LIST 'A zero divide has been detected';

END;

� Display and patch the error character when converting character data to
numeric.

Given a PL/I program that contains the following statements:

DECLARE i FIXED BINARY(31,ð);

 .

 ..

 ..

i ═ '1s3';

The following Debug Tool command would display and patch the error
character when converting the character data to numeric:

290 Debug Tool User's Guide and Reference

 PANEL

ON CONVERSION

 BEGIN;

LIST (%STATEMENT, ONCHAR);

ONCHAR ═ 'ð';

 GO;

 END;

'1s3' cannot be converted to a binary number so CONVERSION is raised.
The ON CONVERSION command lists the offending statement number and
the offending character: 's'. The data will be patched by replacing the
's' with a character zero, ð, and processing will continue.

PANEL command (full-screen mode)
The PANEL command displays special panels. The PANEL keyword is optional.

The PANEL command cannot be used in a command list, any conditional command,
or any multiway command.

55─ ──┬ ┬─────── ──┬ ┬─COLORS──────────── ─;──────────────────────────────────5%
 └ ┘─PANEL─ ├ ┤ ─LAYOUT─ ──┬ ┬───────
 │ │└ ┘─RESET─
 ├ ┤─LISTINGS──────────
 ├ ┤─PROFILE───────────
 └ ┘─SOURCES───────────

COLORS

Displays the Color Selection Panel that allows the selection of color, high-
lighting, and intensity of the various fields of the Debug Tool session panel.

LAYOUT

Displays the Window Layout Selection Panel that controls the configuration of
the windows on the Debug Tool session panel.

RESET

Restores the relative sizes of windows for the current configuration, without
displaying the window layout panel. For configurations 1 and 4, the three
windows are evenly divided. For other configurations, the point where the
three windows meet is approximately the center of the screen.

See “Changing Session Panel window layout” on page 95 for details on the
six configuration options.

LISTINGS

Displays the Source Identification Panel, where associations are made between
source listings or source files shown in the source window and their program
units. LISTINGS is equivalent to SOURCES.

Debug Tool provides the Source Identification Panel to maintain a record of
compile units associated with your program, as well as their associated source
or listing.

You can also make source or listings available to Debug Tool by entering their
names on the Source Identification Panel.

The Source Identification Panel associates compile units with the names of
their respective listing or source files and controls what appears in the Source
window. To explicitly name the compile units being displayed in the source

 Chapter 13. Debug Tool commands 291

 PANEL

window, access the Source Identification Panel by entering the PANEL LISTINGS

or PANEL SOURCES command. Figure 22 on page 292 is an example of the
panel.

à ð
Source Identification Panel

 Command ═══>

 Compile Unit Listings/Source File Display

 ---------------------- --------------------------------- -------

 DBKP515 TS64ð81.TEST.LISTING(IBME73) Y

 ___________ ____________________________ _

 Enter QUIT to return with current settings saved.

CANCEL to return without current settings saved.

UP/DOWN to scroll up and down.

á ñ

Figure 22. The Source Identification Panel

Compile Unit
Is the name of a valid compile unit currently known to Debug Tool. New
compile units are added to the list as they become known.

Listing/Source File
Is the name of the listing or source file containing the compilation unit to be
displayed in the Source window. If the file is a listing, only source program
statements are shown. The minimum required is the compile unit name.
The default file specification is pgmname LISTING \ (COBOL and PL/I),
where pgmname is the name of your program. For TSO, the default file
specification is userid.pgmname.C (C/C++), userid.pgmname.list (COBOL),
or userid.pgmname.list (PL/I) for sequential data sets and
userid.dsname.C(membername) (C/C++),
userid.dsname.Listing(membername) (COBOL), or
userid.dsname.List(membername) (PL/I) for partitioned data sets.

Display
Is a flag that specifies whether the listing or source is to be displayed in the
Source window.

To display a listing view, take the following steps:

� Compile the program with the proper option to generate a source or source
listing file.

� Make sure the file is available and accessible on your host operating
system.

� Set the Display field on the Source Identification panel to Y for the compile
unit. To save time and avoid displaying listings or source you do not want
to see, specify N.

If any of these conditions are not satisfied, the Source window remains empty
until control reaches a compile unit where the conditions are satisfied.

You can change the source or source listing associated with a compile unit by
entering the new name over the source or source listing file displayed in the
LISTING/SOURCE FILE field.

Note: The new name must be followed by at least one blank.

292 Debug Tool User's Guide and Reference

 PERFORM

After you modify the panel, return to the Debug Tool session panel either by
issuing the QUIT command, or by pressing the QUIT PF key.

PROFILE

Displays the Profile Settings Panel, where parameters of a full-screen Debug
Tool session can be set.

SOURCES

Is equivalent to LISTINGS.

Usage Notes:

� All information on the panels invoked by the PANEL command is saved
when QUIT is used to leave them. Saving the changes to the specified
panels in this manner returns you to your Debug Tool session with the
current settings in effect. In addition, CANCEL can be used to leave the
panels without saving the changes.

� On normal termination, Debug Tool saves certain panel settings in the
Debug Tool-defined file INSPSAFE. See “Customizing settings” on
page 99 for details on changing and saving the settings for each of the
panels.

� The PANEL command is not logged.

Examples:

� Display the color and attribute panel.

PANEL COLORS;

� Reset the relative sizes of the windows for the current layout configura-
tion.

PANEL LAYOUT RESET;

PERFORM command (COBOL)
The PERFORM command transfers control explicitly to one or more statements and
implicitly returns control to the next executable statement after execution of the
specified statements is completed. The keywords cannot be abbreviated.

Simple:

 ┌ ┐───────────
55──PERFORM─ ───

6
┴─command─ ─END-PERFORM──;─────────────────────────────────5%

command
A valid Debug Tool command.

Repeating:

55──PERFORM─ ──┬ ┬──────────────────────────── ──────────────────────────────5
 │ │┌ ┐─BEFORE─
 └ ┘ ──┬ ┬────── ─TEST─ ──┼ ┼────────
 └ ┘─WITH─ └ ┘─AFTER──

5─ ──┬ ┬── ─UNTIL──────────5
 └ ┘─VARYING──reference──FROM──reference──BY──reference─

 ┌ ┐───────────
5──condition─ ───

6
┴─command─ ─END-PERFORM──;────────────────────────────────5%

 Chapter 13. Debug Tool commands 293

 PERFORM

reference
A valid Debug Tool COBOL reference.

condition
A simple relation condition.

command
A valid Debug Tool command.

Usage Notes:

� A constant as a reference is allowed only on the right side of the FROM
and BY keywords.

� Index-names and floating point variables cannot be used as the
VARYING references.

� Index-names are not supported in the BY phrase.

� Only in-line PERFORMs are supported (but the PERFORMed command can
be a Debug Tool procedure invocation).

� The COBOL AFTER phrase is not supported.

| � Windowed date fields cannot be used as the VARYING reference, the
| FROM reference, or the BY reference.

� See COBOL Language Reference publications for an explanation of the
following COBOL keywords:

 AFTER

 BEFORE

 BY

 FROM

 TEST

 UNTIL

 VARYING

 WITH

Examples:

� Set a breakpoint at statement number 10 to move the value of variable
a to the variable b and then list the value of x.

AT 1ð PERFORM

MOVE a TO b;

 LIST (x);

END-PERFORM;

� List the value of height for each even value between 2 and 30,
including 2 and 30.

PERFORM WITH TEST AFTER

VARYING height FROM 2 BY 2

UNTIL height ═ 3ð

 LIST height;

END-PERFORM;

294 Debug Tool User's Guide and Reference

 PROCEDURE

Prefix commands (full-screen mode)
The Prefix commands apply only to source listing lines and are typed into the
prefix area in the source window. For details, see the section corresponding to the
command name.

The various forms of the Prefix commands are summarized in Table 16.

Table 16. Summary of Prefix Commands

AT Prefix Defines a statement breakpoint via the source window prefix area.

CLEAR Prefix Clears a breakpoint via the source window prefix area.

DISABLE Prefix Disables a breakpoint via the source window prefix area.

ENABLE Prefix Enables a disabled breakpoint via the source window prefix area.

QUERY Prefix Queries what statements have breakpoints via the source window
prefix area.

SHOW Prefix Specifies what relative statement or verb within the line is to have its
frequency count shown in the suffix area.

 PROCEDURE command
The PROCEDURE command allows the definition of a group of commands that can be
accessed using the CALL procedure command. The CALL command is the only way
to perform the commands within the PROCEDURE. PROCEDURE definitions remain in
effect for the entire debug session.

The PROCEDURE keyword can only be abbreviated as PROC. PROCEDURE definitions
can be subcommands of other PROCEDURE definitions. The name of a nested proce-
dure has only the scope of the containing procedure. Session variables cannot be
declared within a PROCEDURE definition.

In addition, a procedure must be defined before it is CALLed.

 ┌ ┐───────────
55──name──:──PROCEDURE──;─ ───

6
┴─command─ ─END──;───────────────────────────5%

name
A valid Debug Tool procedure name. It must be a valid identifier in the current
programming language. The maximum length is 31 characters.

command
A valid Debug Tool command other than a declaration or PANEL command.

Usage Notes:

� Since the Debug Tool procedure names are always uppercase, the pro-
cedure names are converted to uppercase even for programming lan-
guages that have mixed-case symbols.

� If a GO or STEP command is issued within a procedure or a nested pro-
cedure, any statements following the GO or STEP in that procedure and
the containing procedure are ignored. If control returns to Debug Tool,

 Chapter 13. Debug Tool commands 295

 QUERY

it returns to the statement following the CALL of the containing
PROCEDURE.

� It is recommended that procedure names be chosen so that they are
valid for all possible programming language settings throughout the
entire Debug Tool debugging session.

Examples:

� When procedure proc1 is called, the values of variables x, y, and z are
displayed.

proc1: PROCEDURE; LIST (x, y, z); END;

� Define a procedure named setat34 that sets a breakpoint at statement
34. Procedure setat34 contains a nested procedure lister that lists
current statement breakpoints. Procedure lister can only be called
from within setat34.

setat34: PROCEDURE;

 AT 34;

 lister: PROCEDURE;

LIST AT STATEMENT;

 END;

 CALL lister;

END;

 QUERY command
The QUERY command displays the current value of the specified Debug Tool setting,
the current setting of all the Debug Tool settings, or the current location in the sus-
pended program.

For an explanation of the Debug Tool settings, see the SET command.

296 Debug Tool User's Guide and Reference

 QUERY

55──QUERY─ ──┬ ┬─CHANGE───────────────── ─;─────────────────────────────────5%
 ├ ┤─COLORS─────────────────
 ├ ┤─COUNTRY────────────────
 ├ ┤─DBCS───────────────────
 ├ ┤─DEFAULT──LISTINGS──────
 ├ ┤─DEFAULT──SCROLL────────
 ├ ┤─DEFAULT──WINDOW────────
 ├ ┤─ECHO───────────────────
 ├ ┤─EQUATES────────────────
 ├ ┤─EXECUTE────────────────
 ├ ┤─FREQUENCY──────────────
 ├ ┤─HISTORY────────────────
 ├ ┤─INTERCEPT──────────────
 ├ ┤─KEYS───────────────────
 ├ ┤─LOCATION───────────────
 ├ ┤─LOG────────────────────
 ├ ┤─LOG──NUMBERS───────────
 ├ ┤─MONITOR──NUMBERS───────
 ├ ┤─MSGID──────────────────
 ├ ┤ ──┬ ┬────────── ─LANGUAGE─
 │ │└ ┘─NATIONAL─
 ├ ┤─PACE───────────────────
 ├ ┤─PFKEYS─────────────────
 ├ ┤─PROGRAMMING──LANGUAGE──
 ├ ┤─PROMPT─────────────────
 ├ ┤─QUALIFY────────────────
 ├ ┤─REFRESH────────────────
 ├ ┤─REWRITE────────────────
 ├ ┤─SCREEN─────────────────
 ├ ┤─SCROLL──DISPLAY────────
 ├ ┤─SETS───────────────────
 ├ ┤─SOURCE─────────────────
 ├ ┤─SUFFIX─────────────────
 ├ ┤─TEST───────────────────
 └ ┘─WARNING────────────────

CHANGE

Displays the current CHANGE setting.

COLORS (Full-Screen and Line Mode)
Displays the current COLOR setting.

COUNTRY

Displays the current COUNTRY setting.

DBCS

Displays the current DBCS setting.

DEFAULT LISTINGS (MVS)
Displays the current DEFAULT LISTINGS setting.

DEFAULT SCROLL (Full-Screen and Line Mode)
Displays the current DEFAULT SCROLL setting.

DEFAULT WINDOW (Full-Screen and Line Mode)
Displays the current DEFAULT WINDOW setting.

ECHO

Displays the current ECHO setting.

 Chapter 13. Debug Tool commands 297

 QUERY

EQUATES

Displays the current EQUATE definitions.

EXECUTE

Displays the current EXECUTE setting.

FREQUENCY

Displays the current FREQUENCY setting.

HISTORY

Displays the current HISTORY setting and size.

INTERCEPT

Displays the current INTERCEPT setting.

KEYS (Full-Screen and Line Mode)
Displays the current KEYS setting.

LOCATION

Displays the statement identifier where execution is suspended. The current
statement identified by QUERY LOCATION has not yet executed. If suspended at
a breakpoint, the description of the breakpoint is also displayed.

LOG

Displays the current LOG setting.

LOG NUMBERS (Full-Screen and Line Mode)
Displays the current LOG NUMBERS setting.

MONITOR NUMBERS (Full-Screen and Line Mode)
Displays the current MONITOR NUMBERS setting.

MSGID

Displays the current MSGID setting.

NATIONAL LANGUAGE

Displays the current NATIONAL LANGUAGE setting.

PACE

Displays the current PACE setting. This setting is not supported in batch mode.

PFKEYS

Displays the current PFKEY definitions. This setting is not supported in batch
mode.

PROGRAMMING LANGUAGE

Displays the current PROGRAMMING LANGUAGE setting. Debug Tool does not differ-
entiate between C and C++, use this option for C++ as well a C programs.

PROMPT (Full-Screen and Line Mode)
Displays the current PROMPT setting.

QUALIFY

Displays the current QUALIFY BLOCK setting.

REFRESH (Full-Screen and Line Mode)
Displays the current REFRESH setting.

REWRITE

Displays the current REWRITE setting. This setting is not supported in batch
mode.

298 Debug Tool User's Guide and Reference

 QUIT

SCREEN (Full-Screen and Line Mode)
Displays the current SCREEN setting.

SCROLL DISPLAY (Full-Screen and Line Mode)
Displays the current SCROLL DISPLAY setting.

SETS

Displays all current settings.

SOURCE

Displays the current SOURCE setting.

SUFFIX (Full-Screen and Line Mode)
Displays the current SUFFIX setting.

TEST

Displays the current TEST setting.

WARNING (C)
Displays the current WARNING setting.

Examples:

� Display the current ECHO setting.

QUERY ECHO;

� Display all current settings.

QUERY SETS;

QUERY prefix (full-screen mode)
Queries what statements on a particular line have statement breakpoints when you
issue this command via the source window prefix area.

55──QUERY──5%

Usage Notes:

� When the QUERY Prefix command is issued, a sequence of characters
corresponding to the statements is displayed in the prefix area of the
source window. If the statement contains a breakpoint, "*" is used, or
".", if it does not. If there are more than eight statements or verbs on
the line, and one or more past the eighth statement have breakpoints,
the eighth character of the map is replaced by a "+".

For example, a display of "..*." would indicate that four statements or
verbs begin on the line and the third one has a breakpoint defined.

� The QUERY Prefix command is not logged.

 QUIT command
The QUIT command ends a Debug Tool session and if an expression is specified,
sets the return code. It also invokes a prompt panel (full-screen) that asks if you
really want to quit the debug session. In line and batch mode, the QUIT command
ends the session without prompting.

 Chapter 13. Debug Tool commands 299

 RETRIEVE

55──QUIT─ ──┬ ┬────────────────── ─;──5%
 └ ┘─(──expression──)─

expression
A valid Debug Tool expression in the current programming language; see
“Expression” on page 201.

If expression is specified, this value is used as the application return code
value. The actual return code for the run is determined by the execution envi-
ronment.

Usage Notes:

� QUIT is always logged in a comment line except where it appears in a
command list. This makes it unnecessary for you to "comment out" the
QUIT to reuse the log file as a primary commands file.

� If QUIT is issued from a Debug Tool commands file, no prompt is issued.
This applies to the Debug Tool preferences files, primary commands
files, and USE files.

� For PL/I, the expression will be converted to FIXED BINARY (31,ð), if
necessary. In addition, if an expression is specified, it is used as if
there was an invocation of the PLIRETC built-in subroutine in your
program.

� For PL/I, the value of the expression must be nonnegative and less
than 1000.

Examples:

� End a Debug Tool session.

QUIT;

� End a Debug Tool session and use the value in variable x as the appli-
cation return code.

QUIT (x);

RETRIEVE command (full-screen mode)
The RETRIEVE command displays the last command entered on the command line.
For long commands this might be only the last line of the command.

 ┌ ┐─COMMAND─
55──RETRIEVE─ ──┴ ┴───────── ─;───5%

COMMAND

Retrieves commands. Any command retrieved to the command line can be
performed by pressing ENTER. The retrieved command can also be modified
before it is performed. Successive RETRIEVE commands continue to display up
to 12 commands previously entered on the command line. This operand is
most useful when assigned to a PF key.

Usage Note: The RETRIEVE command is not logged.

Example:

300 Debug Tool User's Guide and Reference

 SCROLL

Retrieve the last line so that it can be reissued or modified.

RETRIEVE COMMAND;

 RUN command
The RUN command is synonymous to the GO command. See “GO command” on
page 267.

SCROLL command (full-screen mode)
The SCROLL command provides horizontal and vertical scrolling in full-screen mode.
Scroll commands can be made immediately effective with the IMMEDIATE command.
The SCROLL keyword is optional.

The log, monitor, or source window will not wrap around when scrolled.

 ┌ ┐─CURSOR──
55─ ──┬ ┬──────── ──┬ ┬──┬ ┬─DOWN── ──┬ ┬───────── ──┼ ┼───────── ─;───────────────5%
 └ ┘─SCROLL─ │ │├ ┤─LEFT── ├ ┤─CSR───── ├ ┤─LOG─────
 │ │├ ┤─NEXT── ├ ┤─DATA──── ├ ┤─MONITOR─
 │ │├ ┤─RIGHT─ ├ ┤─HALF──── └ ┘─SOURCE──
 │ │└ ┘─UP──── ├ ┤─integer─
 │ │├ ┤─MAX─────
 │ │└ ┘─PAGE────
 ├ ┤─BOTTOM─────────────────
 ├ ┤─TO──integer────────────
 └ ┘─TOP────────────────────

DOWN

Scrolls the specified number of lines in a window toward the top margin of that
window. DOWN is equivalent to NEXT.

LEFT

Scrolls the specified number of columns in a window toward the right margin of
that window.

NEXT

Is equivalent to DOWN.

RIGHT

Scrolls the specified number of columns in a window toward the left margin of
that window.

UP Scrolls the specified number of lines in a window toward the bottom margin of
that window.

CSR

Specifies scrolling based on the current position of the cursor in a selected
window. The window scrolls up, down, left, or right of the cursor position until
the character where the cursor is positioned reaches the edge of the window.
If the cursor is not in a window or if it is already positioned at the edge of a
window, a full-page scroll occurs.

DATA

Scrolls by one line less than the window size or by one character less than the
window size (if moving left or right).

 Chapter 13. Debug Tool commands 301

 SCROLL

HALF

Scrolls by half the window size.

integer
Scrolls the specified number of lines (up or down) or the specified number of
characters (left or right). Maximum value is 9999.

MAX

Scrolls in the specified direction until the limit of the data is reached. To scroll
the maximum amount, you must use the MAX keyword. You cannot scroll the
maximum amount by filling in the scroll amount field.

PAGE

Scrolls by the window size.

BOTTOM

Scrolls to the bottom of the data.

TO integer

Specifies that the selected window is to scroll to the given line (as indicated in
the prefix area of the selected window). This can be in either the UP or DOWN
direction (for example, if you are line 30 and issue TO 2ð, it will return to line
20). Maximum value is 999999.

TOP

Scrolls to the top of the data.

CURSOR

Selects the window where the cursor is currently positioned.

LOG

Selects the session log window.

MONITOR

Selects the monitor window.

SOURCE

Selects the source listing window.

Usage Notes:

� If you do not specify an operand with the DOWN, LEFT, NEXT, RIGHT, or UP
keywords, and the cursor is outside the window areas, the window
scrolled is determined by the current default window setting (if the
window is open) and the scroll amount is determined by the current
default scroll setting, shown in the SCROLL field on the Debug Tool
session panel. Default scroll and default window settings are controlled
by SET DEFAULT SCROLL and SET DEFAULT WINDOW commands.

� When the SCROLL field on the Debug Tool session panel is overtyped,
the equivalent SET DEFAULT SCROLL command is issued just as if you
had typed the command in directly from the command line (that is, it is
logged and retrievable).

� The SCROLL command is not logged.

� See also “SET DEFAULT SCROLL (full-screen mode)” on page 309.

Examples:

� Scroll one page down in the window containing the cursor.

302 Debug Tool User's Guide and Reference

 SELECT

SCROLL DOWN PAGE CURSOR;

� Scroll the monitor window 12 columns to the left.

SCROLL LEFT 12 MONITOR;

SELECT command (PL/I)
The SELECT command chooses one of a set of alternate commands.

If the reference can be satisfied by more than one of the WHEN clauses, only the
first one is performed. If there is no reference, the first WHEN clause containing an
expression that is true is executed. If none of the WHEN clauses are satisfied, the
command specified on the OTHERWISE clause, if present, is performed. If the
OTHERWISE clause should be executed and it is not present, a Debug Tool message
is issued.

55──SELECT─ ──┬ ┬───────────────── ─;──5
 └ ┘─(──reference──)─

5─ ──┬ ┬─── ──┬ ┬──────────────────── ───5
 │ │┌ ┐─────────────────────────────────────── └ ┘ ─OTHERWISE──command─
 │ ││ │┌ ┐─,──────────
 └ ┘ ───

6
┴─WHEN──(─ ───

6
┴─expression─ ─)──command─

5──END──;──5%

reference
A valid Debug Tool PL/I scalar reference. An aggregate (array or structure)
cannot be used as a reference.

WHEN

Specifies that an expression or a group of expressions be evaluated and either
compared with the reference immediately following the SELECT keyword, or
evaluated to true or false (if reference is omitted).

expression
A valid Debug Tool PL/I expression.

command
A valid Debug Tool command.

OTHERWISE

Specifies the command to be executed when every test of the preceding WHEN
statements fails.

Example:

When sum is equal to the value of c+ev, display a message. When sum is
equal to either fv or ð, display a message. If sum is not equal to the value
of either c+ev, fv, or ð, a Debug Tool error message is issued.

SELECT (sum);

WHEN (c + ev) LIST ('Match on when group number 1');

WHEN (fv, ð) LIST ('Match on when group number 2');

END;

 Chapter 13. Debug Tool commands 303

 SET

 SET command
The SET command sets various switches that affect the operation of Debug Tool.
Except where otherwise specified, settings remain in effect for the entire debug
session.

The various forms of the SET command are summarized in Table 17.

Table 17 (Page 1 of 2). Summary of SET Commands

SET CHANGE Controls the frequency of checking the AT CHANGE break-
points.

SET COLOR Provides control of the color, highlighting, and intensity attri-
butes.

SET COUNTRY Changes the current national country setting.

SET DBCS Controls whether DBCS shift-in and shift-out codes are
recognized.

SET DEFAULT LISTINGS Defines a default partitioned data set (PDS) ddname or
dsname searched for program source listings or source
files.

SET DEFAULT SCROLL Sets the default scroll amount.

SET DEFAULT WINDOW Specifies what window is defaulted.

SET ECHO Controls whether GO and STEP commands are recorded in
the log window.

SET EQUATE Equates a symbol to a string of characters.

SET EXECUTE Controls whether commands are performed or just syntax
checked.

SET FREQUENCY Controls whether statement executions are counted.

SET HISTORY Specifies whether entries to Debug Tool are recorded in the
history table.

SET INTERCEPT (C/C++ and
COBOL)

Intercepts input to and output from specified files, displaying
prompts and output in the log

SET KEYS Controls whether PF key definitions are displayed.

SET LOG Controls the logging of output and assignment to the log
file.

SET LOG NUMBERS Controls whether line numbers are shown in the log
window.

SET MONITOR NUMBERS Controls whether line numbers are shown in the monitor
window.

SET MSGID Controls whether message identifiers are shown.

SET NATIONAL LANGUAGE Switches your application to a different run-time national
language.

SET PACE Specifies the maximum pace of animated execution.

SET PFKEY Associates a Debug Tool command with a PF key.

SET PROGRAMMING

LANGUAGE

Sets the current programming language.

SET PROMPT Controls the display of the current program location.

304 Debug Tool User's Guide and Reference

 SET

Table 17 (Page 2 of 2). Summary of SET Commands

SET QUALIFY Simplifies the identification of references and statement
numbers by resetting the point of view.

SET REFRESH Controls screen refreshing when the SCREEN setting is ON.

SET REWRITE Forces a periodic screen rewrite.

SET SCREEN Controls how information is displayed on the screen.

SET SCROLL DISPLAY Controls whether the scroll field is displayed.

SET SOURCE Associates a source listing or source file with one or more
compile units.

SET SUFFIX Controls the display of the source window suffix area.

SET TEST Overrides the initial run-time TEST options specified at invo-
cation.

SET WARNING Controls display of the Debug Tool warning messages and
whether exceptions are reflected to the application program.

 SET CHANGE
Controls the frequency of checking the AT CHANGE breakpoints. The initial setting is
STATEMENT/LINE.

 ┌ ┐─STATEMENT─
55──SET──CHANGE─ ──┼ ┼─────────── ─;──5%
 ├ ┤─ALL───────
 ├ ┤─BLOCK─────
 ├ ┤─LINE──────
 └ ┘─PATH──────

STATEMENT

Specifies that the AT CHANGE breakpoints are checked at all statements.
STATEMENT is equivalent to LINE.

ALL

Specifies that the AT CHANGE breakpoints are checked at all statements, block
entry and exits, and path points.

BLOCK

Specifies that the AT CHANGE breakpoints are checked at all block entry and
exits.

LINE

Is equivalent to STATEMENT.

PATH

Specifies that the AT CHANGE breakpoints are checked at all path points.

Examples:

� Specify that AT CHANGE breakpoints are checked at all statements.

SET CHANGE;

� Specify that AT CHANGE breakpoints are checked at all path points.

SET CHANGE PATH;

 Chapter 13. Debug Tool commands 305

 SET

SET COLOR (full-screen and line mode)
Provides control of the color, highlighting, and intensity attributes when the SCREEN
setting is ON. The color, highlighting, and intensity keywords can be specified in
any order.

 ┌ ┐─CYCLE──────────────────────────────────
55──SET──COLOR─ ──┼ ┼── ───────────────5
 └ ┘ ──┬ ┬─BLUE────── ──┬ ┬─BLINK───── ──┬ ┬─HIGH─
 ├ ┤─GREEN───── ├ ┤─NONE────── └ ┘─LOW──
 ├ ┤─PINK────── ├ ┤─REVERSE───
 ├ ┤─RED─────── └ ┘─UNDERLINE─
 ├ ┤─TURQUOISE─
 ├ ┤─WHITE─────
 └ ┘─YELLOW────

 ┌ ┐─CURSOR─────────────────────────
5─ ──┼ ┼──────────────────────────────── ───────────────────────────────────5%
 └ ┘ ──┬ ┬─COMMAND──LINE─────────── ─;─
 ├ ┤─LOG──LINES──────────────
 ├ ┤ ─MONITOR─ ──┬ ┬─AREA── ─────
 │ │└ ┘─LINES─
 ├ ┤─PROGRAM──OUTPUT─────────
 ├ ┤ ─SOURCE─ ──┬ ┬─AREA────────
 │ │├ ┤─BREAKPOINTS─
 │ │├ ┤─CURRENT─────
 │ │├ ┤─PREFIX──────
 │ │└ ┘─SUFFIX──────
 ├ ┤ ─TARGET─ ──┬ ┬─────── ──────
 │ │└ ┘─FIELD─
 ├ ┤ ─TEST─ ──┬ ┬─INPUT── ───────
 │ │└ ┘─OUTPUT─
 ├ ┤ ─TITLE─ ──┬ ┬─FIELDS── ─────
 │ │└ ┘─HEADERS─
 ├ ┤ ─TOFEOF─ ──┬ ┬──────── ─────
 │ │└ ┘─MARKER─
 └ ┘─WINDOW──HEADERS─────────

CYCLE

Causes the color to change to the next one in the sequence of colors. The
sequence follows the order shown in the syntax diagram.

BLINK

Causes the characters to blink (if supported by the terminal).

NONE

Causes the characters to appear in normal type.

REVERSE

Transforms the characters to reverse video (if supported by the terminal).

UNDERLINE

Causes the characters to be underlined (if supported by the terminal).

HIGH

Causes screen colors to be high intensity (if supported by the terminal).

LOW

Causes screen colors to be low intensity (if supported by the terminal).

306 Debug Tool User's Guide and Reference

 SET

CURSOR

Specifies that cursor pointing is used to select the field. Optionally, you can
type in the field name (for example, COMMAND LINE) as shown in the syntax
diagram.

COMMAND LINE

Selects the command input line (preceded by ===>).

LOG LINES

Selects the line number portion of the log window.

MONITOR AREA

Selects the primary area of the monitor window.

MONITOR LINES

Selects the line number portion of the monitor window.

PROGRAM OUTPUT

Selects the application program output displayed in the log window.

SOURCE AREA

Selects the primary area of the source window.

SOURCE BREAKPOINTS

Selects the source prefix fields next to statements where breakpoints are set.

SOURCE CURRENT

Selects the line containing the source statement that is about to be performed.

SOURCE PREFIX

Selects the statement identifier column at the left of the source window.

SOURCE SUFFIX

Selects the frequency column at the right of the source window.

TARGET FIELD

Selects the target of a FIND command in full-screen mode, if found.

TEST INPUT

Selects the Debug Tool input displayed in the log window.

TEST OUTPUT

Selects the Debug Tool output displayed in the log window.

TITLE FIELDS

Selects the information fields in the top line of the screen, such as current pro-
gramming language setting or the current location within the program.

TITLE HEADERS

Selects the descriptive headers in the top line of the screen, such
 as location.

TOFEOF MARKER

Selects the top-of-file and end-of-file lines in the session panel windows.

WINDOW HEADERS

Selects the header lines for the windows in the main session panel.

Examples:

� Set the source window display area to yellow reverse video.

 Chapter 13. Debug Tool commands 307

 SET

SET COLOR YELLOW REVERSE SOURCE AREA;

� Set the monitor window display area to high intensity green.

SET COLOR HIGH GREEN MONITOR AREA;

 SET COUNTRY
Changes the current national country setting for the application program. It is avail-
able only where supported by Language Environment. The IBM-supplied initial
country code is US.

55──SET──COUNTRY──country_code──;──5%

country_code
A valid two-letter set that identifies the country code used. The country code
can have one of the following values:

United States: US
 Japanese: JP

Country codes cannot be truncated.

Usage Notes:

� This setting affects both your application and Debug Tool.

� At the beginning of an enclave, the settings are those provided by Lan-
guage Environment or your operating system. For nested enclaves, the
parent's settings are restored upon return from a child enclave.

Example:

Change the current country code to correspond to Japan.

SET COUNTRY JP;

 SET DBCS
Controls whether shift-in and shift-out codes are interpreted on input and supplied
on DBCS output. SET DBCS is valid for all programming languages. The initial
setting is ON for C and PL/I and OFF for COBOL.

 ┌ ┐─ON──
55──SET──DBCS─ ──┼ ┼───── ─;──5%
 └ ┘─OFF─

ON Interprets shift-in and shift-out codes.

OFF

Ignores shift-in and shift-out codes.

Example:

Specify that shift-in and shift-out codes are interpreted.

SET DBCS ON;

308 Debug Tool User's Guide and Reference

 SET

SET DEFAULT LISTINGS (MVS)
Defines a default partitioned data set (PDS) ddname or dsname searched for
program source listings or source files. The LISTINGS keyword cannot be abbrevi-
ated.

55──SET──DEFAULT──LISTINGS──listings_file──;─────────────────────────────5%

listings_file
Specifies a ddname (a valid ddname in MVS) or a fully-qualified MVS data set
name (for TSO and CICS) to be searched for program source listings or source
files.

Usage Notes:

� The SET SOURCE ON command has a higher precedence than the SET

DEFAULT LISTINGS command.

� For C/C++ compile units, Debug Tool requires a file containing the
source code. By default, when Debug Tool encounters a new C/C++
compile unit, it looks for the source code in a file whose name is the
one that was used on the compile step.

For VS COBOL II and PL/I compile units, Debug Tool requires a file
containing the compiler listing. By default, when Debug Tool
encounters a new VS COBOL II or PL/I compile unit, it looks for the
listing in a file named hlq.cuname.LIST.

For COBOL/370, COBOL for MVS, and COBOL for OS/390, Debug
Tool looks for the listing in a partitioned data set member named
cuname.

Example:

Indicate that the default listings file is allocated to dsname
SVTRSAMP.TS99992.MYPROG.

SET DEFAULT LISTINGS SVTRSAMP.TS99992.MYPROG;

SET DEFAULT SCROLL (full-screen mode)
Sets the default scroll amount that is used when a SCROLL command is issued
without the amount specified. The initial setting is PAGE.

55──SET──DEFAULT──SCROLL─ ──┬ ┬─CSR───── ─;─────────────────────────────────5%
 ├ ┤─DATA────
 ├ ┤─HALF────
 ├ ┤─integer─
 ├ ┤─MAX─────
 └ ┘─PAGE────

CSR

Scrolls in the specified direction until the character where the cursor is posi-
tioned reaches the edge of the window.

DATA

Scrolls by one line less than the window size or by one character less than the
window size (if moving left or right).

 Chapter 13. Debug Tool commands 309

 SET

HALF

Scrolls by half the window size.

integer
Scrolls the specified number of lines (up or down) or the specified number of
characters (left or right). Maximum value is 9999.

MAX

Scrolls in the specified direction until the limit of the data is reached.

PAGE

Scrolls by the window size.

Example:

Set the default amount to half the size of the window.

SET DEFAULT SCROLL HALF;

SET DEFAULT WINDOW (full-screen mode)
Specifies what window is selected when a window referencing command (for
example, FIND, SCROLL, or WINDOW) is issued without explicit window identification
and the cursor is outside the window areas. The initial setting is SOURCE.

55──SET──DEFAULT──WINDOW─ ──┬ ┬─LOG───── ─;─────────────────────────────────5%
 ├ ┤─MONITOR─
 └ ┘─SOURCE──

LOG

Selects the session log window.

MONITOR

Selects the monitor window.

SOURCE

Selects the source listing window.

Example:

Set the default to the monitor window for use with scrolling commands.

SET DEFAULT WINDOW MONITOR;

 SET ECHO
Controls whether GO and STEP commands are recorded in the log window when they
are not subcommands. The presence of long sequences of GO and STEP com-
mands clutters the log window and provides little additional information. SET ECHO

makes it possible to suppress the display of these commands. The contents of the
log file are unaffected. The initial setting is ON.

 ┌ ┐─\───────
55──SET──ECHO─ ──┬ ┬─ON── ──┼ ┼───────── ─;───────────────────────────────────5%
 └ ┘─OFF─ └ ┘─keyword─

ON Shows given commands in the log window.

310 Debug Tool User's Guide and Reference

 SET

OFF

Suppresses given commands in the log window.

keyword
Can be GO (with no operand) or STEP.

* Specifies that the command is applied to the GO and STEP commands. This is
the default.

Examples:

� Specify that the display of GO and STEP commands is suppressed.

SET ECHO OFF;

� Specify that GO and STEP commands are displayed.

SET ECHO ON \;

 SET EQUATE
Equates a symbol to a string of characters. The equated symbol can be used any-
where a keyword, identifier, or punctuation is used in a Debug Tool command.
When an equated symbol is found in a Debug Tool command (other than the identi-
fier operand in SET EQUATE and CLEAR EQUATE), the equated symbol is replaced by
the specified string before parsing continues.

55──SET──EQUATE──identifier──═──string──;────────────────────────────────5%

identifier
An identifier that is valid in the current programming language. The maximum
length of the identifier is:

� For C, 32 SBCS characters
� For COBOL, 30 SBCS characters
� For PL/I, 31 SBCS characters

The identifier can contain DBCS characters.

string
A string constant in the current programming language. The maximum length
of the replacement string is 255 SBCS characters.

Usage Notes:

� Operands of the following commands are for environments other than
the standard Debug Tool environment (that is, CMS fileid, TSO dsname,
and so forth) and are not scanned for EQUATEd symbol substitution:

 CMS

 COMMENT

 INPUT

SET DEFAULT LISTINGS

SET INTERCEPT ON/OFF FILE

SET LOG ON FILE

SET SOURCE (cu_spec)

 SYSTEM/SYS

 TSO

 USE

 Chapter 13. Debug Tool commands 311

 SET

� To remove an EQUATE definition, use the CLEAR EQUATE command.

� To remain accessible when the current programming language setting is
changed, symbols that are equated when the current programming lan-
guage setting is C must be entered in uppercase and must be valid in
the other programming languages.

� If an EQUATE identifier coincides with an existing keyword or keyword
abbreviation, EQUATE takes precedence. If the EQUATE identifier is
already defined, the new definition replaces the old.

� The equate string is not scanned for, or substituted with, symbols previ-
ously set with a SET EQUATE command.

Examples:

� Specify that the symbol INFO is equated to "ABC, DEF (H+1)". The
current programming language setting is either C or COBOL.

SET EQUATE INFO = "ABC, DEF (H+1)";

� Specify that the symbol tstlen is equated to the equivalent of a #define
for structure pointing. The current programming language setting is C.
Note that this lowercase symbol will not necessarily be accessible if the
current programming language changes.

SET EQUATE tstlen = "struct1->member.b->c.len";

� Specify that the symbol VARVALUE is equated to the command LIST x.

SET EQUATE VARVALUE = "LIST x";

 SET EXECUTE
Controls whether commands from all input sources are performed or just syntax
checked (primarily for checking USE files). The initial setting is ON.

 ┌ ┐─ON──
55──SET──EXECUTE─ ──┼ ┼───── ─;───5%
 └ ┘─OFF─

ON Specifies that commands are accepted and performed.

OFF

Specifies that commands are accepted and parsed; however, only the following
commands are performed: END, GO, SET EXECUTE ON, QUIT, and USE.

Example:

Specify that all commands are accepted and performed.

SET EXECUTE ON;

 SET FREQUENCY
Controls whether statement executions are counted. The initial setting is OFF.

312 Debug Tool User's Guide and Reference

 SET

 ┌ ┐─ON──
55──SET──FREQUENCY─ ──┼ ┼───── ──┬ ┬─────────────────── ─;────────────────────5%
 └ ┘─OFF─ ├ ┤─cu_spec───────────
 │ │┌ ┐─,───────
 └ ┘ ─(─ ───

6
┴─cu_spec─ ─)─

ON Specifies that statement executions are counted.

OFF

Specifies that statement executions are not counted.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201. If omitted, all
compile units with statement information are processed.

Note: See also “LIST FREQUENCY” on page 280.

Example:

Specify that statement executions are counted in compile units main and
subr1.

SET FREQUENCY ON (main, subr1);

 SET HISTORY
Specifies whether entries to Debug Tool are recorded in the history table and
optionally adjusts the size of the table. The history table contains information about
the most recently processed breakpoints and conditions. The initial setting is ON;
the initial size is 100.

 ┌ ┐─ON──
55──SET──HISTORY─ ──┼ ┼───── ──┬ ┬───────── ─;────────────────────────────────5%
 └ ┘─OFF─ └ ┘─integer─

ON Maintains the history of invocations.

OFF

Suppresses the history of invocations.

integer
The number of entries kept in the history table.

Note: See also “LIST LAST” on page 280.

Examples:

� Adjust the history table size to 50 lines.

SET HISTORY 5ð;

� Turn off history recording.

SET HISTORY OFF;

 Chapter 13. Debug Tool commands 313

 SET

SET INTERCEPT (C/C++ and COBOL)
Intercepts input to and output from specified files. Output and prompts for input are
displayed in the log.

Only sequential I/O can be intercepted. I/O intercepts remain in effect for the entire
debug session, unless you terminate them by selecting SET INTERCEPT OFF. The
initial setting is OFF.

 ┌ ┐─ON──
55──SET──INTERCEPT─ ──┼ ┼───── ──┬ ┬ ─FILE──file_spec─ ────────────────────────5%
 └ ┘─OFF─ └ ┘─CONSOLE─────────

ON Turns on I/O interception for the specified file. Output appears in the log, pre-
ceded by the file specifier for identification. Input causes a prompt entry in the
log, with the file specifier identified. You can then enter input for the specified
file on the command line by using the INPUT command. See “INPUT command
(C/C++ and COBOL)” on page 274.

OFF

Turns off I/O interception for the specified file.

FILE file_spec

A valid file specification that is interpreted by each supported language. The
FILE keyword cannot be abbreviated.

In C, this can be any valid fopen() file specifier including stdin, stdout, or
stderr.

CONSOLE (COBOL)
Turns on I/O interception for the console.

This consists of:

� Job log output from DISPLAY UPON CONSOLE

� Screen output (and confirming input) from STOP 'literal'
� Terminal input for ACCEPT FROM CONSOLE or ACCEPT FROM SYSIN.

Usage Notes:

� COBOL supports only the CONSOLE command.

� For C, intercepted streams or files cannot be part of any C I/O redi-
rection during the execution of a nested enclave.

� See also “SET REFRESH (full-screen mode)” on page 322 for debug-
ging MVS/TSO applications that do line-input I/O.

� For PL/I, SET INTERCEPT is not supported.

� For CICS, SET INTERCEPT is not supported.

Examples:

� Turn on the I/O interception for the console. The current programming
language setting is COBOL.

SET INTERCEPT CONSOLE;

� Turn on the I/O interception for the fopen() file specifier dd:mydd. The
current programming language setting is C.

SET INTERCEPT ON FILE dd:mydd;

314 Debug Tool User's Guide and Reference

 SET

SET KEYS (full-screen and line mode)
Controls whether PF key definitions are displayed when the SCREEN setting is ON.
The initial setting is ON.

 ┌ ┐─ON── ┌ ┐─12─
55──SET──KEYS─ ──┼ ┼───── ──┼ ┼──── ─;──5%
 └ ┘─OFF─ └ ┘─24─

ON Displays PF key definitions.

OFF

Suppresses the display of the PF key definitions.

12 Shows PF1-PF12 on the screen bottom.

24 Shows PF13-PF24 on the screen bottom.

See also “SET PFKEY” on page 318.

Example:

Specify that the display of the PF key definitions is suppressed.

SET KEYS OFF;

 SET LOG
Controls whether each performed command and the resulting output is written to
the log file and defines (or redefines) the file that is used. The initial setting is ON
FILE INSPLOG. This is a valid ddname in MVS or FILEDEF name in CMS.

 ┌ ┐ ─ON─ ──┬ ┬──────────────
 │ │└ ┘ ─FILE──fileid─
55──SET──LOG─ ──┼ ┼────────────────────── ─;────────────────────────────────5%
 ├ ┤─KEEP──count──────────
 └ ┘─OFF──────────────────

ON Specifies that commands and output are written to the log file.

FILE fileid

Identifies the log file used. The FILE keyword cannot be abbreviated.

In TSO, fileid is a ddname or a qualified data set name. Partitioned data sets
should not be used.

In CICS, fileid is a qualified data set name. Partitioned data sets should not be
used.

In CMS, fileid is a FILEDEF name or a CMS fileid (filename filetype filemode).
If filemode is omitted, the CMS search sequence is used.

If fileid has the form of a ddname, Debug Tool checks to see if the file is allo-
cated (FILEDEFed in CMS).

KEEP count

Specifies the number of lines of log output retained for display. The initial
setting is 1000; count cannot equal zero (ð).

 Chapter 13. Debug Tool commands 315

 SET

OFF

Specifies that commands and output are not written to a log file.

Usage Notes:

� The log output lines retained for display are always the last (that is, the
most recent) lines.

� Setting LOG OFF does not suppress the log display.

� If the same file name already exists, the output log is appended to the
existing file.

� For attributes of the log file, see “Creating the Log file” on page 88.

Examples:

� Specify that commands and output are written to the log file named
mainprog.

SET LOG ON FILE mainprog;

Another example using the data set name thing.

SET LOG ON FILE userid.thing.log

� Indicate that 500 lines of log output are retained for display.

SET LOG KEEP 5ðð;

SET LOG NUMBERS (full-screen and line mode)
Controls whether line numbers are shown in the log window. The initial setting is
ON.

 ┌ ┐─ON──
55──SET──LOG──NUMBERS─ ──┼ ┼───── ─;──5%
 └ ┘─OFF─

ON Shows line numbers in the log window.

OFF

Suppresses line numbers in the log window.

Example:

Specify that log line numbers are not shown.

SET LOG NUMBERS OFF;

SET MONITOR NUMBERS (full-screen and line mode)
Controls whether line numbers are shown in the monitor window. The initial setting
is ON.

 ┌ ┐─ON──
55──SET──MONITOR──NUMBERS─ ──┼ ┼───── ─;────────────────────────────────────5%
 └ ┘─OFF─

ON Shows line numbers in the monitor window.

316 Debug Tool User's Guide and Reference

 SET

OFF

Suppresses line numbers in the monitor window.

Example:

Specify that monitor line numbers are not shown.

SET MONITOR NUMBERS OFF;

 SET MSGID
Controls whether the Debug Tool messages are displayed with the message prefix
identifiers. The initial setting is OFF.

 ┌ ┐─ON──
55──SET──MSGID─ ──┼ ┼───── ─;───5%
 └ ┘─OFF─

ON Displays message identifiers. The first 7 characters of the message contain the
EQAnnnn message prefix identifier, then a blank, then the original message
text, such as: 'EQA2222 Program does not exist.'

OFF

Displays only the message text.

Example:

Specify that message identifiers are suppressed.

SET MSGID OFF;

SET NATIONAL LANGUAGE
Switches your application to a different run-time national language that determines
what translation is used when a message is displayed. The switch is effective for
the entire run-time environment; it is not restricted to Debug Tool activity only. The
initial setting is supplied by Language Environment, according to the setting in the
current enclave.

 ┌ ┐─NATIONAL─
55──SET─ ──┴ ┴────────── ─LANGUAGE──language_code──;────────────────────────5%

language_code
A valid three-letter set that identifies the language used or (for compatibility)
one of the two-letter language codes that was accepted in the previous release
of INSPECT for C/370 and PL/I. The language code can have one of the fol-
lowing values:

United States English: ENU

United States English (Uppercase): UEN

 Japanese: JPN

For compatibility with the previous release of INSPECT for C/370 and PL/I:

EN or ENGLISH is mapped to ENU
UE or UENGLISH is mapped to UEN
JA, JAPANESE, NI, or NIHONGO is mapped to JPN

 Chapter 13. Debug Tool commands 317

 SET

Usage Notes:

� This setting affects both your application and Debug Tool.

� At the beginning of an enclave, the settings are those provided by Lan-
guage Environment or your operating system. For nested enclaves, the
parent's settings are restored upon return from a child enclave.

Examples:

� Set the current national language to Japanese.

SET NATIONAL LANGUAGE JPN;

� Set the current national language to United States English.

SET LANGUAGE ENU;

 SET PACE
Specifies the maximum pace of animated execution, in steps per second. The
initial setting is two steps per second. This setting is not supported in batch mode
and it has no effect under CICS.

55──SET──PACE──number──;───5%

number
A decimal number between 0 and 9999; it must be a multiple of 0.5.

Usage Notes:

� Associated with the SET PACE command is the STEP command. Ani-
mated execution is achieved by defining a PACE and then issuing a STEP
n command where n is the number of steps to be seen in animated
mode. STEP \ can be used to see all steps to the next breakpoint in
animated mode.

� When PACE is set to 0, no animation occurs.

Example:

Set the animated execution pace to 1.5 steps per second.

SET PACE 1.5;

 SET PFKEY
Associates a Debug Tool command with a Program Function key (PF key). This
setting is not supported in batch mode.

55──SET──PFn─ ──┬ ┬──────── ─═──command──;──────────────────────────────────5%
 └ ┘─string─

PFn

A valid program function key specification (PF1 - PF24).

string
The label shown in the PF key display (if the KEYS setting is ON) that is entered
as a string constant. The string is truncated if longer than eight characters. If
the string is omitted, the first eight characters of the command are displayed.

318 Debug Tool User's Guide and Reference

 SET

command
A valid Debug Tool command or partial command.

Usage Notes:

� In Debug Tool, if there is any text on the command line at the time the
PF key is pressed, that text is appended to the PF key string, with an
intervening blank, for execution.

� In Debug Tool, the following initial PF key settings exist:

PF1 ? = ?
PF2 STEP = STEP
PF3 QUIT = QUIT
PF4 LIST = LIST
PF5 FIND = IMMEDIATE FIND
PF6 AT/CLEAR =AT TOGGLE
PF7 UP = IMMEDIATE UP
PF8 DOWN = IMMEDIATE DOWN
PF9 GO = GO
PF1ð ZOOM = IMMEDIATE ZOOM
PF11 ZOOM LOG = IMMEDIATE ZOOM LOG
PF12 RETRIEVE = IMMEDIATE RETRIEVE

PF keys 13-24 are equivalent to PF keys 1-12, respectively.

Example:

Define PF key 5 to scroll the cursor-selected screen forward. The current
programming language setting is COBOL.

SET PF5 'Down' = IMMEDIATE SCROLL DOWN;

SET PROGRAMMING LANGUAGE
Sets the current programming language. You can only set the current program-
ming language to the selection of languages of the programs currently loaded. For
example, if the current load module contains both C and COBOL compile units, but
not PL/I, you can set the language only to C or COBOL. However, if you later STEP
or GO into another load module that contains C, COBOL, and PL/I compile units,
you can set the language to any of the three.

The programming language setting affects the parsing of incoming Debug Tool
commands. The execution of a command is always consistent with the current pro-
gramming language setting that was in effect when the command was parsed. The
programming language setting at execution time is ignored.

 ┌ ┐─CYCLE───────────────
55──SET──PROGRAMMING──LANGUAGE─ ──┼ ┼───────────────────── ─;───────────────5%
 ├ ┤─AUTOMATIC───────────
 ├ ┤─HOLD────────────────
 └ ┘ ──┬ ┬─C───── ──┬ ┬──────
 ├ ┤─COBOL─ └ ┘─HOLD─
 └ ┘─PLI───

CYCLE

Specifies that the programming language is set to the next language in the
alphabetic sequence of supported languages.

 Chapter 13. Debug Tool commands 319

 SET

AUTOMATIC

Cancels a HOLD by specifying that the programming language is set according
to the current qualification and thereafter changed automatically each time the
qualification changes or STEP or GO is issued.

HOLD

Specifies that the given language (or the current language, if no language is
specified) remains in effect regardless of qualification changes. The language
remains in effect until SET PROGRAMMING LANGUAGE changes the language or
releases the hold.

C Sets the current programming language to C. Debug Tool does not differen-
tiate between C and C++, use this option for C++ as well as C programs.

COBOL

Sets the current programming language to COBOL.

PLI

Sets the current programming language to PL/I.

Usage Notes:

� If CYCLE or one of the explicit programming language names is specified,
the current programming language setting is changed regardless of the
currently suspended program or the current qualification.

� The current programming language setting affects how commands are
parsed, not how they are performed. Commands are always performed
according to the programming language setting where they were
parsed. For example, it is not possible for a Debug Tool procedure to
contain a mixture of C and COBOL commands; there is no way for the
programming language setting to be changed while the procedure is
being parsed. Also, it is not possible for a command parsed with one
programming language setting to reference variables, types, or labels in
another programming language.

� If SET PROGRAMMING LANGUAGE AUTOMATIC is in effect (that is, HOLD is not
in effect), changing the qualification automatically sets the current pro-
gramming language to the specified block or compile unit.

� SET PROGRAMMING LANGUAGE can be used to set the programming lan-
guage to any supported language in the current or parent enclaves.

Example:

Specify that C/C++ is the current programming language.

SET PROGRAMMING LANGUAGE C;

SET PROMPT (full-screen and line mode)
Controls whether the current program location is automatically shown as part of the
prompt message in line mode. It has no effect in full-screen mode, because the
current location is always shown in the panel header in that case. The initial
setting is LONG.

55──SET──PROMPT─ ──┬ ┬─LONG── ─;──5%
 └ ┘─SHORT─

320 Debug Tool User's Guide and Reference

 SET

LONG

Uses long form of prompt message.

SHORT

Uses short form of prompt message.

Example:

Specify that the long form of prompt message is used.

SET PROMPT LONG;

 SET QUALIFY
Simplifies the identification of references and statement numbers by resetting the
point of view to a new block, compile unit, or load module. In full-screen mode this
affects the contents of the source window. If you are currently viewing one compile
unit in your Source window and you want to view another, issue the SET QUALIFY

command to change the qualification. The SET keyword is optional.

55─ ──┬ ┬───── ─QUALIFY─ ──┬ ┬─BLOCK──block_spec──── ─;────────────────────────5%
 └ ┘─SET─ ├ ┤ ──┬ ┬─CU────── ─cu_spec─
 │ │└ ┘─PROGRAM─
 ├ ┤ ─LOAD─ ──┬ ┬─────────── ─
 │ │└ ┘─load_spec─
 ├ ┤─RESET────────────────
 ├ ┤─RETURN───────────────
 └ ┘─UP───────────────────

BLOCK

Sets the current point of view to the specified block.

block_spec
A valid block specification; see “Block_Spec” on page 199.

CU Sets the current point of view to the specified compile unit. CU is equivalent to
PROGRAM.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201.

PROGRAM

Is equivalent to CU.

LOAD

Sets the current point of view to the specified load module.

load_spec
A valid load module specification; see “Load_Spec” on page 202. If
omitted, the initial (primary) load module qualification is used.

RESET

Resets qualification to the block of the suspended program and (if the SCREEN
setting is ON) scrolls the source window to display the current statement line.

RETURN

Switches qualification to the next higher calling program.

 Chapter 13. Debug Tool commands 321

 SET

UP Switches qualification up one lexical level to the statically containing block.

Usage Notes:

� If SET PROGRAMMING LANGUAGE AUTOMATIC is in effect (that is, HOLD is not
in effect), changing the qualification automatically sets the current pro-
gramming language to the specified block or compile unit.

� If you are debugging a program that has multiple enclaves, SET QUALIFY

can be issued only for load modules, compile units, and blocks which
are known in the current enclave.

� The SET QUALIFY command does not imply a change in flow of control
when the program is resumed with the GO command.

� The SET QUALIFY command cannot modify the point of view to a Debug
Tool or library block.

� SET QUALIFY LOAD will not change the results of the QUERY QUALIFY
command.

Examples:

� Indicate to Debug Tool that the load module statmod should be used
when no load module is specified.

SET QUALIFY LOAD statmod;

� Set the qualification back to the point of the suspended program.

SET QUALIFY RESET;

� Set the block qualification to blockx. As a result, the load module quali-
fication and compile unit qualification will be updated to the load module
and compile unit which contain the block blockx.

SET QUALIFY BLOCK blockx;

SET REFRESH (full-screen mode)
Controls screen refreshing. This command is only valid when in full-screen mode,
that is the SET SCREEN setting is ON. The initial setting for REFRESH is OFF.

 ┌ ┐─ON──
55──SET──REFRESH─ ──┼ ┼───── ─;───5%
 └ ┘─OFF─

ON Clears the screen before each rewrite. This is a required setting if your appli-
cation handles line mode I/O.

OFF

Rewrites without clear.

Note: SET REFRESH ON is needed for applications that also make use of the screen
, for example application using ISPF services to display panels.

Example:

Specify that rewrites only occur on those portions of the screen that have
changed. The screen is not cleared before being rewritten.

SET REFRESH OFF;

322 Debug Tool User's Guide and Reference

 SET

 SET REWRITE
Forces a periodic screen rewrite during long sequences of output. This setting is
not supported in batch mode.

55──SET──REWRITE─ ──┬ ┬─────── ─number──;───────────────────────────────────5%
 └ ┘─EVERY─

number
Specifies how many lines of intercepted output are written by the application
program before Debug Tool refreshes the screen. The initial setting is 50.

Example:

Force screen rewrite after each 100 lines of screen output.

SET REWRITE EVERY 1ðð;

SET SCREEN (full-screen and line mode)
Controls how information is displayed on the screen. The initial setting for a sup-
ported full-screen terminal is ON.

 ┌ ┐─ON─────────────────────────────
55──SET──SCREEN─ ──┼ ┼──┬ ┬───────── ──┬ ┬─────────────── ─;───────────────────5%
 │ │├ ┤─CYCLE─── │ │┌ ┐─────────────
 │ │└ ┘─integer─ └ ┘ ───

6
┴┬ ┬─LOG─────

 │ │├ ┤─MONITOR─
 │ │└ ┘─SOURCE──
 └ ┘─OFF────────────────────────────

CYCLE

Switches to the next window configuration in sequence.

integer
An integer in the range 1 to 6, selecting the window configuration. The initial
setting is 1.

LOG or MONITOR or SOURCE
Specifies the sequence of window assignments within the selected configura-
tion (left to right, top to bottom). There must be no more than three objects
specified and they must all be different.

See “Changing Session Panel window layout” on page 95 for more information.

ON Activates the Debug Tool full-screen services.

OFF

Activates line mode. This mode is forced if the terminal is not a supported
full-screen device.

Usage Note: If neither CYCLE nor integer is specified, there is no change in the
choice of configuration. If no windows are specified, there is no change in
the assignment of windows to the configuration.

Examples:

� Indicate that the Debug Tool full-screen services are used.

SET SCREEN ON;

 Chapter 13. Debug Tool commands 323

 SET

� Indicate that the log window is positioned above the source window on
the left hand side of the screen and the monitor window is to occupy
the upper right side portion of the screen. For more information, see
“Customizing your session” on page 95.

SET SCREEN 2 LOG MONITOR;

SET SCROLL DISPLAY (full-screen mode)
Controls whether the scroll field is displayed when operating in full-screen mode.
The initial setting is ON.

 ┌ ┐─ON──
55──SET──SCROLL──DISPLAY─ ──┼ ┼───── ─;─────────────────────────────────────5%
 └ ┘─OFF─

ON Displays scroll field.

OFF

Suppresses scroll field.

Example:

Specify that the scroll field is suppressed.

SET SCROLL DISPLAY OFF;

 SET SOURCE
Associates a source file (for C) or source listing (for COBOL or PL/I) with one or
more compile units.

 ┌ ┐─ON── ┌ ┐─,───────
55──SET──SOURCE─ ──┼ ┼───── ─(─ ───

6
┴─cu_spec─ ─)─ ──┬ ┬──────── ─;───────────────5%

 └ ┘─OFF─ └ ┘─fileid─

ON Displays the compile unit source file when active.

OFF

Specifies that the file is not displayed.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201. Multiple
compile units can be associated with the same source listing or source file.

fileid
Identifies the compile unit source file used. It is used in place of the default
fileid for the compile unit. The file that you specify must be of fixed block
format.

In MVS, fileid is a ddname, a qualified partitioned data set name (followed by a
parenthesized member name if a PDS member is desired), or an HFS
pathname.

In CICS, fileid is a fully-qualified data set name.

In CMS, fileid is a FILEDEF name or a CMS fileid (filename filetype filemode).
If filemode is omitted, the CMS search sequence is used.

324 Debug Tool User's Guide and Reference

 SET

If fileid has the form of a ddname, Debug Tool checks to see if it is allocated
(FILEDEFed in CMS). If not allocated, it is taken as a partitioned data set
name or CMS fileid.

Fileid specifies a file identifier used in place of the default file identifier for the
compile unit. A valid fileid is required unless it is already known to Debug Tool
(via a previous SET SOURCE) or the default fileid is valid.

Usage Notes:

� When SET SOURCE is issued against a compile unit that is the current
compile unit, it checks for the existence of the file. However, if the
compile unit is not the current compile unit, this check is not done. The
file associated with the source might not exist and the error (for nonex-
istent file) does not appear until a function which requires this file is
attempted.

� The SET SOURCE ON command has a higher precedence than the SET

DEFAULT LISTINGS command.

� For COBOL, if the cu_spec includes any names that are case sensitive,
include the name in single or double quotes.

� For PL/I, you might need to use the SET SOURCE command to specify the
location of your listing file if the CU or program name is not the same as
the listing file name. For example, for program name AVER, Debug
Tool looks for the sequential data set userid.pgmname.LIST. If the
Debug Tool window comes up empty, use the following command:

SET SOURCE ON (PGMNAME) userid.source.listings(cu_name) ;

This specifies the actual location of the listing file, in this example a par-
titioned data set with the program name differing from the CU name.

Examples:

� Indicate that the source associated with compile unit prog1 is found in
ddname mainprog.

SET SOURCE ON (prog1) mainprog;

� Indicate that the source file associated with compile unit
"/u/userid/code/oefun.c" is found in the HFS under the absolute
pathname "/u/userid/code/oefun.c".

SET SOURCE ON ("/u/userid/code/oefun.c") /u/userid/code/oefun.c;

SET SUFFIX (full-screen mode)
Controls the display of frequency counts at the right edge of the source window
when in full-screen mode. The initial setting is ON.

 ┌ ┐─ON──
55──SET──SUFFIX─ ──┼ ┼───── ─;──5%
 └ ┘─OFF─

ON Displays the suffix column.

OFF

Suppresses the suffix column.

Example:

 Chapter 13. Debug Tool commands 325

 SET

Specify that the suffix column is displayed.

SET SUFFIX ON;

 SET TEST
Overrides the initial run-time TEST options specified at invocation. The initial setting
is ALL.

55──SET──TEST─ ──┬ ┬─test_level─────── ─;───────────────────────────────────5%
 └ ┘─(──test_level──)─

test_level
Specifies what exception conditions cause Debug Tool to gain control, even
though no breakpoint exists. The parentheses are optional.

Test_level can include the following:

ALL

Specifies that the occurrence of an attention interrupt, termination of your
program (either normally or through an ABEND), or any program or Lan-
guage Environment condition of Severity 1 and above causes Debug Tool
to gain control, regardless of whether a breakpoint is defined for that type
of condition. If a condition occurs and a breakpoint exists for the condition,
the commands specified in the breakpoint are executed. If a condition
occurs and a breakpoint does not exist for that condition, or if an attention
interrupt occurs, Debug Tool:

� In interactive mode, reads commands from a commands file (if it exists)
or prompts you for commands, or

� In noninteractive mode, reads commands from the commands file

For more information about attention interrupts, see “Requesting an atten-
tion interrupt during interactive sessions” on page 135.

ERROR

Specifies that only the following conditions cause Debug Tool to gain
control without a user-defined breakpoint.

 � For C:

– An attention interrupt
 – Program termination

– A predefined Language Environment condition of Severity 2 or
above

– Any C condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

 � For COBOL:

– An attention interrupt
 – Program termination

– A predefined Language Environment condition of Severity 2 or
above.

 � For PL/I:

– An attention interrupt, directed at either PL/I or Debug Tool
 – Program termination

326 Debug Tool User's Guide and Reference

 SET

– A predefined Language Environment condition of Severity 2 or
above.

Note: Language Environment conditions are described in the OS/390 Lan-
guage Environment Debugging Guide and Run-Time Messages.

If a breakpoint exists for one of the above conditions, any commands speci-
fied in the breakpoint are executed. If no commands are specified, Debug
Tool reads commands from a commands file or prompts you for commands
in interactive mode.

NONE

Specifies that Debug Tool gains control only at an attention interrupt, or at
a condition if a breakpoint is defined for that condition. If a breakpoint does
exist for the condition, the commands specified in the breakpoint are exe-
cuted.

Examples:

� Indicate that only an attention interrupt or exception causes Debug Tool
to gain control when no breakpoint exists.

SET TEST ERROR;

� Indicate that no condition causes Debug Tool to gain control unless a
breakpoint exists for that condition.

SET TEST NONE;

SET WARNING (C/C++ and PL/I)
Controls display of the Debug Tool warning messages and whether exceptions are
reflected to the application program. The initial setting is ON.

 ┌ ┐─ON──
55──SET──WARNING─ ──┼ ┼───── ─;───5%
 └ ┘─OFF─

ON Displays the Debug Tool warning messages, and conditions such as a divide
check result in a diagnostic message.

OFF

Suppresses the Debug Tool warning messages, and conditions raise an excep-
tion in the application program.

Exceptions that occur due to interaction with you are likely to be due to typing
errors and are probably not intended to be passed to the application program.
However, you might want to raise a real exception in the program, for example, to
test some error recovery code. (TRIGGER is not always appropriate for this because
it does not set up the exception information.)

Usage Notes:

� Debug Tool detects C conditions such as the following:

– Division by zero

– Array subscript out of bounds for defined arrays

– Assignment of an integer value to a variable of enumeration data
type where the integer value does not correspond to an integer

 Chapter 13. Debug Tool commands 327

 SET (COBOL)

value of one of the enumeration constants of the enumeration data
type.

See “C/C++ expressions” on page 145 for more information about
which conditions will be reported when WARNING is ON.

� Debug Tool detects the following PL/I computational conditions:

– Invalid decimal data

– CHARACTER to BIT conversion errors

– Division by zero

– Invalid length in varying strings

See “Using SET WARNING command with built-ins” on page 192 for
more information about which conditions will be reported when WARNING
is ON.

Example:

Specify that conditions result in a diagnostic message.

SET WARNING ON;

SET command (COBOL)
The SET command assigns a value to a COBOL reference. The SET keyword
cannot be abbreviated.

55──SET──reference──TO─ ──┬ ┬─reference─ ─;─────────────────────────────────5%
 └ ┘─literal───

reference
A valid Debug Tool COBOL reference.

literal
A valid COBOL numeric literal constant.

Usage Notes:

� If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
expected results. This is due to the uncertainty of variable values within
statements as opposed to their values at statement boundaries.

� SET assigns a value only to a single receiver; unlike COBOL, multiple
receiver variables are not supported.

� Only formats 1 and 5 of the COBOL SET command are supported.

� Index-names can only be program variables (since OCCURS is not sup-
ported for the Debug Tool session variables).

� COBOL ADDRESS OF identifier is supported only for identifiers that are
LINKAGE SECTION variables. In addition, COBOL ADDRESS OF as a
receiver must be level 1 or 77, and COBOL ADDRESS OF as a sender can
be any level except 66 or 88.

� Only the sender/receiver combinations listed in “Allowable moves for the
Debug Tool SET command” on page 354 are supported.

328 Debug Tool User's Guide and Reference

 STEP

Examples:

� Set index name table-index to 5.

SET table-index TO 5;

� Assign to variable h-address the address of variable m-name.

SET h-address TO ADDRESS OF m-name;

SHOW Prefix command (full-screen mode)
The SHOW Prefix command specifies what relative statement (for C) or relative verb
(for COBOL) within the line is to have its frequency count temporarily shown in the
suffix area.

55──SHOW─ ──┬ ┬───────── ───5%
 └ ┘─integer─

integer
Selects a relative statement (for C) or a relative verb (for COBOL)
 within the line. The default value is 1.

Usage Notes:

� If SET SUFFIX is currently OFF, SHOW Prefix forces it ON.
� The suffix display returns to normal on the next interaction.
� The SHOW Prefix command is not logged.

Example:

Display the frequency count of the third statement or verb in the line (typed
in the prefix area of the line where the statement is found).

SHOW 3

No space is needed as a delimiter between the keyword and the integer;
hence, SHOW 3 is equivalent to SHOW3.

 STEP command
The STEP command causes Debug Tool to dynamically step through a program,
executing one or more program statements. In full-screen mode, it provides ani-
mated execution.

STEP ends if one or more of the following conditions is reached:

� User attention interrupt
� A breakpoint is encountered
� Normal or unusual termination of the program

55──STEP─ ──┬ ┬───────── ──┬ ┬──────── ─;─────────────────────────────────────5%
 ├ ┤─integer─ ├ ┤─INTO───
 └ ┘─\─────── ├ ┤─OVER───
 └ ┘─RETURN─

 Chapter 13. Debug Tool commands 329

 STEP

integer
Indicates the number of statements performed. The default value is 1. If
integer is greater than 1, the statement is performed as if it were that many
repetitions of STEP with the same keyword and a count of one. The speed of
execution, or the pace of stepping, is set by either the SET PACE command, or
with the Pace of visual trace field on the Profile panels.

\. Specifies that the program should run until interrupted. STEP \ is equivalent to
GO.

INTO

Steps into any called procedures or functions. This means that stepping con-
tinues within called procedures or functions. This is the default except when
the called procedure or function is a library or operating system routine.

OVER

Steps over any procedure call or function invocations. This operand provides
full-speed execution (with no animation) while in called procedures and func-
tions, resuming STEP mode on return. This is the default when the called pro-
cedure or function is a library or operating system routine.

RETURN

Steps to the return point the specified number of levels back, halting at the
statement following the corresponding procedure call or function invocation.
This operand provides full-speed execution (with no animation) for the
remainder of the current procedure or function, and for any called procedures
or functions, resuming STEP mode on return.

Usage Notes:

� If STEP is specified in a command list (for example, as the subject of an
IF command or WHEN clause), all subsequent commands in the list are
ignored.

� If STEP is specified within the body of a loop, it causes the execution of
the loop to end.

� To suppress the logging of STEP commands, use the SET ECHO

command.

� If two operands are given, they can be specified in either order.

� The animation execution timing is set by the SET PACE command.

� The source panel provides a means of suppressing the display of
selected listings or files. This gives some control of "debugging scope,"
since animated execution does not occur within a load module where
the source listing or source file is not displayed.

Examples:

� Step through the next 25 statements and if an application subroutine or
function is invoked, continue stepping into that subroutine or function.

STEP 25 INTO;

� Step through the next 25 statements, but if any application subroutines
or functions are invoked, switch to full-speed execution without ani-
mation until the subroutine or function returns.

STEP 25 OVER;

330 Debug Tool User's Guide and Reference

 switch

� Return at full speed through three levels of calls.

STEP 3 RETURN;

switch command (C/C++)
The switch command enables you to transfer control to different commands within
the switch body, depending on the value of the switch expression. The switch,
case, and default keywords must be lowercase and cannot be abbreviated.

55──switch──(──expression──)──{──┤ switch_body ├──}──────────────────────5%

switch_body:
├─ ──┬ ┬───────────────────── ─┤ default_clause ├────────────────────────────5
 │ │┌ ┐───────────────────
 └ ┘───

6
┴─┤ case_clause ├─

5─ ──┬ ┬───────────────────── ───┤
 │ │┌ ┐───────────────────
 └ ┘───

6
┴─┤ case_clause ├─

case_clause:
├──case──case_expression──:─ ──┬ ┬───────────── ─────────────────────────────┤
 │ │┌ ┐───────────
 └ ┘ ───

6
┴─command─

default_clause:
├─ ──┬ ┬───────────────────────────── ───────────────────────────────────────┤
 └ ┘ ─default──:─ ──┬ ┬─────────────
 │ │┌ ┐───────────
 └ ┘ ───

6
┴─command─

expression
A valid Debug Tool C expression.

case_expression
A valid character or optionally signed integer constant.

command
A valid Debug Tool command.

The value of the switch expression is compared with the value of the expression in
each case clause. If a matching value is found, control is passed to the command
in the case clause that contains the matching value. If a matching value is not
found and a default clause appears anywhere in the switch body, control is
passed to the command in the default clause. Otherwise, control is passed to the
command following the switch body.

If control passes to a command in the switch body, control does not pass from the
switch body until a break command is encountered or the last command in the
switch body is performed.

Usage Notes:

� Declarations are not allowed within a switch command.

� The switch command does not end with a semicolon. A semicolon
after the closing brace is treated as a Null command.

� Although this command is similar to the switch statement in C, it is
subject to Debug Tool restrictions on expressions.

 Chapter 13. Debug Tool commands 331

 switch

� Duplicate case_expression values are not supported.

Examples:

� The following switch command contains several case clauses and one
default clause. Each clause contains a function call and a break
command. The break commands prevent control from passing down
through subsequent commands in the switch body.

If key has the value '/', the switch command calls the function divide.
On return, control passes to the command following the switch body.

char key;

printf("Enter an arithmetic operator\n");

scanf("%c",&key);

switch (key)

{

 case '+':

 add();

 LIST (key);

 break;

 case '-':

 subtract();

 LIST (key);

 break;

 case '\':

 multiply();

 LIST (key);

 break;

 case '/':

 divide();

 LIST (key);

 break;

 default:

 printf("Invalid key\n");

 break;

}

� In the following example, break commands are not present. If the value
of c is equal to 'A', all 3 counters are incremented. If the value of c is
equal to 'a', lettera and total are increased. Only total is
increased if c is not equal to 'A' or 'a'.

char text[1ðð];

int capa, i, lettera, total;

for (i═ð; i < sizeof(text); i++) {

switch (text[i]) {

 case 'A':

 capa++;

 case 'a':

 lettera++;

 default:

 total++;

 }

}

332 Debug Tool User's Guide and Reference

 SYSTEM

 SYSTEM command
The SYSTEM command lets you issue system (CMS or TSO) commands during a
Debug Tool session. The SYSTEM keyword can only be abbreviated as SYS.

55─ ──┬ ┬─SYS──── ──┬ ┬──────────────── ─;────────────────────────────────────5%
 └ ┘─SYSTEM─ └ ┘─system_command─

system_command
A valid system command in the current operating system environment;
however, the specified system command must be appropriate for the environ-
ment. For example, when operating in TSO, system_command can be a valid
TSO system command or CLIST name.

Usage Notes:

� You cannot introduce a new interactive debugging session with the
SYSTEM command. For example, you cannot invoke a REXX program
that would invoke a new Debug Tool instance, using SYSTEM REXXINVK.

� When operating interactively in CMS, if no CMS system command is
specified, CMS subset mode is entered. While in CMS subset mode, a
subset of CMS commands (that is, CMS system commands that can be
issued while in the CMS editor) can be performed repeatedly. To return
to Debug Tool, type RETURN.

� While in CMS subset mode, caution should be taken that your applica-
tion program does not conflict with the memory or other resources of
Debug Tool.

� When operating in TSO, a system_command must be supplied.

� When operating in TSO, no parameters can be specified as part of the
system command or CLIST invocation. To execute noninteractively
when parameters are required, you must enter the complete invocation
in a CLIST and then use a TSO or SYSTEM command to invoke that
CLIST (without parameters).

� You cannot introduce a new Debug Tool session using the SYSTEM

command.

� When operating interactively in TSO, there is no provision for entering a
mode where commands are accepted repeatedly; however, it is possible
to write your own such iterative sequence in a CLIST.

� See also “CMS command (VM)” on page 244.

� See also “TSO command (MVS)” on page 336.

� You cannot issue CICS commands using SYSTEM.

Examples:

� List all the data sets in the user catalog. The operating system is TSO.

SYSTEM LISTCAT;

� List all the files that are named run on the a disk. The operating system
is CMS.

SYSTEM LISTFILE run \ a;

 Chapter 13. Debug Tool commands 333

 TRIGGER

 TRIGGER command
The TRIGGER command raises the specified AT-condition in Debug Tool, or it raises
the specified programming language condition in your program.

55──TRIGGER─ ──┬ ┬─AT─ ──┬ ┬──────── ───────────────────────── ─;──────────────5%
 │ │└ ┘─CURSOR─
 └ ┘──┬ ┬─condition───────────────────────────
 ├ ┤ ─AT──ALLOCATE─ ──┬ ┬─identifier─ ───────
 │ │└ ┘─\──────────
 ├ ┤ ─AT──APPEARANCE─ ──┬ ┬─cu_spec─ ────────
 │ │└ ┘─\───────
 ├ ┤ ─AT──CALL─ ──┬ ┬─entry_name─ ───────────
 │ │└ ┘─\──────────
 ├ ┤ ─AT──CHANGE─ ──┬ ┬─reference────────── ─

│ │└ ┘─┤ storage_clause ├─
| ├ ┤| ─AT──DATE─ ──┬ ┬─block_spec─ ───────────
| │ │└ ┘─\──────────

 ├ ┤ ─AT──DELETE─ ──┬ ┬─load_spec─ ──────────
 │ │└ ┘─\─────────
 ├ ┤ ─AT──ENTRY─ ──┬ ┬─block_spec─ ──────────
 │ │└ ┘─\──────────
 ├ ┤ ─AT──EXIT─ ──┬ ┬─block_spec─ ───────────
 │ │└ ┘─\──────────
 ├ ┤ ─AT──GLOBAL─ ──┬ ┬─APPEARANCE─ ─────────
 │ │├ ┤─CALL───────

| │ │├ ┤─DATE───────
 │ │├ ┤─DELETE─────
 │ │├ ┤─ENTRY──────
 │ │├ ┤─EXIT───────
 │ │├ ┤─LABEL──────
 │ │├ ┤─LINE───────
 │ │├ ┤─LOAD───────
 │ │├ ┤─PATH───────
 │ │└ ┘─STATEMENT──
 ├ ┤ ─AT──LABEL─ ──┬ ┬─statement_label─ ─────
 │ │└ ┘─\───────────────
 ├ ┤ ─AT─ ──┬ ┬────── ──┬ ┬─stmt_id_spec─ ─────
 │ │└ ┘─LINE─ └ ┘─\────────────
 ├ ┤ ─AT──LOAD─ ──┬ ┬─load_spec─ ────────────
 │ │└ ┘─\─────────
 ├ ┤─AT──OCCURRENCE──condition───────────
 ├ ┤─AT──PATH────────────────────────────
 └ ┘ ─AT─ ──┬ ┬─────────── ──┬ ┬─stmt_id_spec─
 └ ┘─STATEMENT─ └ ┘─\────────────

storage_clause:
├──%STORAGE──(──address─ ──┬ ┬─────────── ─)─────────────────────────────────┤
 └ ┘ ─,──length─

condition
A valid condition or exception. This can be either a Language Environment
symbolic feedback code, or a language-oriented keyword or code, depending
on the current programming language setting.

If no active condition handler exists for the specified condition, the default con-
dition handler can cause the program to end prematurely.

Following are the C condition constants; they must be uppercase and not
abbreviated. See also Appendix C, “Using C/C++ Reference Information with
Debug Tool” on page 347 for a list of C conditions and their Language Environ-
ment equivalents.

334 Debug Tool User's Guide and Reference

 TRIGGER

There are no COBOL condition constants. Instead, an Language Environment
symbolic feedback code must be used, for example, CEE347. See OS/390 Lan-
guage Environment Programming Guide for more details about language condi-
tion handling interactions.

PL/I condition constants can be used, for syntax and acceptable abbreviations
see “ON command (PL/I)” on page 289.

cu_spec
A valid compile unit specification; see “CU_Spec” on page 201.

entry_name
A valid external entry point name constant or zero (ð); however, ð can only be
specified if the current programming language setting is C or PL/I.

reference
A valid Debug Tool reference in the current programming language; see
“References” on page 202.

%STORAGE

A built-in function that provides an alternative way to select an AT CHANGE

subject.

address
The starting address of storage to be watched for changes. This must be a
hex constant: 0x in C, H in COBOL (using either double (") or single (')
quotes), or a PX constant in PL/I.

length
The number of bytes of storage being watched for changes. This must be
a positive integer constant. The default value is 1.

load_spec
A valid load module specification; see “Load_Spec” on page 202.

block_spec
A valid block specification; see “Block_Spec” on page 199.

statement_label
A valid source label constant; see “Statement_Label” on page 204.

stmt_id_spec
A valid statement id specification; see “Statement_Id_Range and
Stmt_Id_Spec” on page 203.

Usage Note:

� AT TERMINATION cannot be raised by TRIGGER.

Examples:

In the following examples, note the difference between triggering a break-
point, which performs Debug Tool commands associated with the break-
point, and triggering a condition, which actually raises the condition and
causes a corresponding system action.

SIGABND

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGIOERR

SIGSEGV

SIGTERM

SIGUSR1

SIGUSR2

 Chapter 13. Debug Tool commands 335

 USE

� Perform the commands in the AT OCCURRENCE CEE347 breakpoint (the
CEE347 condition is not raised). The current programming language
setting is COBOL.

AT OCCURRENCE CEE347 PERFORM

SET ix TO 5;

END-PERFORM;

TRIGGER AT OCCURRENCE CEE347; /\ SET ix TO 5 is executed \/

� Raise the SIGTERM condition in your program. The current programming
language setting is C.

TRIGGER SIGTERM;

� A previously defined STATEMENT breakpoint (for line 13) is triggered.

AT 13 LIST "at 13";

TRIGGER AT 13;

/\ "at 13" will be the echoed output here \/

� Assume the following breakpoints exist in a program:

AT CHANGE x LIST TITLED (x); AT STATEMENT 1ð;

If Debug Tool is invoked for the STATEMENT breakpoint and you want to
trigger the commands associated with the AT CHANGE breakpoint, enter:

TRIGGER AT CHANGE x;

Debug Tool displays the value of x.

TSO command (MVS)
The TSO command lets you issue TSO commands during a Debug Tool session and
is valid only in a TSO environment. The TSO keyword cannot be abbreviated.

55──TSO──tso_command──;──5%

tso_command
A valid TSO system command or CLIST name that does not require a param-
eter.

Usage Note:

� TSO is synonymous to SYSTEM. See “SYSTEM command” on page 333.

Example:

List all the data sets in the user catalog.

TSO LISTCAT;

 USE command
The USE command causes the Debug Tool commands in the specified file or data
set to be either performed or syntax checked. This file can be a log file from a
previous session. The specified file or data set can itself contain another USE
command. The maximum number of USE files open at any time is limited to eight.
The USE keyword cannot be abbreviated.

336 Debug Tool User's Guide and Reference

 USE

55──USE─ ──┬ ┬─ddname─ ─;───5%
 ├ ┤─dsname─
 └ ┘─fileid─

ddname
A valid ddname in MVS or FILEDEF name in CMS.

dsname
An MVS data set containing the Debug Tool commands to be performed.

fileid
A CMS fileid (filename filetype filemode) containing the Debug Tool commands
to be performed. If filemode is omitted, the CMS search sequence is used.

Usage Notes:

� To check the syntax of the commands in a USE file, set the EXECUTE
setting to OFF and then issue a USE command for the file.

� Commands read from a USE file are logged as comments.

� The log file can serve as a USE file in a subsequent Debug Tool session.

� Recursive calls are not allowed; that is, a commands file cannot be
USEd if it is already active. This includes the primary commands and
preferences files. If another invocation of Debug Tool occurs during the
execution of a USE file (for example, if a condition is raised while exe-
cuting a command from a USE file), the USE file is not used for command
input until control returns from the condition.

� The USE file is closed when the end of the file is reached.

� If a nonreturning command (such as GO) is performed from a USE file,
the action taken (as far as closing the USE file) depends on certain
things:

– If the USE file was invoked directly or indirectly from the primary
commands file or preferences file, it has the same characteristics as
the primary commands file or preferences file. That is, it "keeps its
place" and the next time Debug Tool requests a command, it reads
from the USE file where it left off.

– If the USE file was not invoked directly or indirectly from the primary
commands file or preferences file, the rest of the USE file and the file
that invoked the USE file is skipped.

� If the end of the USE file is reached without encountering a QUIT
command, Debug Tool returns to the command source where the USE

command was issued. This can be the terminal, a command string, or
another commands file.

� A USE file takes on the aspects of whatever command source issued the
USE command, relative to its behavior when a GO, GOTO, or STEP is exe-
cuted. When invoked from the primary commands file, it continues with
its next sequential command at the next breakpoint. If it is invoked from
any other command sequence, the GO, GOTO, or STEP causes any
remaining commands in the USE file to be discarded.

Examples:

 Chapter 13. Debug Tool commands 337

 while

� On VM, perform the Debug Tool commands in the file pointed to by the
ddname duse3ðð in the following filedef statement.

CMS filedef duse3ðð disk my3ðð exec o (recfm f lrecl 8ð blksize 8ð;

USE duse3ðð;

� On VM, perform the Debug Tool commands in the file duse2ðð commands

a.

USE duse2ðð commands a;

� Perform the Debug Tool commands in the MVS data set mylog. The
data set must first be allocated with, for example, ALLOC FI(MYLOG)

DA("TS64ð81.USE.FILE").

USE MYLOG;

� For CICS, perform Debug Tool commands in the fully-qualified data set
TS64ð81.USE.FILE.

USE TS64ð81.USE.FILE;

In addition to using sequential files, you can perform Debug Tool com-
mands using partitioned data sets.

USE userid.thing.file(usefile)

while command (C/C++)
The while command enables you to repeatedly perform the body of a loop until the
specified condition is no longer met or evaluates to false. The while keyword must
be lowercase and cannot be abbreviated.

55──while──(──expression──)──command─────────────────────────────────────5%

expression

A valid Debug Tool C expression.

command

A valid Debug Tool command.

The expression is evaluated to determine whether the body of the loop should be
performed. If the expression evaluates to false, the body of the loop never exe-
cutes. Otherwise, the body does execute. After the body has been performed,
control is given once again to the evaluation of the expression. Further execution
of the action depends on the value of the condition.

A break command can cause the execution of a while command to end, even
when the condition does not evaluate to false.

Examples:

� List the values of x starting at 3 and ending at 9, in increments of 2.

x = 1;
while (x +═2, x < 1ð)

 LIST x;

� While --index is greater than or equal to zero (ð), triple the value of the
expression item[index].

338 Debug Tool User's Guide and Reference

 WINDOW

while (--index >= ð) {
item[index] \═ 3;

printf("item[%d] ═ %d\n", index, item[index]);

}

WINDOW command (full-screen mode)
The WINDOW command provides window manipulation functions. WINDOW commands
can be made immediately effective with the IMMEDIATE command. The cursor-
sensitive form is most useful when assigned to a PF key. The WINDOW keyword is
optional.

The various forms of the WINDOW command are summarized in Table 18.

Usage Notes:

� If no operand is specified and the cursor is on the command line, then
the default window id set by SET DEFAULT WINDOW is used (if it is open,
otherwise the precedence is SOURCE, LOG, MONITOR).

� The WINDOW command is not logged.

Table 18. Summary of WINDOW Commands

WINDOW CLOSE Closes the specified window in the Debug Tool full-screen
session panel.

WINDOW OPEN Opens a previously-closed window in the Debug Tool full-screen
session panel.

WINDOW SIZE Controls the relative size of currently visible windows in the
Debug Tool full-screen session panel.

WINDOW ZOOM Expands the indicated window to fill the entire screen.

 WINDOW CLOSE
Closes the specified window in the Debug Tool full-screen session panel. The
remaining open windows expand to fill the remainder of the screen. Closing a
window does not effect the contents of that window. For example, closing the
monitor window does not stop the monitoring of variable values assigned by the
LIST MONITOR command.

If there is only one window visible, WINDOW CLOSE is invalid.

 ┌ ┐─CURSOR──
55─ ──┬ ┬──────── ─CLOSE─ ──┼ ┼───────── ─;────────────────────────────────────5%
 └ ┘─WINDOW─ ├ ┤─LOG─────
 ├ ┤─MONITOR─
 └ ┘─SOURCE──

CURSOR

Selects the window where the cursor is currently positioned unless on the
command line.

LOG

Selects the session log window.

 Chapter 13. Debug Tool commands 339

 WINDOW

MONITOR

Selects the monitor window.

SOURCE

Selects the source listing window.

Example:

Close the window containing the cursor.

WINDOW CLOSE CURSOR;

 WINDOW OPEN
Opens a previously-closed window in the Debug Tool full-screen session panel.
Any existing windows are resized according to the configuration selected with the
PANEL LAYOUT command.

If the OPEN command is issued without an operand, Debug Tool opens the last
closed window.

55─ ──┬ ┬──────── ─OPEN─ ──┬ ┬───────── ─;─────────────────────────────────────5%
└ ┘─WINDOW─ ├ ┤─LOG─────

 ├ ┤─MONITOR─
 └ ┘─SOURCE──

LOG

Selects the session log window.

MONITOR

Selects the monitor window.

SOURCE

Selects the source listing window.

Example:

Open the monitor window.

WINDOW OPEN MONITOR;

 WINDOW SIZE
Controls the relative size of currently visible windows in the Debug Tool full-screen
session panel.

 ┌ ┐─CURSOR──
55─ ──┬ ┬──────── ─SIZE─ ──┬ ┬───────── ──┼ ┼───────── ─;────────────────────────5%

└ ┘─WINDOW─ └ ┘─integer─ ├ ┤─LOG─────
 ├ ┤─MONITOR─
 └ ┘─SOURCE──

integer
Specifies the number of rows or columns, as appropriate for the selected
window and the current window configuration.

CURSOR

Selects the window where the cursor is currently positioned unless on the
command line. The cursor form of WINDOW SIZE applies to that window if

340 Debug Tool User's Guide and Reference

 WINDOW

integer is specified. Otherwise, it redraws the configuration of windows so that
the intersection of the windows is at the cursor, or if the configuration does not
have a common intersection, so that the nearest border is at the cursor.

LOG

Selects the session log window.

MONITOR

Selects the monitor window.

SOURCE

Selects the source listing window.

Usage Notes:

� You cannot use WINDOW SIZE if a window is ZOOMed or if there is only
one window open.

� Each window in any configuration has only one adjustable dimension:

– If one or more windows are as wide as the screen:

- The number of rows is adjustable for each window as wide as
the screen

- The number of columns is adjustable for the remaining windows

– If one or more windows are as high as the screen:

- The number of columns is adjustable for each window as high
as the screen

- The number of rows is adjustable for the remaining windows

Examples:

� Adjust the size of the source window to 15 rows.

WINDOW SIZE 15 SOURCE;

� Adjust the size of the window where the cursor is currently positioned to
20 rows.

SIZE 2ð CURSOR;

 WINDOW ZOOM
Expands the indicated window to fill the entire screen or restores the screen to the
currently defined window configuration.

 ┌ ┐─CURSOR──
55─ ──┬ ┬──────── ─ZOOM─ ──┼ ┼───────── ─;─────────────────────────────────────5%

└ ┘─WINDOW─ ├ ┤─LOG─────
 ├ ┤─MONITOR─
 └ ┘─SOURCE──

CURSOR

Selects the window where the cursor is currently positioned unless on the
command line.

LOG

Selects the session log window.

 Chapter 13. Debug Tool commands 341

 WINDOW

MONITOR

Selects the monitor window.

SOURCE

Selects the source listing window.

If the selected window is currently ZOOMed, the zoom mode is toggled. That is, the
currently defined window configuration is restored.

Example:

Expand the log window.

WINDOW ZOOM LOG;

342 Debug Tool User's Guide and Reference

 Coexistence

 Appendix A. Coexistence

This appendix discusses Debug Tool's level of coexistence with other HLL
debuggers, and the amount of debugging support you can expect for previous ver-
sions of debuggable languages.

Coexistence with other debuggers
Coexistence of Debug Tool with low-level debugging facilities (such as TSO TEST)
is maintained. However, coexistence with other HLL debuggers cannot be guaran-
teed.

C/C++, COBOL, and PL/I are dependent upon Language Environment to provide
debugging information.

Another debugger might provide limited services for an HLL not yet supported by
Debug Tool, but conditions such as attention interrupts and exceptions cause Lan-
guage Environment to pass control to an installed Language Environment
debugger.

Coexistence with unsupported HLL modules
Compile units or program units written in unsupported high- or low-level languages,
or in older releases of HLLs, are tolerated. See Using CODE/370 with VS COBOL
II and OS PL/I for information about two unsupported HLLs which can be used with
Debug Tool.

 Copyright IBM Corp. 1995, 1998 343

 Using Debug Tool in a production mode

Appendix B. Using Debug Tool in a production mode

This appendix helps you determine how much of Debug Tool's testing functions you
want to continue using after you complete major testing of your application and
move into the final tuning phase. Included are discussions of program size and
performance considerations; the consequences of removing hooks, the statement
table, and the symbol table; and using Debug Tool on optimized programs.

Fine-tuning your programs with Debug Tool
After initial testing, you might want to consider the following options available to
improve performance and reduce size:

 � Removing hooks

One option for increasing the performance of your program is to compile with a
minimum of hooks or with no hooks. Compiling with the option TEST(NOLINE,
BLOCK, NOPATH) for C programs and TEST(BLOCK) for COBOL programs causes
the compiler to insert a minimum number of hooks while still allowing you to
perform tasks at block boundaries.

Independent studies show that performance degradation is negligible because
of hook-overhead for PL/I programs. Also, in the event you need to request an
attention interrupt, Debug Tool is not able to regain control without compiled-in
hooks. In such a case you can request an interrupt three times. After the third
time, Debug Tool is able to stop program execution and prompt you to enter
QUIT or GO. If you enter QUIT, your Debug Tool session ends. If you enter GO,
control is returned to your application.

It is a good idea to examine the benefits of maintaining hooks in light of the
performance overhead for that particular program.

� Removing statement and symbol tables

If you are concerned about the size of your program, you can remove the
symbol table, the statement table, or both, after the initial testing period. For C,
COBOL, and PL/I programs, compiling with the option TEST(NOSYM) inhibits the
creation of symbol tables.

Before you remove them, however, you should consider their advantages. The
statement table allows you to display the execution history with statement
numbers rather than offsets, and error messages identify statement numbers
that are in error. The symbol table enables you to refer to variables and
program control constants by name. Therefore, you need to look at the
tradeoffs between the size of your program and the benefits of having symbol
and statement tables.

Removing hooks, statement tables, and symbol tables
Debug Tool can also gain control at program initialization via the PROMPT suboption
of the run-time TEST option. Even if you decide to remove all hooks and the state-
ment and symbol tables from a production program, Debug Tool receives control
when a condition is raised in your program if you specify ALL or ERROR on the run-
time TEST option, or when a __ctest(), CEETEST, or PLITEST is executed.

344  Copyright IBM Corp. 1995, 1998

 Using Debug Tool in a production mode

When Debug Tool receives control in this limited environment, it does not know
what statement is in error (no statement table), nor can it locate variables (no
symbol table). Thus, you must use addresses and interpret hexadecimal data
values to examine variables. In this limited environment, you can:

� Determine the block that is in control:

list (%LOAD, %CU, %BLOCK);

or

list (%LOAD, %PROGRAM, %BLOCK);

� Determine the address of the error and of the enclosing block:

list (%ADDRESS, %EPA); (where %EPA allowed)

� Display areas of the program in hexadecimal format. Using your listing, you
can find the address of a variable and display the contents of that variable. For
example, you can display the contents at address 20058 in a C/C++ program
by entering:

LIST STORAGE (ðx2ðð58);

To display the contents at address 20058 in a COBOL or PL/I program, you
would enter:

LIST STORAGE (X'2ðð58');

 � Display registers:

LIST REGISTERS;

� Display program characteristics:

DESCRIBE CU; (for C)

DESCRIBE PROGRAM; (for COBOL)

� Display the dynamic block chain:

LIST CALLS;

� Request assistance from your operating system:

SYSTEM ...;

� Continue your program processing:

GO;

� End your program processing:

QUIT;

If your program does not contain a statement or symbol table, you can use tempo-
rary variables to make the task of examining values of variables easier.

Even in this limited environment, HLL library routines are still available.

Using Debug Tool on optimized programs
If you want to debug your application program with Debug Tool after compiling with
the compile-time OPTIMIZE option (where applicable), you must keep in mind that
optimization decreases the reliability of Debug Tool functions.

In the case of variable values, Debug Tool displays the contents of the storage
where the variable has been assigned. However, in an optimized program, the var-

 Appendix B. Using Debug Tool in a production mode 345

 Using Debug Tool in a production mode

iable might actually be residing in a register. As an example, consider the following
assignments:

a = 5
b ═ a + 3

In an optimized program, the value of 5 associated with the variable a might never
be placed into storage. Instead, it might be pulled from a machine register. If
Debug Tool is requested to LIST TITLED a;, however, it looks in the storage
assigned to a and displays that value, no matter what it is.

LIST STATEMENT NUMBERS shows the statements that can be used in AT and GOTO

commands. Optimization has a similar effect when trying to determine the source
statement associated with a specific storage location. Normally, the statement
table supplies this information to Debug Tool, but if you request optimization, the
statement table might be incorrect. Code associated with one statement can move
to another storage location, and can appear (according to the statement table) to
be part of a completely different statement. Therefore, the statement number
Debug Tool displays as associated with a particular breakpoint might be incorrect.

Also, if you have requested that your application be optimized, Debug Tool cannot
guarantee that a breakpoint set at a particular statement indeed occurs at the
beginning of the code generated for that statement.

Finally, optimization usually causes the code generated for a statement to be
dependent on register values loaded by the code for preceding statements. Thus,
if you request Debug Tool to change the path of flow in your program, you run the
risk of depriving statements of necessary input.

346 Debug Tool User's Guide and Reference

 C/C++ reference

Appendix C. Using C/C++ Reference Information with Debug
Tool

This appendix contains reference information for use when debugging C/C++ pro-
grams with Debug Tool.

All references in this section refer to C and C++ unless otherwise stipulated.

Table 19 lists the Debug Tool interpretive subset of C commands. This subset is a
list of commands recognized by Debug Tool that either closely resemble or dupli-
cate the syntax and action of the C command. This subset of commands is valid
only when the current programming language is set to C/C++.

Table 19. Debug Tool Interpretive Subset of C/C++ Commands

Command Description

block ({}) Composite command grouping

break Termination of loops or switch commands

Declaration Declaration of session variables

do/while Iterative looping

Expression Any C expression except the conditional (?) operator

for/while Iterative looping

if Conditional execution

switch Conditional execution

C reserved keywords
Table 20 lists all keywords reserved by the C language. These keywords cannot
be abbreviated, used as variable names, or used as any other type of identifiers.

Table 20. C Reserved Keywords

auto else long switch

break enum register typedef

case extern return union

char float short unsigned

const for signed void

continue goto sizeof volatile

default if static while

do int struct _Packed

double

Operators and operands
Table 21 on page 348 lists the C language operators in order of precedence and
shows the direction of associativity for each operator. The primary operators have
the highest precedence. The comma operator has the lowest precedence. Opera-
tors in the same group have the same precedence.

Table 21 on page 348 lists the C operators and their orders of precedence.

 Copyright IBM Corp. 1995, 1998 347

 C/C++ reference

Table 21. Operator Precedence and Associativity

Precedence Level Associativity Operators

Primary left to right () [] . –>

Unary right to left ++ -- - + ! ˜ &

 \ (typename) sizeof

Multiplicative left to right \ / %

Additive left to right + −

Bitwise Shift left to right << >>

Relational left to right < > <= >=

Equality left to right ++ !=

Bitwise Logical AND left to right &

Bitwise Exclusive OR left to right ∧ or ¬

Bitwise Inclusive OR left to right ¦

Logical AND left to right &&

Logical OR left to right ¦¦

Assignment right to left = += −= \= /=
 <<═ >>═ %═ &═ ^═ ¦═

Comma left to right ,

Language Environment conditions and their C/C++ equivalents
Language Environment condition names (the symbolic feedback codes CEExxx)
can be used interchangeably with the equivalent C/C++ conditions listed in
Table 22. For example, AT OCCURRENCE CEE341 is equivalent to AT OCCURRENCE
SIGILL. Raising a CEE341 condition triggers an AT OCCURRENCE SIGILL breakpoint
and vice versa.

Table 22 (Page 1 of 2). Language Environment Conditions and Their C/C++ Equivalents

Language Environment
Condition

Description Equivalent C/C++
Condition

CEE341 Operation exception SIGILL

CEE342 Privileged operation exception SIGILL

CEE343 Execute exception SIGILL

CEE344 Protection exception SIGSEGV

CEE345 Addressing exception SIGSEGV

CEE346 Specification exception SIGILL

CEE347 Data exception SIGFPE

CEE348 Fixed point overflow exception SIGFPE

CEE349 Fixed point divide exception SIGFPE

CEE34A Decimal overflow exception SIGFPE

CEE34B Decimal divide exception SIGFPE

CEE34C Exponent overflow exception SIGFPE

CEE34D Exponent underflow exception SIGFPE

348 Debug Tool User's Guide and Reference

 C/C++ reference

Table 22 (Page 2 of 2). Language Environment Conditions and Their C/C++ Equivalents

Language Environment
Condition

Description Equivalent C/C++
Condition

CEE34E Significance exception SIGFPE

CEE34F Floating-point divide exception SIGFPE

 Appendix C. Using C/C++ Reference Information with Debug Tool 349

 COBOL reference

Appendix D. Using COBOL Reference Information with
Debug Tool

This appendix contains reference information for use when debugging COBOL pro-
grams with Debug Tool.

COBOL listing files
Debug Tool does not display a COBOL listing file associated with any compile unit
(CU) unless the file has a fixed blocked format.

Debug Tool interpretive subset of COBOL commands
Table 23 lists the Debug Tool interpretive subset of COBOL language commands.
This subset is a list of commands recognized by Debug Tool that either closely
resemble or duplicate the syntax and action of the appropriate COBOL command.
This subset of commands is valid only when the current programming language is
COBOL.

Table 23. Debug Tool Interpretive Subset of COBOL Commands

Command Description

CALL Subroutine call

COMPUTE Computational assignment (including expressions)

Declaration Declaration of session variables

EVALUATE Multiway switch

IF Conditional execution

MOVE Noncomputational assignment

PERFORM Iterative looping

SET INDEX and POINTER assignment

COBOL reserved keywords
In addition to the subset of COBOL commands you can use while in Debug Tool,
there is a list of reserved keywords used and recognized by COBOL that cannot be
abbreviated, used as a variable name, or used as any other type of identifier. You
can find this list in the various COBOL language references.

Allowable comparisons for the Debug Tool IF command
Table 24 on page 351 shows the allowable comparisons for the Debug Tool IF
command. A description of the codes follows the table.

350  Copyright IBM Corp. 1995, 1998

 COBOL reference

Table 24. Allowable Comparisons for the Debug Tool IF Command

OPERAND GR AL AN ED BI NE ANE ID IN IDI PTR @ IF EF D1

GROUP (GR) NN NN NN NN NN NN NN NN NN NN NN

ALPHABETIC (AL) NN NN

| ALPHANUMERIC
| (AN)8

NN NN

| EXTERNAL
| DECIMAL (ED)8

NN NU

BINARY NN NU NU4

NUMERIC EDITED
(NE)

NN NN

ALPHANUMERIC
EDITED (ANE)

NN NN

FIGCON ZERO7 NN NU NU NU NU NU

FIGCON1,7 NN NN NN NN

NUMERIC
LITERAL7

NN NU NU NU NU4 NU NU

NONNUMERIC
LITERAL2,7

NN NN3 NN NN NN

| INTERNAL
| DECIMAL (ID)8

NN NU

INDEX NAME (IN) NN NU4 IO4 NU

INDEX DATA ITEM
(IDI)

NN NU IV

POINTER DATA
ITEM (PTR)

 NU5 NU5

ADDRESS OF (@) NU5 NU5

FLOATING POINT
LITERAL7

X NU NU

INTERNAL
FLOATING POINT
(IF)

NN NU NU

EXTERNAL
FLOATING POINT
(EF)

NN NU NU

DBCS DATA ITEM
(D1)

 NN

DBCS LITERAL7 NN

HEX LITERAL6 NU5

Notes:

1 FIGCON includes all figurative constants except ZERO and ALL.
2 A nonnumeric literal must be enclosed in quotation marks, and the quotation marks are not valid characters in

the literal.
3 Must contain only alphabetic characters.
4 Index name converted to subscript value before compare.
5 Only comparison for equal and not equal can be made.
6 Must be hexadecimal characters only, delimited by either double (") or single (') quotation marks and pre-

ceded by H.
7 Constants and literals can also be compared against constants and literals of the same type.

| 8 Comparisons using windowed date fields are not supported.

 Appendix D. Using COBOL Reference Information with Debug Tool 351

 COBOL reference

Allowable comparisons are comparisons as described in IBM OS Full American
National Standard COBOL for the following:

NN Nonnumeric operands

NU Numeric operands

IO Two index names

IV Index data items

X High potential for user error

Allowable moves for the Debug Tool MOVE command
Table 25 shows the allowable moves for the Debug Tool MOVE command.

Table 25 (Page 1 of 2). Allowable Moves for the Debug Tool MOVE Command

Receiving Field

GR AL AN ED BI NE ANE ID IF EF D1Source Field

GROUP (GR) Y Y Y Y1 Y1 Y1 Y1 Y1 Y1 Y1

ALPHABETIC (AL) Y Y

| ALPHANUMERIC
| (AN)4,5 Y Y

| EXTERNAL
| DECIMAL (ED)4,5 Y1 Y

BINARY (BI) Y1 Y

NUMERIC EDITED
(NE)

Y

ALPHANUMERIC
EDITED (ANE)

Y Y

FIGCON ZERO Y Y Y2 Y2 Y Y2 Y Y

SPACES (AL) Y Y Y Y

HIGH-VALUE,
LOW-VALUE,
QUOTES

Y Y Y

NUMERIC LITERAL Y1 Y Y Y Y Y

NONNUMERIC
LITERAL

Y Y Y Y1 Y

| INTERNAL
| DECIMAL (ID)4,5 Y1 Y

FLOATING POINT
LITERAL

Y1 Y Y

INTERNAL
FLOATING POINT
(IF)

Y1 Y Y

EXTERNAL
FLOATING POINT
(EF)

Y1 Y Y3

DBCS DATA ITEM
(D1)

 Y

352 Debug Tool User's Guide and Reference

 COBOL reference

For more information, see the “MOVE command (COBOL)” on page 288.

Table 25 (Page 2 of 2). Allowable Moves for the Debug Tool MOVE Command

Receiving Field

GR AL AN ED BI NE ANE ID IF EF D1Source Field

DBCS LITERAL Y

Notes:

1 Move without conversion (like AN to AN)
2 Numeric move
3 Decimal-aligned and truncated, if necessary

| 4 MOVE does not support date windowing. For example, the MOVE statement cannot
| be used to move a windowed date field to an expanded date field, or to a nondate
| field.
| 5 The MOVE command cannot be used to move one windowed date field to another
| windowed date field with a different DATE FORMAT clause, or to move one
| expanded date field to another expanded date field with a different DATE FORMAT
| clause.

 Appendix D. Using COBOL Reference Information with Debug Tool 353

 COBOL reference

Allowable moves for the Debug Tool SET command
Table 26 shows the allowable moves for the Debug Tool SET command.

Table 26. Allowable Moves for the Debug Tool SET Command

Receiving Field

IN IDI PTR ED BI ID ORSource Field

INDEX NAME (IN) Y Y Y Y Y

INDEX DATA ITEM (IDI) Y Y

POINTER DATA ITEM
(PTR)

 Y

HEX LITERAL1 Y

NULL (NUL) Y

INTEGER LITERAL Y2

EXTERNAL DECIMAL
(ED)

Y

BINARY (BI) Y

INTERNAL DECIMAL
(ID)

Y

OBJECT REFERENCE
(OR)

 Y

Notes:

1 Must be hexadecimal characters only, delimited by either double (") or single (')
quotation marks and preceded by H.

2 Index name is converted to index value.

354 Debug Tool User's Guide and Reference

 Debug Tool messages � EQA0324E

Appendix E. Debug Tool Messages

All messages are shown in ENGLISH format. The UENGLISH format message text
is the same, but is in uppercase letters.

Each message has a number of the form EQAnnnnx, where EQA indicates that the
message is an Debug Tool message, nnnn is the number of the message, and x
indicates the severity level of each message. The value of x is I, W, E, S, or U, as
described below:

I An informational message calls attention to some aspect of a
command response that might assist the programmer.

W A warning message calls attention to a situation that might not be what
is expected or to a situation that Debug Tool attempted to fix.

E An error message describes an error that Debug Tool detected or
cannot fix.

S A severe error message describes an error that indicates a command
referring to bad data, control blocks, program structure, or something
similar.

U An unrecoverable error message describes an error that prevents
Debug Tool from continuing.

Symbols in messages
Many of the Debug Tool messages contain information that is inserted by the
system when the message is issued. In this publication, such inserted information
is indicated by italicized symbols, as in the following:

EQA1046I The breakpoint-id breakpoint is replaced.

The portion of Debug Tool located on the host notifies you of errors associated with
debugging functions carried out by the host.

EQA0320E Host server not active

Explanation: The host server specified in the debug
options has not been started. Debug Tool cannot ini-
tialize.

EQA0321E Host server not available

Explanation: Debug Tool cannot establish communi-
cations with the host server specified in the debug
options. Debug Tool cannot initialize.

EQA0322E Invalid host server name

Explanation: The host server specified in the debug
options cannot be found. Debug Tool cannot initialize.

EQA0323I Host server busy. Action will complete
when server is available.

Explanation: The host server is busy processing a
request from CODE. Debug Tool cannot proceed until
the previous request completed.

EQA0324E Fatal communications error. Debug Tool
cannot continue.

Explanation: Debug Tool cannot send/receive mes-
sages from the host server; Debug Tool cannot con-
tinue and will terminate abnormally. Diagnostic
information is included in the EVFERROR.LOG file, in
the path specified by the CODETMPDIR variable in
your CONFIG.SYS file.

 Copyright IBM Corp. 1995, 1998 355

 EQA1000I � EQA1033I

EQA1000I TEST (cu_name initialization):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs after Debug
Tool initialization and before any program hooks are
reached.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.
Information is displayed identifying the commands you
are allowed to enter.

EQA1001I The window configuration is configuration;
the sequence of window is sequence

Explanation: Used to display SCREEN as part of QUERY
SCREEN.

EQA1002I One window must be open at all times.

Explanation: Only one window was open when a
CLOSE command was issued. At least one window must
be open at all times, so the CLOSE command is ignored.

EQA1003I Target window is closed; FIND not per-
formed.

Explanation: The window specified in the FIND
command is closed.

EQA1004I Target window is closed; SIZE not per-
formed.

Explanation: The window specified in the SIZE
command is closed.

EQA1005I Target window is closed; SCROLL not
performed.

Explanation: The window specified in the SCROLL
command is closed.

EQA1006I Command

Explanation: It is the character string 'Command' in
the main panel command line.

EQA1007I Step

Explanation: It is the character string 'Step' in the
main panel command line while stepping.

EQA1008I Scroll

Explanation: It is the character string 'Scroll' in the
main panel command line.

EQA1009I DBCS characters are not allowed.

Explanation: The user entered DBCS characters in
scroll, window object id, qualify, prefix, or panel input
areas.

EQA1010I More...

Explanation: It is the character string 'More' in the
main panel command line.

EQA1011I Do you really want to terminate this
session?

Explanation: This is for the END pop-up window.

EQA1012I Enter Y for YES and N for NO

Explanation: This is for the END pop-up window. Y,
YES, N, and NO should NOT be translated.

EQA1013I Current command is incomplete, pending
more input

Explanation: This informational message is displayed
while entering a block of commands, until the command
block is closed by an END statement.

EQA1030I PENDING:

Explanation: Debug Tool needs more input in order to
completely parse a command. This can occur in
COBOL, for example, because PERFORM; was entered
on the last line.

Programmer Response: Complete the command.

EQA1031I The partially parsed command is:

Explanation: The explanation of a command was
requested or a command was determined to be in error.

Programmer Response: Determine the cause of the
error and reenter the command.

EQA1032I The next word can be one of:

Explanation: This title line will be followed by
message 1015.

EQA1033I list items

Explanation: This message is used to list all the items
that can follow a partially parsed command.

Programmer Response: Reenter the acceptable part
of the command and suffix it with one of the items in
this list.

356 Debug Tool User's Guide and Reference

 EQA1046I � EQA1076I

EQA1046I The breakpoint-id breakpoint is replaced.

Explanation: This alerts the user to the fact that a
previous breakpoint action existed and was replaced.

Programmer Response: Verify that this was intended.

EQA1047I The breakpoint-id breakpoint is replaced.

Explanation: This alerts the user to the fact that a
previous breakpoint action existed and was replaced.

Programmer Response: Verify that this was intended.

EQA1048I Another generation of variable name is
allocated.

Explanation: An ALLOCATE occurred for a variable
where an AT ALLOCATE breakpoint was established.

EQA1049I The breakpoint-id breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is no every_clause. Enabled breakpoints
only. This message is followed by a message of one or
more lines showing the commands performed each time
the breakpoint is hit.

EQA1050I The breakpoint-id breakpoint has an
EVERY value of number, a FROM value of
number, and a TO value of number . The
breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. Enabled breakpoints
only. This message is followed by a message of one or
more lines showing the commands performed each time
the breakpoint is hit.

EQA1051I The (deferred) breakpoint-id breakpoint
action is:

Explanation: Used to display a command after LIST
AT when there is no every_clause. Deferred and
enabled breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1052I The (deferred) breakpoint-id breakpoint
has an EVERY value of number, a FROM
value of number, and a TO value of
number. The breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. Deferred and
enabled breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1053I The (disabled) breakpoint-id breakpoint
action is:

Explanation: Used to display a command after LIST
AT when there is not an every_clause. For disabled
breakpoints only. This message is followed by a
message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1054I The (disabled) breakpoint-id breakpoint
has an EVERY value of number, a FROM
value of number, and a TO value of
number. The breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. For disabled break-
points only. This message is followed by a message of
one or more lines showing the commands performed
each time the breakpoint is hit.

EQA1055I The (disabled and deferred) breakpoint-id
breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is not an every_clause. For disabled and
deferred breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1056I The (disabled and deferred) breakpoint-id
breakpoint has an EVERY value of
number, a FROM value of number, and a
TO value of number. The breakpoint
action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. For disabled and
deferred breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1057I AT stmt-number can be risky because the
code for that statement might have been
merged with that of another statement.

Explanation: You are trying to issue an AT STATEMENT

command against a statement but the code for that
statement was either optimized away or combined with
other statements.

EQA1076I Direction an unknown program.

Explanation: The program can be written in assem-
bler language or in an unsupported language. The
message is issued as a result of the LIST CALLS

command.

 Appendix E. Debug Tool Messages 357

 EQA1077I � EQA1106I

EQA1077I Direction address Address in a PLANG
NOTEST block.

Explanation: The compile unit was compiled without
the TEST option. The message is issued as a result of
the LIST CALLS command.

EQA1078I Direction Place in PLANG CU

Explanation: CU name of the call chain. The
message is issued as a result of the LIST CALLS

command.

EQA1086I The previous declaration of variable name
will be removed.

Explanation: You declared a variable whose name is
the same as a previously declared variable. This decla-
ration overrides the previous one.

EQA1090I The compile-time data for program
cu_name is

Explanation: This is the title line for the DESCRIBE
PROGRAM command.

EQA1091I The program was compiled with the fol-
lowing options:

Explanation: This is the first of a group of DESCRIBE
PROGRAM messages.

EQA1092I compile option

Explanation: Used to display a compile option without
parameters, for example, NOTEST.

EQA1093I compile option (compile suboption)

Explanation: Used to display a compile option with
one parameter, for example, OPT.

EQA1094I compile option (compile suboption ,
compile suboption)

Explanation: Used to display a compile option with
two parameters, for example, TEST.

EQA1095I This program has no subblocks.

Explanation: A DESCRIBE PROGRAM command refers to
a program that is totally contained in one block.

EQA1096I The subblocks in this program are
nested as follows:

Explanation: The names of the blocks contained by
the program are displayed under this title line.

EQA1097I space characters block name

Explanation: The first insert controls the indentation
while the second is the block name without qualification.

EQA1098I The statement table has the short format.

Explanation: The statement table is abbreviated such
that no relationship between storage locations and
statement identifications can be determined.

Programmer Response: If statement identifications
are required, the program must be recompiled with dif-
ferent compile-time parameters.

EQA1099I The statement table has the NUMBER
format.

Explanation: The program named in the DESCRIBE
PROGRAM command was compiled with GONUMBER
assumed.

EQA1100I The statement table has the STMT
format.

Explanation: The program named in the DESCRIBE
PROGRAM command was compiled with GOSTMT assumed.

EQA1101I file name

Explanation: This message is used in listing items
returned from the back end in response to the DESCRIBE
ENVIRONMENT command.

EQA1102I ATTRIBUTES for variable name

Explanation: Text of a DESCRIBE ATTRIBUTES

message.

EQA1103I Its address is address

Explanation: Text of a DESCRIBE ATTRIBUTES

message.

EQA1104I Compiler: Compiler version

Explanation: Indicate compiler version for DESCRIBE
CU.

EQA1105I Its length is length

Explanation: Text of a DESCRIBE ATTRIBUTES

message.

EQA1106I Programming language COBOL does not
return information for DESCRIBE ENVI-
RONMENT

Explanation: COBOL run-time library does not return
information to support this command.

358 Debug Tool User's Guide and Reference

 EQA1107I � EQA1150I

EQA1107I There are no open files.

Explanation: This is issued in response to DESCRIBE
ENVIRONMENT if no open files are detected.

EQA1108I The following conditions are enabled:

Explanation: This is the header message issued in
response to DESCRIBE ENVIRONMENT before issuing the
list of enabled conditions.

EQA1109I The following conditions are disabled:

Explanation: This is the header message issued in
response to DESCRIBE ENVIRONMENT before issuing the
list of disabled conditions.

EQA1110I This program has no Statement Table.

Explanation: This message is used for the DESCRIBE
CU command. If a CU was compiled with NOTEST, no
statement table was generated.

EQA1111I Attributes for names in block block name

Explanation: This is a title line that is the result of a
DESCRIBE ATTRIBUTES \;. It precedes the names of all
variables contained within a single block.

EQA1112I variable name and/or attributes

Explanation: The first insert controls the indentation
while the second is the qualified variable name followed
by attribute string. (for C, only the attributes are given.)

EQA1114I Currently open files are:

Explanation: This is the title line for the list of files
that are known to be open. This is in response to the
DESCRIBE ENVIRONMENT command.

EQA1115I The program has insufficient compilation
information for the DESCRIBE CU
command.

Explanation: This program has insufficient informa-
tion. It might be compiled without the TEST option.

EQA1116I Common Language Environment math
library is being used

Explanation: This is the response for the DESCRIBE
ENVIRONMENT command when the Language Environ-
ment math library is being used.

EQA1117I PL/I Math library is being used

Explanation: This is the response for the DESCRIBE
ENVIRONMENT command when the PL/I math library is
being used.

EQA1140I character

Explanation: This message is used to produce output
for LIST (...).

EQA1141I expression name = expression value

Explanation: This message is used to produce output
for LIST TITLED (...) when an expression is a
scalar.

EQA1142I expression element

Explanation: This insert is used for naming the
expression for expression element.

EQA1143I >>> EXPRESSION ANALYSIS <<<

Explanation: First line of output from the ANALYZE
EXPRESSION command.

EQA1144I alignment spaces. It is a bit field with
offset bit offset.

Explanation: Text of a DESCRIBE ATTRIBUTES

message.

EQA1145I Its Offset is offset.

Explanation: Text of a DESCRIBE ATTRIBUTES

message.

EQA1146I column elements

Explanation: This message is used to produce a col-
umned list. For example, it is used to format the
response to LIST STATEMENT NUMBERS.

EQA1147I name

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed.

EQA1148I name structure

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed. It is contained within
an aggregate but is a parent name and not an ele-
mental data item.

EQA1149I name in parent name

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed. It is contained within
an aggregate and is an elemental data item.

EQA1150I name structure in parent name

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed. It is an aggregate
contained within another aggregate.

 Appendix E. Debug Tool Messages 359

 EQA1151I � EQA1169I

EQA1151I The following names are known in block
block name

Explanation: This is a title line that is the result of a
LIST NAMES command. It precedes the names of all var-
iables contained within a single block.

EQA1152I The following session names are known

Explanation: This is a title line that is the result of a
LIST NAMES command. It precedes the names of all
session variables contained within a single block.

EQA1153I The following names with pattern pattern
are known in block name

Explanation: This title line precedes the list of variable
names that satisfy the pattern in a LIST NAMES

command.

EQA1154I The following session names with
pattern pattern are known

Explanation: This title line precedes the list of session
names that satisfy the pattern in a LIST NAMES

command.

EQA1155I The following CUs are known in Load
Module name:

Explanation: This title line precedes a list of compile
unit names for noninitial load modules in a LIST NAMES

CUS command.

EQA1156I The following CUs with pattern pattern
are known in Load Module name

Explanation: This title line precedes a list of compile
unit names for noninitial load modules that satisfy the
pattern in a LIST NAMES CUS command.

EQA1157I There are no CUs with pattern pattern in
Load Module name.

Explanation: This line appears when no compile unit
satisfied the pattern in a LIST NAMES CUS command for
noninitial load modules.

EQA1158I The following CUs have pattern pattern

Explanation: This title line precedes a list of compile
unit names for an initial load module in a LIST NAMES

CUS command.

EQA1159I There are no CUs with pattern pattern .

Explanation: This line appears when no compile unit
satisfied the pattern in a LIST NAMES CUS command for
an initial load module.

EQA1160I There are no Procedures with pattern
pattern .

Explanation: This line appears when no Procedures
satisfied the pattern in a LIST NAMES PROCEDURES

command.

EQA1161I The following Procedures have pattern
pattern:

Explanation: This title line precedes a list of Proce-
dure names for a LIST NAMES PROCEDURES command.

EQA1162I There are no names in block block name

Explanation: The LIST NAMES command found no vari-
ables in the specified block.

EQA1163I There are no session names.

Explanation: The LIST NAMES command found no vari-
ables that had been declared in the session for the
current programming language.

EQA1164I There are no names with pattern pattern
in block name .

Explanation: The LIST NAMES command found named
variables in the named block but none of the names
satisfied the pattern.

EQA1165I There are no session names with pattern
pattern .

Explanation: The LIST NAMES command found named
variables that had been declared in the session but
none of the names satisfied the pattern.

EQA1166I There are no known session procedures.

Explanation: A LIST NAMES PROCEDURES was issued
but no session procedures exist.

EQA1167I register name = register value

Explanation: Used when listing registers.

EQA1168I No LIST STORAGE data is available for
the requested reference or address.

Explanation: The given reference or address is
invalid.

EQA1169I No frequency data is available

Explanation: This message is issued upon failure to
find frequency information.

360 Debug Tool User's Guide and Reference

 EQA1170I � EQA1228I

EQA1170I Frequency of verb executions in cu_name

Explanation: This is the header produced by the LIST
FREQUENCY command.

EQA1171I character string = count

Explanation: This is the frequency count produced by
the LIST FREQUENCY command.

EQA1172I TOTAL VERBS= total statements, TOTAL
VERBS EXECUTED= total statements exe-
cuted, PERCENT EXECUTED= percent
executed

Explanation: This is the trailer produced by the LIST

FREQUENCY command.

EQA1173I (history number) ENTRY hook for
cu_name

Explanation: This is a LIST HISTORY message.

EQA1174I (history number) ENTRY hook for block
block name in cu_name

Explanation: This is a LIST HISTORY message.

EQA1175I (history number) EXIT hook for cu_name

Explanation: This is a LIST HISTORY message.

EQA1176I (history number) EXIT hook for block
block name in cu_name

Explanation: This is a LIST HISTORY message.

EQA1177I (history number) STATEMENT hook at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1178I (history number) PATH hook at statement
cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1179I (history number) Before CALL hook at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1180I (history number) CALL CEETEST at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1181I (history number) Waiting for program
input from ddname

Explanation: This is a LIST HISTORY message.

EQA1182I (history number) LOAD occurred at state-
ment cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1183I (history number) DELETE occurred at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1184I (history number) condition name raised at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1185I (history number) LABEL hook at state-
ment cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1186I Unable to display value of variable name.
Use LIST (variable name) for further
details

Explanation: This is used to inform the user that for
some reason one of the variables cannot be displayed
for LIST TITLED.

EQA1187I There are no data members in the
requested object.

Explanation: The requested object does not contain
any data members. It contains only methods.

| EQA1188I (history number) DATE hook at statement
| cu_name :> statement_id

| Explanation: This is a LIST HISTORY message.

EQA1226I The EQUATE named EQUATE name is
replaced.

Explanation: This alerts the user to the fact that a
previous EQUATE existed and was replaced.

Programmer Response: Verify that this was intended.

EQA1227I The following EQUATE definitions are in
effect:

Explanation: This is the header for the QUERY EQUATES

command.

EQA1228I EQUATE identifier = "EQUATE string"

Explanation: Used to display EQUATE identifiers and
their associated strings. The string is enclosed in quo-
tation marks so that any leading or trailing blanks are
noticeable.

 Appendix E. Debug Tool Messages 361

 EQA1229I � EQA1248I

EQA1229I The program is currently exiting block
block name .

Explanation: Shows the bearings in an interrupted
program.

EQA1230I The program is currently executing
prolog code for block name .

Explanation: Shows the bearings in an interrupted
program.

EQA1231I You are executing commands within a
__ctest function.

Explanation: Shows the bearings in an interrupted
program.

EQA1232I You are executing commands within a
CEETEST function.

Explanation: Shows the bearings in an interrupted
program.

EQA1233I The established MONITOR commands
are:

Explanation: This is the header produced by LIST
MONITOR.

EQA1234I MONITOR monitor number monitor type

Explanation: This is the line produced by LIST
MONITOR before each command is displayed.

EQA1235I The command for MONITOR monitor
number monitor type is:

Explanation: This is the header produced by LIST
MONITOR monitor number.

EQA1236I The MONITOR monitor number command
is replaced.

Explanation: This is a safety message: the user is
reminded that a MONITOR command is replacing an old
one.

EQA1237I The current qualification is block name .

Explanation: Shows the current point of view.

EQA1238I The current location is cu_name :> state-
ment id .

Explanation: Shows the place where the program was
interrupted.

EQA1239I The program is currently entering block
block name .

Explanation: Shows the bearings in an interrupted
program.

EQA1240I You are executing commands within a
CALL PLITEST statement.

Explanation: Shows the bearings in an interrupted
program.

EQA1241I You are executing commands from the
run-time command-list.

Explanation: Shows the bearings in an interrupted
program.

EQA1242I You are executing commands in the
breakpoint-id breakpoint.

Explanation: Shows the bearings in an interrupted
program.

EQA1243I The setting of SET-command object is
status

Explanation: The status of the object of a SET
command is displayed when QUERYed individually.

EQA1244I SET-command object status

Explanation: The status of the object of a SET
command is displayed when issued as part of QUERY
SET.

EQA1245I The current settings are:

Explanation: This is the header for QUERY SET.

EQA1246I PFKEY string command

Explanation: Used to display PFKEYS as part of
QUERY PKFEYS.

EQA1247I colored area color hilight intensity

Explanation: Used to display SCREEN as part of
QUERY SCREEN.

EQA1248I You were prompted because STEP
ended.

Explanation: Shows the bearings in an interrupted
program.

362 Debug Tool User's Guide and Reference

 EQA1249I � EQA1284I

EQA1249I character string - The QUERY source
setting file name is not available.

Explanation: The source listing name is not available.
The source listing was not required or set prior to this
command.

EQA1250I SET INTERCEPT is already set on or off
for FILE filename.

Explanation: You tried to issue the SET INTERCEPT

ON/OFF for a file that is already set to ON/OFF. This is
just an informational message to notify you that you are
trying to duplicate the current setting. The command is
ignored.

EQA1276I TEST:

Explanation: Debug Tool is ready to accept a
command from the terminal.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.
Information is displayed identifying the commands you
are allowed to enter.

EQA1277I The USE file is empty.

Explanation: Debug Tool tried to read commands
from an empty USE file. If unintentional, this could be
because of an incorrect file specification.

Programmer Response: Correct the file specification
and retry.

EQA1278I alignment spaces command part

Explanation: This is part of a command that is being
displayed in the log or in response to a LIST AT. Since
a group of commands can be involved, their appear-
ance is improved by indenting the subgroups. There-
fore, the first insert is used for indentation, and the
second to contain the command. This is the command
as it is understood by Debug Tool.

� Truncated keywords are no longer truncated.
� Lowercase to uppercase conversion was done

where appropriate.
� Only a single command is contained in a record. If

multiple commands are involved, additional records
are prepared using this format.

EQA1279I TEST (cu_name:> statement_id):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a statement
and a statement table is available.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.

Information is displayed identifying the commands you
are allowed to enter.

EQA1280I TEST (cu_name ENTRY):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a compile
unit entry.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the commands
you are allowed to enter.

EQA1281I TEST (cu_name:> block name ENTRY):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a block
entry.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the commands
you are allowed to enter.

EQA1282I TEST (cu_name EXIT):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a compile
unit exit.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the commands
you are allowed to enter.

EQA1283I TEST (cu_name:> block name EXIT):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a block exit.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the commands
you are allowed to enter.

EQA1284I TEST (Application program has termi-
nated):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at the termi-
nation of the application program.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the commands
you are allowed to enter.

 Appendix E. Debug Tool Messages 363

 EQA1285I � EQA1327I

EQA1285I TEST (label-name LABEL);

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a label.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.
Information is displayed identifying the commands you
are allowed to enter.

EQA1286I (Application program has terminated)

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
full-screen mode when an initial prompt occurs at the
termination of the application program.

EQA1287I Unknown

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
full-screen mode when an initial prompt occurs and the
location is unknown.

EQA1288I initialization

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
full-screen mode when an initial prompt occurs after
Debug Tool initialization and before any program hooks
are reached.

EQA1289I ddname: program output

Explanation: Displays program output with the
ddname preceding the output.

EQA1290I The program is waiting for input from
ddname

Explanation: Debug Tool has gained control because
the program is waiting for input.

EQA1291I Use the INPUT command to enter recsize
characters for the intercepted fixed-
format file.

Explanation: Prompts you for intercepted input of
fixed-format file.

EQA1292I Use the INPUT command to enter up to a
maximum of recsize characters for the
intercepted variable-format file.

Explanation: Prompt user for intercepted input of
variable-formatted file.

EQA1293I TEST (cu-name):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
linemode when an initial prompt occurs at a statement
and a statement table is not available.

Programmer Response: Enter a command. If you
are not sure of what you can enter, enter HELP or ?.
Information is displayed identifying the available com-
mands you are allowed to enter.

EQA1306I You were prompted because the CONDI-
TION name condition was raised in your
program.

Explanation: The program has stopped running due to
the occurrence of the named condition.

EQA1307I You were prompted because an ATTEN-
TION interrupt occurred.

Explanation: The attention request from the terminal
was recognized and the Debug Tool was given control.

EQA1308I You were prompted because a condition
was raised in your program.

Explanation: The program stopped running due to the
occurrence of a condition whose name is unknown.

EQA1309I CONDITION name is a severity or class
SEVERITY code condition.

Explanation: The condition named is described by its
severity level or class code. See OS/390 Language
Environment Programming Guide.

EQA1316I Block block name contains the following
statements:

Explanation: This message precedes the message
that identifies all statement numbers in the block.

EQA1317I block level space characters block name

Explanation: This message is used instead of
EQA1097I when the number of block levels is greater
than the indentation allowed.

EQA1326I character string

Explanation: This message is used during product
development and service.

EQA1327I character string character string

Explanation: This message is used during product
development and service.

364 Debug Tool User's Guide and Reference

 EQA1329I � EQA1403E

EQA1329I The procedure named procedure name
has the form:

Explanation: This is the information that is produced
when a LIST PROCEDURE command is processed. This
message is followed by a message of one or more lines
showing the commands that form the procedure.

EQA1330I You are not currently within a procedure.

Explanation: The LIST PROCEDURE command was
issued without naming a session procedure and the
current command context is outside of a session proce-
dure.

Programmer Response: Verify the request. Reenter
the command and name a specific procedure if neces-
sary.

EQA1331I The RETRIEVE queue is empty.

Explanation: There are no entries in the retrieve
queue.

EQA1332I FIND has continued from top of area.

Explanation: FIND searched the file to the end of the
string without finding it and continues the search from
the top, back to the starting point of the search.

EQA1333I The string was found.

Explanation: FIND was successful in locating the
target string. The line on which the string was found is
displayed just above this message when operating in
line mode.

EQA1334I The operating system has generated the
following message:

Explanation: The Operating System can issue its own
messages. These are relayed to the user.

EQA1335I OS message

Explanation: The operating system can issue its own
messages. These are relayed to the user.

EQA1336I IBM Debug Tool Version 1 Release 2 time
stamp 5688-194 (C) Copyright IBM Corp.
1995

Explanation: This message is used to place the
Debug Tool logo, a timestamp, and copyright at the
beginning of the log. This is for Language Environment.

EQA1337I - Its address is address and its length is
length

Explanation: Text of a DESCRIBE ATTRIBUTES message
for PL/I.

EQA1338I - Its offset is offset and its length is length

Explanation: Text of a DESCRIBE ATTRIBUTES message
for PL/I.

EQA1339I - Its length is length

Explanation: Text of a DESCRIBE ATTRIBUTES message
for PL/I.

EQA1340I - Its address is address

Explanation: Text of a DESCRIBE ATTRIBUTES message
for PL/I.

EQA1341I - Its Offset is offset

Explanation: Text of a DESCRIBE ATTRIBUTES message
for PL/I.

EQA1342I ATTRIBUTES for variable name variable
type

Explanation: Text of a DESCRIBE ATTRIBUTES message
for PL/I.

EQA1343I Presently not in accessible storage

Explanation: The requested variable cannot be
accessed.

EQA1344I The OTHERWISE statement would have
been executed but was not present

Explanation: The was no OTHERWISE clause present in
the SELECT statement and none of the WHEN clauses
were selected. This message is simply indicating that
the OTHERWISE clause would have been executed if it
had been present.

EQA1400E The value entered is invalid.

Explanation: The user entered an invalid value.

EQA1401E The command entered is not a valid
panel sub-command.

Explanation: The user entered a command not recog-
nized by panel processor.

EQA1402E Each window must have unique letters
of L, M, and S.

Explanation: The user entered either duplicated
letters or just one letter.

EQA1403E Invalid prefix command was entered.

Explanation: The user entered an invalid prefix
command.

 Appendix E. Debug Tool Messages 365

 EQA1404E � EQA1455E

EQA1404E Search target not found.

Explanation: The target for the search command was
not found.

EQA1405E No previous search arguments exist;
find not performed.

Explanation: A FIND command was issued without an
argument. Since the FIND command had not been
issued previously, Debug Tool had nothing to search
for.

EQA1406E Invalid window id

Explanation: The window header field contains an
invalid window ID. Valid window IDs are SOURCE,
MONITOR, and LOG.

EQA1407E Invalid scroll amount entered.

Explanation: Scroll field contains an invalid scroll
amount.

EQA1408E Duplicate window ID

Explanation: More than one window header field con-
tains the same window id.

EQA1430W The EQUATE named EQUATE name was
has not been established.

Explanation: CLEAR EQUATE <name> was attempted for
an EQUATE name that has not been established.

Programmer Response: For a list of the current
EQUATES definitions, issue QUERY EQUATES.

EQA1431W There are no EQUATE definitions in
effect.

Explanation: CLEAR EQUATE or QUERY EQUATES was
issued but there are no EQUATE definitions.

EQA1432E function is not supported.

Explanation: Language/Country is not supported.

Programmer Response: Set National Language and
Country.

EQA1433E Switching to the programming language
language-name is invalid because there
are no language-name compilation units
in the initial load module.

Explanation: A SET PROGRAMMING LANGUAGE command
was issued, but the initial load module contains no com-
pilation units compiled in the language specified (or
implied).

EQA1434E Error in setting debug name to
????????? .

Programmer Response: Refer to the maximum
number of CUs allowed for debugging.

EQA1435E Error in setting name .

Explanation: This is a generic message for SET
command errors.

EQA1436W SET EXECUTE is OFF -- command will
not be executed.

Explanation: The command was parsed but not exe-
cuted.

EQA1450E Unable to display the result from
expression evaluation

Explanation: The entire result from the expression
evaluation cannot be displayed; for example, the array
is too large.

EQA1451E operand contains incompatible data type.

Explanation: Comparison or assignment involves
| incompatible data types, or incompatible or unsupported
| date fields. If you are using COBOL, see Table 24 on
| page 351 for allowable comparisons for the Debug Tool
| IF command, and Table 25 on page 352 for allowable
| moves for the Debug Tool MOVE command.

EQA1452E argument name is not a valid argument.

Explanation: The specified argument is not valid.

EQA1453E The number of arguments is not correct.

Explanation: There are either too many or too few
arguments specified.

EQA1454E operand name is not a valid operand.

Explanation: The specified operand is undefined or is
an invalid literal.

EQA1455E An unsupported operator/operand is
specified.

Explanation: An operator or an operand was not
| understood, and therefore was not processed. Exam-
| ples of when this message is issued when using
| COBOL include:

| � An attempt to perform arithmetic with a nonnumeric
| data item

| � An attempt to perform arithmetic with a windowed
| date field

366 Debug Tool User's Guide and Reference

 EQA1456S � EQA1474E

EQA1456S The variable variable name is undefined
or is incorrectly qualified.

Explanation: The named variable could not be located
or undefined.

Programmer Response: You need to qualify to a dif-
ferent block in order to locate the variable.

EQA1457E The exponent exponent contains a
decimal point. This feature is not sup-
ported.

Explanation: No decimal point is allowed in exponent
specification.

EQA1458E The address of data item has been deter-
mined to be invalid.

Explanation: This can happen for items within a data
record where the file is not active or the record area is
not available; for items in a structure following Occurs,
depending on the item where the ODO variable was not

| initialized; or for items in the LINKAGE SECTION that
| are not based on a valid address.

EQA1459E literal string is not a valid literal.

Explanation: The combination of characters specified
for the literal is not a valid literal.

EQA1460E Operand operand name should be
numeric.

Explanation: A nonnumeric operand was found where
a numeric operand was expected.

EQA1461E Invalid data for data item is found.

Explanation: The memory location for a data item
contains data that is inconsistent with the data type of
the item. The item might not have been initialized.

EQA1462E Invalid sign for data item is found.

Explanation: The sign position of a signed data item
contains an invalid sign. The item might not have been
initialized.

EQA1463E A divisor of 0 is detected in a divide
operation.

Explanation: The expression contains a divide opera-
tion where the divisor was determined to be zero.

EQA1464E data item is used as a receiver but it is
not a data name.

Explanation: The target of an assignment is not valid.

EQA1465E The TGT for a program is not available.

Explanation: The program might have been deleted or
canceled.

EQA1466E data item is not a valid subscript or
index.

Explanation: The subscript or index might be out of
range or an ODO variable might not be initialized.

EQA1467E No subscript or index is allowed for data
item

Explanation: One or more subscripts or indexes were
specified for a data item that was not defined as a
table. The reference to the data item is not allowed.

EQA1468E Missing subscripts or indexes for data
item

Explanation: A data item defined as a table was refer-
enced without specifying any subscripts or indexes.
The reference is not allowed.

EQA1469E Incorrect number of subscripts or
indexes for data item

Explanation: A data item defined as a table was refer-
enced with incorrect number of subscripts or indexes.
The reference is not allowed.

EQA1470E Incorrect length specification for data
item

Explanation: The length of a data item is incorrect for
the definition, usually due to a faulty ODO object.

EQA1471E Incorrect value for ODO variable data
item

Explanation: The ODO variable might not have been
initialized, or the current value is out of range.

EQA1472E Invalid specification of reference modifi-
cation.

Explanation: The specification of the reference modifi-
cation is not consonant with the length field.

EQA1473E Invalid zero value for data item

Explanation: The value of a data item is zero. A zero
is invalid in the current context.

EQA1474E procedure name was found where a data
name was expected.

Explanation: Invalid name is specified for a data item.

 Appendix E. Debug Tool Messages 367

 EQA1475E � EQA1490S

EQA1475E data item is an invalid qualifier in a quali-
fied reference.

Explanation: A qualified reference is invalid. One or
more qualifiers might be undefined or not in the same
structure as the desired data item.

EQA1476E Too many qualifiers in a qualified refer-
ence.

Explanation: The qualified reference contains more
than the legal number of qualifiers.

EQA1477E DATA DIVISION does not contain any
entries.

Explanation: There is no data to display for a LIST \

request because the DATA DIVISION does not contain
any entries.

EQA1478E No status available for sort file sort file

Explanation: Status was requested for a sort file.
There is never a status available for a sort file.

EQA1479E Unable to locate any TGT.

Explanation: An attempt to locate any TGT failed. No
COBOL program exists in TEST mode.

EQA1480E operand name is an invalid operand for
SET command.

Explanation: The operands for a SET command are
incorrect. At least one of the operands must be index
name.

EQA1481E Too many digits for the exponent of
floating point literal data item

Explanation: The exponent specified for a floating-
point literal contains too many digits.

EQA1482E command name command is terminated
due to an error in processing.

Explanation: The command is terminated unsuccess-
fully because an error occurred during processing.

EQA1483E reference could not be formatted for
display.

Explanation: The requested data item could not be
displayed due to an error in locating or formatting the
data item.

EQA1484E Resources (for example, heap storage)
are not available for processing and the
command is terminated unsuccessfully.

Explanation: The command could not be completed
due to inadequate resources.

Programmer Response: Increase the region size and
restart Debug Tool.

EQA1485E The command is not supported because
the CU is compiled with incorrect
compile-time options.

Explanation: For COBOL, the CUs must be compiled
with VS COBOL II Version 1 Release 3 and the
compile-time TEST or FDUMP option, or AD/Cycle COBOL
and the compile-time TEST option.

EQA1486E variable name is presently not in acces-
sible storage.

Explanation: The variable might be CONTROLLED or
AUTOMATIC and does not yet exist.

EQA1487S The number of dimensions for variable
name is number -- but number have been
specified.

Explanation: The wrong number of subscripts were
specified with the variable reference.

EQA1488E The indices in variable name are invalid.
Use the DESCRIBE ATTRIBUTES command
(without any indices specified) to see the
valid indices.

Explanation: The subscripts with the variable refer-
ence do not properly relate to the variable's character-
istics.

EQA1489S variable name is not a based variable but
a locator has been supplied for it.

Explanation: A pointer cannot be used unless the var-
iable is BASED.

Programmer Response: Use additional qualification
to get to the desired variable.

EQA1490S variable name cannot be used as a
locator variable.

Explanation: Only variables whose data type is
POINTER or OFFSET can be used to locator with other
variables.

368 Debug Tool User's Guide and Reference

 EQA1491S � EQA1504S

EQA1491S There is no variable named character
string, and if it is meant to be a built-in
function, the maximum number of argu-
ments to the character string built-in func-
tion is number, but number were
specified.

Explanation: A subscripted variable could not be
found. Its name, however, is also that of a PL/I built-in
function. If the built-in function was intended, the wrong
number of arguments were present.

EQA1492S There is no variable named character
string, and if it is meant to be a built-in
function, the minimum number of argu-
ments to the character string built-in func-
tion is number , but number were
specified.

Explanation: A subscripted variable could not be
found. Its name, however, is also that of a PL/I built-in
function. If the built-in function was intended, more
arguments must be present.

EQA1493E There is no variable named character
string, and if it is meant to be a built-in
function, remember built-in functions are
allowed only in expressions.

Explanation: A variable could not be found. Its name,
however, is also that of a PL/I built-in function. If the
built-in function was intended, it is not in the correct
context. Note that in Debug Tool, pseudo-variables
cannot be the target of assignments.

EQA1494S variable name is an aggregate. It cannot
be used as a locator reference.

Explanation: The variable that is being as a locator is
not the correct data type.

EQA1495S The name variable name is ambiguous
and cannot be resolved.

Explanation: Names of structure elements can be
ambiguous if not fully qualified. For example, in DCL 1

A, 2 B, 3 Z POINTER, 2 C, 3 Z POINTER, the names Z

and A.Z are ambiguous.

Programmer Response: Retry the command with
enough qualification so that the name is unambiguous.

EQA1496S The name variable name refers to a struc-
ture, but structures are not supported
within this context.

Explanation: Given DCL 1 A, 2 B FIXED, 2 C FLOAT,
the name A refers to a structure.

Programmer Response: Break the command into
commands for each of the basic elements of the struc-

ture, or use the DECLARE command with a BASED
variable to define a variable overlaying the structure.

EQA1497S An aggregate cannot be used as an
index into an array.

Explanation: Given DCL A(2) FIXED BIN(15) and DCL

B(2) FIXED BIN(15), references to A(B), A(B+2), and so
on are invalid.

Programmer Response: Use a scalar as the index.

EQA1498S Generation and recursion numbers must
be positive.

Explanation: In %GENERATION(x,y) and
%RECURSION(x,y), y must be positive.

EQA1499S Generation and recursion expressions
cannot be aggregate expressions.

Explanation: In %GENERATION(x,y) and
%RECURSION(x,y), y must be a scalar.

EQA1500S %RECURSION can be applied only to
parameters and automatic variables.

Explanation: In %RECURSION(x,y), x must be a param-
eter or an automatic variable.

EQA1501S %RECURSION number of procedure name
does not exist. The present number of
recursions of the block block name is
number .

Explanation: In %RECURSION(x,y), y must be no
greater than the number of recursions of the block
where x is declared.

EQA1502S %Generation can be applied only to con-
trolled variables.

Explanation: In %GENERATION(x,y), x must be con-
trolled.

EQA1503S %Generation number of variable name
does not exist. The present number of
allocations of variable name is number .

Explanation: In %GENERATION(x,y), y must be no
greater than the number of allocations of the variable x.

EQA1504S %Generation number of %RECURSION (
procedure name, number) does not exist.
The present number of allocations of
%RECURSION (procedure name, number)
is number .

Explanation: In %GENERATION(x,y), y must be no
greater than the number of allocations of the variable x.

 Appendix E. Debug Tool Messages 369

 EQA1505S � EQA1523E

EQA1505S The variable variable name belongs to a
FETCHed procedure and is a CON-
TROLLED variable that is not a param-
eter. This violates the rules of PL/I.

Explanation: PL/I does not allow FETCHed procedures
to contain CONTROLLED variable types.

Programmer Response: Correct the program.

EQA1506S The variable character string cannot be
used.

Explanation: The variable belongs to the class of vari-
ables, such as members of structures with REFER state-
ments, which Debug Tool does not support.

EQA1507E The expression in the QUIT command
must be a scalar that can be converted
to an integer value.

Explanation: The expression in the QUIT command
cannot be an array, a structure or other data aggregate,
and if it is a scalar, it must have a type that can be con-
verted to integer.

EQA1508E An internal error occurred in C run time
during expression processing.

Explanation: This message applies to C. An internal
error occurred in the C run time and the command is
terminated.

EQA1509E The unary operator operator name
requires a scalar operand.

Explanation: This message applies to the C unary
operator ! (logical negation).

EQA1510E The unary operator operator name
requires a modifiable lvalue for its
operand.

Explanation: This message applies to the C unary
operators ++ and −−.

EQA1511E The unary operator operator name
requires an integer operand.

Explanation: This message applies to the C unary
operator (bitwise complement).

EQA1512E The unary operator operator requires an
operand that is either arithmetic or a
pointer to a type with defined size.

Explanation: This message applies to the C unary
operators + and −. These operators cannot be applied
to pointers to void-function designators, or pointers to
functions.

EQA1513E The unary operator operator requires an
arithmetic operand.

Explanation: This message applies to the C unary
operator + and −.

EQA1514E Too many arguments specified in func-
tion call.

Explanation: This message applies to C function calls.

EQA1515E Too few arguments specified in function
call.

Explanation: This message applies to C function calls.

EQA1516E The logical operator operator requires a
scalar operand.

Explanation: This message applies to the C binary
operators && (logical and) and || (logical or).

EQA1517E The operand of the type cast operator
must be scalar.

Explanation: This message applies to the C type
casts.

EQA1518E The named type of the type cast oper-
ator must not be an expression.

Explanation: This message applies to the C type
casts.

EQA1519E A real type cannot be cast to a pointer
type.

Explanation: This message applies to C type casts.
In the example 'float f;', the type cast '(float *) f' is
invalid.

EQA1520E A pointer type cannot be cast to a real
type.

Explanation: Invalid operand for the type cast oper-
ator.

EQA1521E The operand in a typecast must be
scalar.

Explanation: This message applies to C type casts.

EQA1522E Argument argument in function call func-
tion has an invalid type.

Explanation: This message applies to C function calls.

EQA1523E Invalid type for function call.

Explanation: This message applies to C function calls.

370 Debug Tool User's Guide and Reference

 EQA1524E � EQA1539E

EQA1524E The first operand of the subscript oper-
ator must be a pointer to a type with
defined size.

Explanation: This message applies to the C subscript
operator. The subscript operator cannot be applied to
pointers to void, function designators or pointers to
functions.

EQA1525E Subscripts must have integer type.

Explanation: This message applies to the C subscript
operator.

EQA1526E The first operand of the sizeof operator
must not be a function designator, a
typedef, a bitfield or a void type.

Explanation: This message applies to the C unary
operator sizeof.

EQA1527E The second operand of the operator oper-
ator must be a member of the structure
or union specified by the first operand.

Explanation: This message applies to the C operators
(select member) and –> (point at member).

EQA1528E The first operand of the operator operator
must have type pointer to struct or
pointer to union.

Explanation: This message applies to the C operator
–> (point at member).

EQA1529E The operand of the operator operator
must be an array, a function designator,
or a pointer to a type other than void.

Explanation: This message applies to the C indi-
rection operator.

EQA1530E The first operand of the operator operator
must have type struct or union.

Explanation: This message applies to the C subscript
operator (select member).

EQA1531E The relational operator operator requires
comparable data types.

Explanation: This message applies to the C relational
operators. For example, <, >, <=, >=, and ==.

EQA1532E The subtraction operator requires that
both operands have arithmetic type or
that the left operand is a pointer to a
type with defined size and the right
operand has the same pointer type or an
integral type.

Explanation: This message applies to the C binary
operator −. The difference between two pointers to void
or two pointers to functions is undefined because sizeof
is not defined for void types and function designators.

EQA1533E Assignment contains incompatible types.

Explanation: This message applies to C assignments,
for example, +=, −=, and *=.

EQA1534E The TEST expression in the switch oper-
ator must have integer type.

Explanation: This applies to the test expression in a C
switch command.

EQA1535E The addition operator requires that both
operands have arithmetic or that one
operand has integer type and the other
operand is a pointer to a type with
defined size.

Explanation: This message applies to the C binary
operator +.

EQA1536E The operand of the address operator
must be a function designator or an
lvalue that is not a bitfield.

Explanation: This message applies to the C unary
operator & (address).

EQA1537E Invalid constant for the C language.

Explanation: This message applies to C constants.

EQA1538E Argument argument in function call func-
tion is incompatible with the function
definition. Since Warning is on, the
function call is not made.

Explanation: This message applies to C function calls.
The argument must have a type that would be valid in
an assignment to the parameter.

EQA1539E The binary operator operator requires
integer operands.

Explanation: This message applies to the C binary
operator % (remainder), << (bitwise left shift), >>
(bitwise right shift), & (bitwise and), ??¬' (bitwise exclu-
sive or), |(bitwise inclusive or), and the corresponding
assignment operators (for example, %=, and <<=).

 Appendix E. Debug Tool Messages 371

 EQA1540E � EQA1558E

EQA1540E The binary operator operator requires a
modifiable lvalue for its first operand.

Explanation: This message applies to the C binary
assignment operators.

EQA1541E The binary operator operator requires
arithmetic operands.

Explanation: This message applies to the C binary
operators * and /.

EQA1542E Source in assignment to an enum is not
a member of the enum. Since Warning
is on, the operation is not performed.

Explanation: This message applies to C. You
attempted to assign a value to enum, but the value is
not legitimate for that enum.

EQA1543E Invalid value for the shift operator oper-
ator. Since Warning is on, the operation
will not be performed.

Explanation: This message applies to the C binary
operators << (bitwise left shift) and >> (bitwise right
shift). Shift values must be nonnegative and less than
33. These tests are made only when WARNING is on.

EQA1544E Array subscript is negative. Since
Warning is on, the operation is not per-
formed.

Explanation: This message applies to the C sub-
scripts.

EQA1545E Array subscript exceeds maximum
declared value. Since Warning is on, the
operation is not performed.

Explanation: This message applies to the C sub-
scripts.

EQA1546E ZeroDivide would have occurred in per-
forming a division operator. Since
Warning is on, the operation is not per-
formed.

Explanation: Divide by zero is detected by C run time.

EQA1547E variable is presently not in accessible
storage.

Explanation: This message applies to C. Use the
LIST NAMES command to list all known variables.

EQA1548E There is no variable named variable

Explanation: This message applies to C. Use the
LIST NAMES command to list all known variables.

EQA1549E The function call function is not per-
formed because the function linkages do
not match.

Explanation: This message applies to C function calls
and can occur,for example, when a function's linkage is
specified as CEE, but the function was compiled with
linkage OS.

EQA1550E There is no typedef identifier named
name

Explanation: This message applies to C. The
message is issued, for example, in response to the
command DESCRIBE ATTRIBUTE typedef x, if x is not a
typedef identifier.

EQA1551E name is the name of a member of an
enum type.

Explanation: This message applies to C.

EQA1552E The name name is invalid.

Explanation: This message applies to C declarations.

EQA1553E Linkage type for function call function is
unknown.

Explanation: This message applies to C function calls.

EQA1554E Function call function has linkage type
PL/I, which is not supported.

Explanation: This message applies to C function calls.

EQA1555E Function call function has linkage type
FORTRAN which is not supported.

Explanation: This message applies to C function calls.

EQA1556E name is a tag name. This cannot be
listed since it has no storage associated
with it.

Explanation: This message applies to C tag names.

EQA1557E name is not an lvalue. This cannot be
listed since it has no storage associated
with it.

Explanation: This message applies to C names.

EQA1558E name has storage class void, not per-
mitted on the LIST command.

Explanation: This message applies to C. In the
example 'void' funcname (...), the command LIST

TITLED (funcname()) is invalid.

372 Debug Tool User's Guide and Reference

 EQA1559E � EQA1579E

EQA1559E The second operand of the
%RECURSION operator must be arith-
metic.

Explanation: This message applies to C. In
%RECURSION(x,y), the second expression, y, must have
arithmetic type.

EQA1560E The second operand of the
%RECURSION operator must be positive.

Explanation: This message applies to C. In
%RECURSION(x,y), the second expression, y, must be
positive.

EQA1561E The first operand of the %RECURSION
operator must be a parameter or an auto-
matic variable.

Explanation: This message applies to C. In
%RECURSION(x,y), the first expression, x, must be a
parameter or an automatic variable.

EQA1562E The first operand of the %INSTANCE
operator must be a parameter or an auto-
matic variable.

Explanation: This message applies to C. In
%INSTANCE(x,y), the first expression, x, must be a
parameter or an automatic variable.

EQA1563E Generation specified for %RECURSION
is too large.

Explanation: This message applies to C. In
%RECURSION(x,y), the recursion number, y, exceeds the
number of generations of x that are currently active.

EQA1564E The identifier identifier has been replaced.

Explanation: This message applies to C declarations.

EQA1565E The declaration is too large

Explanation: This message applies to C declarations.

EQA1566E An attempt to modify a constant was
made. Since Warning is on, the opera-
tion is not performed.

Explanation: This message applies to C.

EQA1567E An attempt to take the address of a vari-
able with register storage was made.
Since Warning is on, the operation is not
performed.

Explanation: This message applies to C.

EQA1568E Type of expression to %DUMP must be a
literal string.

Explanation: This message applies to CALL %DUMP for
C.

EQA1569E Octal constant is too long.

Explanation: This message applies to C constants.

EQA1570E Octal constant is too big.

Explanation: This message applies to C constants.

EQA1571E Hex constant is too long.

Explanation: This message applies to C constants.

EQA1572E Decimal constant is too long.

Explanation: This message applies to C constants.

EQA1573E Decimal constant is too big.

Explanation: This message applies to C constants.

EQA1574E Float constant is too long.

Explanation: This message applies to C constants.

EQA1575E Float constant is too big.

Explanation: This message applies to C constants.

EQA1576E The environment is not yet fully initial-
ized.

Explanation: You can STEP and try the command
again.

EQA1577E Size of the aggregate is too large

Explanation: This message applies to PL/I constants.

EQA1578E Only "=" and "¬=" are allowed as opera-
tors in comparisons involving program
control data.

Explanation: Other relationships between program
control data are not defined.

Programmer Response: Check to see if a variable
was misspelled.

EQA1579E Program control data may be compared
only with program control data of the
same type.

Explanation: ENTRY vs ENTRY, LABEL vs LABEL,
etc. are okay. LABEL vs ENTRY is not.

 Appendix E. Debug Tool Messages 373

 EQA1580E � EQA1592W

EQA1580E Area variables cannot be compared.

Explanation: Equivalency between AREA variables is
not defined.

EQA1581E Aggregates are not allowed in condi-
tional expressions such as the
expressions in IF ... THEN, WHILE (...

), UNTIL (...), and WHEN (...)

clauses.

Explanation: This is not supported.

Programmer Response: Check to see if the variable
name was misspelled. If this was not the problem, you
must find other logic to perform the task.

EQA1582E Only "=" and "¬=" are allowed as opera-
tors in comparisons involving complex
numbers.

Explanation: Equal and not equal are defined for
complex variables, but you have attempted to relate
them in some other way.

EQA1583E Strings with the GRAPHIC attribute may
be concatenated only with other strings
with the GRAPHIC attribute.

Explanation: You are not allowed to concatenate
GRAPHIC (DBCS) strings to anything other than other
GRAPHIC (DBCS) strings.

EQA1584E Strings with the GRAPHIC attribute may
be compared only with other strings with
the GRAPHIC attribute.

Explanation: Equivalency between the GRAPHIC data
type and other data types has not been defined.

EQA1585E Only numeric data, character strings,
and bit strings may be the source for
conversion to character data.

Explanation: You are trying to convert something to a
character format when such a relationship has not been
defined.

EQA1586E Only numeric data, character strings,
and bit strings may be the source for
conversion to bit data.

Explanation: You are trying to convert something to a
bit format when such a relationship has not been
defined.

EQA1587E Only numeric data, character strings, bit
strings, and pointers may be the source
for conversion to numeric data.

Explanation: You are trying to convert something to a
numeric format when such a relationship has not been
defined.

EQA1588E Aggregates are not allowed in control
expressions.

Explanation: This message applies to PL/I constants.

EQA1589W CONVERSION would have occurred in
performing a CHARACTER to BIT conver-
sion, but since WARNING is on, the con-
version will not be performed.

Explanation: The specified conversion probably con-
tained characters that were something other than '0' or
'1'. Since the conversion to BIT could therefore not be
done, this message is displayed rather than raising the
CONVERSION condition.

EQA1590W Varying string variable name has a
length that is greater than its declared
maximum. It will not be used in
expressions until it is fixed.

Explanation: The variable named has been declared
as VARYING with length n, but its current length is
greater than n. The variable might be uninitialized or
might have been written over.

EQA1591W Varying string variable name has a nega-
tive string length. It will not be used in
expressions until it is fixed.

Explanation: The variable named has been declared
as VARYING with length n, but its current length is less
than 0. The variable might be uninitialized or it might
have been written over.

EQA1592W Fixed decimal variable variable name
contains bad data. Since WARNING is
on, the operation will not be performed.

Explanation: A variable contains bad decimal data if
its usage would cause a data exception to occur (that
is, its numeric digits are not 0–9 or its sign indicator is
invalid), or it has even precision but its leftmost digit is
nonzero. LIST STORAGE can be used to find the con-
tents of the variable, and an assignment statement can
be used to correct them.

374 Debug Tool User's Guide and Reference

 EQA1593W � EQA1607E

EQA1593W The size of AREA variable variable name
is less than zero. Since WARNING is on,
the operation will not be performed.

Explanation: Negative sizes are not understood and,
therefore, are not processed.

EQA1594W The size of AREA variable variable name
exceeds its declared maximum size.
Since WARNING is on, the operation will
not be performed.

Explanation: Performing the operation would alter
storage that is outside of the AREA. Such an operation
is not within PL/I, so will be avoided.

EQA1595W Fixed binary variable variable name con-
tains more significant digits than its pre-
cision allows. Since WARNING is on, the
operation will not be performed.

Explanation: For example, a FIXED BIN(5,0) variable
can have only 5 significant digits thus limiting its valid
range of values to −32 through 31 inclusive.

EQA1596E The subscripted variable variable name
was not found. The name matches a
built-in function, but the parameters are
wrong.

Explanation: This message applies to PL/I constants.

EQA1597E AREA condition would have been raised

Explanation: This message applies to PL/I constants.

EQA1598E The bounds and dimensions of all arrays
in an expression must be identical.

Explanation: Array elements of an expression (such
as A + B or A = B) must all have the same number of
dimensions and the same lower and upper bounds for
each dimension.

EQA1599E You cannot assign an array to a scalar.

Explanation: The PL/I language does not define how
a scalar would represent an array; the assignment is
rejected as an error.

EQA1600E Aggregate used in wrong context.

Explanation: This message applies to PLI constants.

EQA1601E The second expression in the built-in
function name built-in function must be
greater than or equal to 1 and less than
or equal to the number of dimensions of
the first expression.

Explanation: The second expression of the named
built-in function is dependent upon the dimensions of
the array (the first built-in function argument).

Programmer Response: Correct the relationship
between the first and second arguments.

EQA1602E The second expression in the built-in
function name built-in function must not
be an aggregate.

Explanation: Debug Tool does not support aggregates
in this context.

EQA1603E The first argument in the built-in function
name built-in function must be an array
expression.

Explanation: The named built-in function expects an
array to be the first argument.

EQA1604E Argument number number in the built-in
function name built-in function must be a
variable.

Explanation: You used something other than a vari-
able name (for example, a constant) in your invocation
of the named built-in function.

EQA1605E STRING(variable name) is invalid
because the STRING built-in function can
be used only with bit, character and
picture variables.

Explanation: You must use a variable of the correct
data type with the STRING built-in function.

EQA1606E POINTER(variable name ,...) is invalid
because the first argument to the POINTER

built-in function must be an offset vari-
able.

Explanation: The first argument to POINTER was deter-
mined to be something other than an OFFSET data
type.

EQA1607E POINTER(..., variable name) is invalid
because the second argument to the
POINTER built-in function must be an area
variable.

Explanation: The second argument to POINTER was
determined to be something other than an AREA data
type.

 Appendix E. Debug Tool Messages 375

 EQA1608E � EQA1622E

EQA1608E OFFSET(variable name ,...) is invalid
because the first argument to the OFFSET

built-in function must be a pointer vari-
able.

Explanation: The first argument to OFFSET was deter-
mined to be something other than a POINTER data
type.

EQA1609E OFFSET(..., variable name) is invalid
because the second argument to the
OFFSET built-in function must be an area
variable.

Explanation: The second argument to OFFSET was
determined to be something other than an AREA data
type.

EQA1610E built-in function name (variable name) is
invalid because the argument to the
built-in function name built-in function
must be a file reference.

Explanation: The name built-in function requires the
name of a FILE to operate. Some other data type was
used as the argument.

EQA1611E COUNT(variable name) must refer to an
open STREAM file.

Explanation: You must name an open STREAM file in
the COUNT built-in function.

EQA1612E LINENO(variable name) must refer to an
open PRINT file.

Explanation: You must name an open PRINT file in
the LINENO built-in function.

EQA1613E SAMEKEY(variable name) must refer to
a RECORD file.

Explanation: You must name a RECORD file in the
SAMEKEY built-in function. This requirement is tested for
all file constants, but is tested for file variables only if
the file variable is associated with an open file.

EQA1614E The argument in the built-in function name
built-in function must be a variable.

Explanation: The built-in function is expecting a vari-
able but a constant or some other invalid item appeared
as one of the arguments.

EQA1615E Argument to POINTER is an aggregate
when pointer is being used as a locator.

Explanation: This message applies to PL/I constants.

EQA1616E The result of invoking the GRAPHIC
built-in function must not require more
than 16383 DBCS characters.

Explanation: GRAPHIC(x,y) is illegal if y > 16383, and
GRAPHIC(x) is illegal if length(CHAR(X)) > 16383.

EQA1617W The first argument to the built-in function
name built-in function is negative, but
since WARNING is on, the evaluation will
not be performed.

Explanation: The specified built-in function would fail
if a negative argument was passed. Use of the built-in
function will be avoided.

EQA1618W The second argument to the built-in func-
tion name built-in function is negative,
but since WARNING is on, the evaluation
will not be performed.

Explanation: The specified built-in function would fail
if a negative argument was passed. Use of the built-in
function will be avoided.

EQA1619W The third argument to the built-in function
name built-in function is negative, but
since WARNING is on, the evaluation will
not be performed.

Explanation: The specified built-in function would fail
if a negative argument was passed. Use of the built-in
function will be avoided.

EQA1620E If the CHAR built-in function is invoked
with only one argument, that argument
must not have the GRAPHIC attribute
with length 16383.

Explanation: CHAR(x) is illegal if x is GRAPHIC with
length 16383 since the resultant string would require
32768 characters.

EQA1621E built-in function (variable name) is not
defined since variable name is not con-
nected.

Explanation: This applies to the PL/I CURRENTSTORAGE
and STORAGE built-in functions.

EQA1622E built-in function (variable name) is not
defined since variable name is an una-
ligned fixed-length bit string.

Explanation: This applies to the PL/I CURRENTSTORAGE
and STORAGE built-in functions.

376 Debug Tool User's Guide and Reference

 EQA1623E � EQA1635E

EQA1623E built-in function (x) is undefined if ABS(x)
> 1.

Explanation: This applies to the PL/I ASIN and ACOS
built-in functions.

EQA1624E ATANH(z) is undefined if z is COMPLEX
and z = +1 or z = −1.

Explanation: This applies to the PL/I ATANH built-in
function.

EQA1625E ATAN(z) is undefined if z is COMPLEX
and z = +1i or z = −1i.

Explanation: This applies to the PL/I ATAN built-in
function.

EQA1626E Built-in function not defined since the
argument is real and less than or equal
to zero

Explanation: This message applies to PL/I constants.

EQA1627E SQRT(x) is undefined if x is REAL and x
< 0.

Explanation: This applies to the PL/I SQRT built-in
function.

EQA1628E built-in function (x,y) is undefined if x or y
is COMPLEX.

Explanation: This applies to the PL/I ATAN and ATAND
built-in functions.

EQA1629E Built-in function(X,Y) is undefined if X=0
and Y=0

Explanation: This applies to PL/I constants.

EQA1630E The argument in built-in function is too
large.

Explanation: This applies to the PL/I trigonometric
built-in functions.

For short floating-point arguments, the limits are:

COS and SIN ABS(X) <= (2**18)*pi

TAN ABS(X) <= (2**18)*pi if x is real
and ABS(REAL(X)) <=
(2**17)*pi if x is complex

TANH ABS(IMAG(X)) <= (2**17)*pi if
x is complex

COSH, EXP and SINH ABS(IMAG(X)) <= (2**18)*pi if
x is complex

COSD, SIND and TAND ABS(X) <= (2**18)*180

For long floating-point arguments, the limits are:

COS and SIN ABS(X) <= (2**50)*pi

TAN ABS(X) <= (2**50)*pi if x is real
and ABS(REAL(X)) <=
(2**49)*pi if x is complex

TANH ABS(IMAG(X)) <= (2**49)*pi if
x is complex

COSH, EXP and SINH ABS(IMAG(X)) <= (2**50)*pi if
x is complex

COSD, SIND and TAND ABS(X) <= (2**50)*180

For extended floating-point arguments, the limits are:

COS and SIN ABS(X) <= (2**106)*pi

TAN ABS(X) <= (2**106)*pi if x is
real and ABS(REAL(X)) <=
(2**105)*pi if x is complex

TANH ABS(IMAG(X)) <= (2**105)*pi if
x is complex

COSH, EXP and SINH ABS(IMAG(X)) <= (2**106)*pi if
x is complex

COSD, SIND and TAND ABS(X) <= (2**106)*180

EQA1631E The subject of the SUBSTR
pseudovariable (character string) is not a
string.

Explanation: You are trying to get a substring from
something other than a string.

EQA1632E Argument to pseudovariable must be
complex numeric

Explanation: This message applies to PL/I constants.

EQA1633E The first argument to a pseudovariable
must refer to a variable, not an
expression or a pseudovariable.

Explanation: The arguments that accompany a
pseudovariable are incorrect.

EQA1634E The length of the bit string that would be
returned by UNSPEC is greater than the
maximum for a bit variable. Processing
of the expression will stop.

Explanation: This will occur in UNSPEC(A) where A is
CHARACTER(n) and n > 4095, where A is CHARACTER(n)
VARYING and n > 4093, where A is AREA(n) and n >
4080, etc.

EQA1635E Maximum number of arguments to
PLIDUMP subroutine is two

Explanation: This message applies to PL/I constants.

 Appendix E. Debug Tool Messages 377

 EQA1636E � EQA1650E

EQA1636E Invalid argument in CALL %DUMP

Explanation: This message applies to PL/I constants.

EQA1637E PL/I cannot process the expression
expression name.

Explanation: This applies to PL/I constants.

EQA1638E Argument argument number to the
MPSTR built-in function must not have
the GRAPHIC attribute.

Explanation: GRAPHIC (DBCS) strings are prohibited
as arguments to the MPSTR built-in function.

EQA1639E ALLOCATION(variable name) is invalid
because the ALLOCATION built-in func-
tion can be used only with controlled
variables.

Explanation: You must name a variable that is
ALLOCATEable.

Programmer Response: The variable by that name
cannot be a controlled variable within the current
context. If the variable exists somewhere else (and is a
controlled variable), you should use qualification with
the variable name.

EQA1640E variable name is an aggregate and hence
is invalid as an argument to the
POINTER built-in function when that
built-in function is used as a locator.

Explanation: The argument to the POINTER built-in
function is invalid. The argument to the POINTER built-in
function should be an OFFSET data type for the first
argument, or an AREA data type for the second argu-
ment.

EQA1641E Structures are not supported within this
context.

Explanation: Given dDCL 1 A, 2 B FIXED, 2 C FLOAT,
the name A refers to a structure.

Programmer Response: Break the command into
commands for each of the basic elements of the struc-
ture, or use the DECLARE command with a BASED variable
to define a variable overlaying the structure.

EQA1642E The first argument to the built-in function
name built-in function must have
POINTER type.

Explanation: This applies to the POINTERADD built-in
function. The first argument must have pointer type,
and it must be possible to convert the other to FIXED
BIN(31,0).

EQA1643E The argument in the built-in function name
built-in function must have data type:
data type.

Explanation: This message applies to various built-in
functions. By built-in function, the datatypes required
are:

ENTRYADDR ENTRY

BINARYVALUE POINTER

BINVALUE POINTER

EQA1644W STRINGRANGE is disabled and the
SUBSTR arguments are such that
STRINGRANGE ought to be raised.
Debug Tool will revise the SUBSTR refer-
ence as if STRINGRANGE were enabled.

Explanation: See the Language Reference built-in
function chapter for the description of when STRINGRANGE
is raised. See the Language Reference condition
chapter for the values of the revised SUBSTR reference.

EQA1645E The subject of the pseudovariable name
pseudovariable must have data type:
data type.

Explanation: This message applies to various
pseudovariables. By pseudovariable, the datatypes
required are:

ENTRYADDR ENTRY VARIABLE

EQA1646E built-in function (z) is undefined if z is
COMPLEX.

Explanation: This applies to the PL/I ACOS, ASIN,

ATAND, COSD, ERF, ERFC, LOG2, LOG1ð, SIND and TAND

built-in functions.

Explanation: This applies to PL/I constants.

EQA1649E Error: see Command Log.

Explanation: An error has occurred during expression
evaluation. See the Debug Tool Command Log for
more detailed information.

EQA1650E The range of statements statement_id -
statement_id is invalid because the two
statements belong to different blocks.

Explanation: AT stmt1-stmt2 is valid only if stmt1 and
stmt2 are in the same block.

378 Debug Tool User's Guide and Reference

 EQA1651W � EQA1667W

EQA1651W The breakpoint-id breakpoint has not
been established.

Explanation: You just issued a CLEAR/LIST command
against a breakpoint that does not exist.

Programmer Response: Verify that you referred to
the breakpoint using the same syntax that was used to
establish it. Perhaps a CLEAR command occurred since
the command that established the breakpoint.

EQA1652E Since the program for the statement
statement-number does not have hooks at
statements, AT commands are rejected
for all statements in the program.

Explanation: A compile unit must have been compiled
with TEST(STMT) or TEST(ALL) for hooks to be present at
statements.

EQA1653E A file name is invalid in this context.

Explanation: A command (for example, AT ENTRY)
specified a C file name where a function or compound
statement was expected.

EQA1654E Since the cu cu_name does not have
hooks at block entries and exits, all AT
ENTRY and AT EXIT commands will be
rejected for the cu.

Explanation: A compile unit must have been compiled
with TEST(BLOCK), TEST(PATH) or TEST(ALL) for hooks to
be present at block exits and block entries.

EQA1655E Since the program for the label
label-name does not have hooks at
labels, AT commands are rejected for all
labels in the program.

Explanation: A compilation unit must have been com-
piled with TEST(PATH) or TEST(ALL) for hooks to be
present at labels.

EQA1656E statement_id contains a value that is
invalid in this context.

Explanation: %STATEMENT and %LINE are invalid in AT

commands at block entry and block exit, and in AT and
LIST STATEMENT commands at locations that are outside
of the program.

EQA1657W There are no breakpoint-class break-
points set.

Explanation: The command CLEAR/LIST AT was
entered but there are no AT breakpoints presently set,
or the command CLEAR/LIST AT class was entered but
there are no AT breakpoints presently set in that class.

EQA1658W There are no enabled breakpoint-class
breakpoints set.

Explanation: The command CLEAR/LIST AT was
entered but there are no enabled AT breakpoints pres-
ently set in the requested class of breakpoints.

EQA1659W There are no disabled breakpoint-class
breakpoints set.

Explanation: The command CLEAR/LIST AT was
entered but there are no disabled AT breakpoints pres-
ently set in the requested class of breakpoints.

EQA1660W The breakpoint-id breakpoint is not
enabled.

Explanation: You issued a specific LIST AT ENABLED

command against a breakpoint that is not enabled.

EQA1661W The breakpoint-id breakpoint is not disa-
bled.

Explanation: You issued a specific LIST AT DISABLED

command against a breakpoint that is not disabled.

EQA1662W The breakpoint-id breakpoint cannot be
triggered because it is disabled.

Explanation: You cannot TRIGGER a disabled break-
point.

EQA1663W There are no breakpoints set.

Explanation: No breakpoints are currently set.

EQA1664W There are no disabled breakpoints set.

Explanation: No disabled breakpoints are currently
set.

EQA1665W There are no enabled breakpoints set.

Explanation: No enabled breakpoints are currently
set.

EQA1666W The breakpoint-id breakpoint is already
enabled.

Explanation: You cannot ENABLE an enabled break-
point.

EQA1667W The breakpoint-id breakpoint is already
disabled.

Explanation: You cannot DISABLE a disabled break-
point.

 Appendix E. Debug Tool Messages 379

 EQA1668W � EQA1679E

EQA1668W The attempt to set this breakpoint has
failed.

Explanation: For some reason, when Debug Tool
tried to set this breakpoint, an error occurred. This
breakpoint cannot be set.

EQA1669W The FROM or EVERY value in a break-
point command must not be greater than
the specified TO value.

Explanation: In an every_clause specified with a
breakpoint command, if the TO value was specified, the
FROM or EVERY value must be less than or equal to the
TO value.

EQA1670W GO/RUN BYPASS is ignored. It is valid
only when entered for an AT CALL, AT
GLOBAL CALL, or AT OCCURRENCE.

Explanation: GO/RUN BYPASS is valid only when Debug
Tool is entered for an AT CALL, AT GLOBAL CALL, or AT

OCCURRENCE breakpoint.

EQA1671W AT OCCURRENCE breakpoint or
TRIGGER of condition condition-name
cannot have a reference specified. This
command not processed.

Explanation: The following AT OCCURRENCE conditions
must have a qualifying reference: CONDITION, ENDFILE,
KEY, NAME, PENDING, RECORD, TRANSMIT and
UNDEFINEDFILE. This would also apply to the corre-
sponding TRIGGER commands.

EQA1672W AT OCCURRENCE breakpoint or
TRIGGER of condition condition-name
must have a valid reference specified.
This command not processed.

Explanation: The following AT OCCURRENCE conditions
must have a valid qualifying reference: CONDITION,
ENDFILE, KEY, NAME, PENDING, RECORD, TRANSMIT and
UNDEFINEDFILE. This would also apply to the corre-
sponding TRIGGER commands.

EQA1673W An attempt to automatically restore an
AT breakpoint type breakpoint failed.

Explanation: Debug Tool was attempting to restore a
breakpoint that had been set in the previous process
and has failed in that attempt. There are two reasons
this could have happened. If the Compile Unit (CU) has
been changed (that is, modified and recompiled/linked)
between one process and the next and a breakpoint
had been established for a statement or variable that no
longer exists due to the change, when Debug Tool

attempts to reestablish that breakpoint, it will fail with
this message.

EQA1674W An attempt to automatically disable an
AT breakpoint type breakpoint failed.

Explanation: Debug Tool was attempting to disable a
breakpoint for a CU that has been deleted from storage
(or deactivated), and failed in that attempt.

EQA1675E variable name is not a LABEL variable or
constant. No GOTO commands can be
issued against it.

Explanation: You are trying to GOTO a variable name
that cannot be associated with a label in the program.

EQA1676S label name is a label variable that is unin-
itialized or that has been zeroed out. It
cannot be displayed and should not be
used except as the target of an assign-
ment.

Explanation: You are trying to make use of a LABEL
variable, but the control block representing that variable
contains improper information (for example, an address
that is zero).

EQA1677S file name is a file variable that is uninitial-
ized or that has been zeroed out. It
cannot be displayed and should not be
used except as the target of an assign-
ment.

Explanation: You are trying to make use of a FILE
variable, but the control block representing that variable
contains improper information (for example, an address
that is zero).

EQA1678E The program CU-name has a short state-
ment number table, and therefore no
statement numbers in the program can
be located.

Explanation: A command requires determining which
statement was associated with a particular storage
address. A statement table could not be located to
relate storage to statement identifications.

Programmer Response: Check to see if the program
had been compiled using release name. If so, was the
statement table suppressed?

EQA1679E variable name is not a controlled variable.
An ALLOCATE breakpoint cannot be
established for it.

Explanation: You cannot establish an AT ALLOCATE

breakpoint for a variable that cannot be allocated.

380 Debug Tool User's Guide and Reference

 EQA1680E � EQA1724E

EQA1680E variable name is a controlled parameter.
An ALLOCATE breakpoint can be estab-
lished for it only when the block in which
it is declared is active.

Explanation: Debug Tool cannot, at this time, corre-
late a block to the named variable. As a result, a
breakpoint cannot be established.

Programmer Response: Establish the breakpoint via
an AT ENTRY ... AT ALLOCATE

EQA1681E variable name is not a FILE variable or
constant.

Explanation: ON/SIGNAL file-condition (variable) is
invalid because the variable is not a PL/I FILE variable.

EQA1682E variable name is not a CONDITION vari-
able.

Explanation: ON/SIGNAL CONDITION (variable) is invalid
because the variable is not a PL/I CONDITION variable.

| EQA1683E Since the cu cu_name does not have
| hooks at statements with modified
| behavior due to the Millennium Lan-
| guage Extensions, all AT DATE com-
| mands will be rejected for the cu.

| Explanation: A compile unit must have been compiled
| with the DATEPROC option and either TEST(STMT) or
| TEST(ALL) for hooks to be present at statements
| affected by the Millennium Language Extensions.

EQA1700E The session procedure, procedure name,
is either undefined or is hidden within a
larger, containing procedure.

Explanation: This is issued in response to a CALL,
CLEAR, or QUERY command when the target session pro-
cedure cannot be located. It cannot be located for one
of two reasons: it was not defined, or it is imbedded
with another session procedure.

EQA1701E The maximum number of arguments to
the %DUMP built-in subroutine is 2, but
number were specified.

Explanation: %DUMP does not accept more than two
parameters.

EQA1702E Invalid argument in CALL %DUMP.

Explanation: In PL/I, the %DUMP arguments must be
scalar data that can be converted to character. In C,
the %DUMP arguments must be pointers to character or
arrays of character.

EQA1703E No arguments can be passed to a
session procedure.

Explanation: Parameters are not supported with the
CALL procedure command.

EQA1704E Invalid or incompatible dump options or
suboptions

Explanation: This message is from the feedback code
of Language Environment CEE3DMP call.

EQA1705E Dump argument exceeds the maximum
length allowed.

Explanation: The dump option allows a maximum of
255 characters. The dump title allows a maximum of
80 characters.

EQA1706E pgmname must be loaded before calling
the program.

Explanation: The CALL command was terminated
unsuccessfully.

EQA1720E There is no declaration for variable name.

Explanation: A command (for example, CLEAR
VARIABLES) requires the use of a variable, but the speci-
fied variable was not declared (or was previously
cleared).

Programmer Response: For a list of session vari-
ables that can be referenced in the current program-
ming language, use the LIST NAMES TEST command.

EQA1721E The size of the variable is too large.

Explanation: A variable can require no more than
2**24 - 1 bytes in a non-XA machine and no more than
2**31 - 1 bytes in an XA machine.

EQA1722E Error in declaration; invalid attribute vari-
able name.

Explanation: A session variable is declared with
invalid or unsupported attribute.

EQA1723E There is no session variables defined.

Explanation: The CLEAR VARIABLES command is
entered but there is no declaration for session variables.

EQA1724E There is no tag type tag named tag name.

Explanation: This message applies to C. It is issued,
for example, after DESCRIBE ATTRIBUTES enum x if x is
not an enum tag.

 Appendix E. Debug Tool Messages 381

 EQA1725E � EQA1767S

EQA1725E tag type tag name is already defined.

Explanation: This message applies to C.

A tagged enum, struct, or union type cannot be rede-
fined, unless all variables and type definitions referring
to that type and then the type itself are first cleared.
For example, given

enum colors {red,yellow,blue} primary, \ ptrPrimary;

enum colors cannot be redefined unless primary,
ptrPrimary, and then enum colors are first cleared.

EQA1726E tag type tag name cannot be cleared
while one or more declarations refer to
that type.

Explanation: This message applies to C.

A CLEAR DECLARE of a tagged enum, struct, or union
type is invalid while one or more declarations refer to
that type. For example, given

enum colors {red,yellow,blue} primary, \ ptrPrimary;

CLEAR DECLARE enum colors is invalid until CLEAR
DECLARE (primary, ptrPrimary) is issued.

EQA1727E enum member name is the name of a
declared variable. It cannot be used as
the name of a member of an enum type.

Explanation: This message applies to C.

For example, given

int blue;

The use of the name blue in the following declaration is
invalid:

enum teamColors {blue,gold};

EQA1728E The tag type tag name is recursive: it
contains itself as a member.

Explanation: This message applies to C.

A struct or union type must not contain itself as a
member. For example, the following declaration is
invalid:

struct record {

int member;

struct record next;

}

EQA1729E An error occurred during declaration
processing.

Explanation: Unable to process the declaration. The
command is terminated unsuccessfully.

EQA1750E An error occurred during expression
evaluation.

Explanation: Unable to evaluate the expression. The
command is terminated unsuccessfully.

EQA1751E Program pgmname not found.

Explanation: A bad program name is specified in a
CALL command and processing is terminated unsuc-
cessfully.

EQA1752S Comparison in command-name command
was invalid. The command was ignored.

Explanation: This message applies to COBOL.

The operands to be compared are of incompatible
types.

EQA1753S The nesting of "switch " command
exceeded the maximum.

Explanation: This message applies to C.

There are too many nested levels of switch commands.

EQA1754S An error occurred in "switch " command
processing. The command is terminated.

Explanation: This message applies to C.

The switch command is terminated because an error
occurred during processing.

EQA1755S Comparison with the keyword-name
keyword in command-name command
was invalid. The command was ignored.

Explanation: This message applies to COBOL.

The operands to be compared are incompatible. For
example, the following comparison is invalid:

EVALUATE TRUE

When 6 List ('invalid');

when other List ('other');

END-EVALUATE

EQA1766E The target of the GOTO command is in
an inactive block.

Explanation: You are trying to GOTO a block that is not
active. If it is inactive it doesn't have a register save
area, base registers, and so on—all of the mechanics
established that would allow the procedure to run.

EQA1767S No offset was found for label "label".

Explanation: No offset associated with the label was
found; the code associated with the label might have
been removed by optimization.

382 Debug Tool User's Guide and Reference

 EQA1768S � EQA1809E

EQA1768S The label "label" is not known.

Explanation: The label is not known.

EQA1769S The label "label" is ambiguous—multiple
labels of this name exist.

Explanation: The label is ambiguous—multiple labels
of this name exist.

EQA1770S The GOTO is not permitted, perhaps
because of optimization.

Explanation: The GOTO command is not recom-
mended. For COBOL, this might be due to optimiza-
tion, or because register contents other than the code
base cannot be guaranteed for the target.

EQA1771S The GOTO is not permitted due to lan-
guage rules.

Explanation: The GOTO command is not recom-
mended. For COBOL, this might be due to optimiza-
tion, or because register contents other than the code
base cannot be guaranteed for the target.

EQA1772S The GOTO was not successful.

Explanation: There are various reasons why a GOTO
command can be unsuccessful; this message covers all
the other situations not covered by the other message
in the GOTO LABEL messages group.

EQA1773E GOTO is invalid when the target state-
ment number is in a C function.

Explanation: The target statement number in a GOTO
command must belong to an active procedure.

EQA1786W There are no entries in the HISTORY
table.

Explanation: Debug Tool has not yet encountered any
of the situations that cause entries to be put into the
HISTORY table; so it is empty.

EQA1787W There are no STATEMENT entries in the
HISTORY table.

Explanation: LIST STATEMENTS or LIST LAST n

STATEMENTS was entered, but there are no STATEMENT
entries in the HISTORY table. Debug Tool was not
invoked for any STATEMENT hooks.

EQA1788W There are no PATH entries in the
HISTORY table.

Explanation: LIST PATH or LIST LAST n PATH was
entered, but there are no PATH entries in the HISTORY
table. Debug Tool was not invoked for any PATH hooks.

EQA1789W Requested register(s) not available.

Explanation: You are trying to work with a register but
none exist in this context (for example, during environ-
ment initialization).

EQA1790W There are no active blocks.

Explanation: The LIST CALLS command was issued
prior to any STEP or GO.

EQA1791E The pattern pattern is invalid.

Explanation: A pattern is invalid if it is longer than 128
bytes or has more than 16 parts. (Each asterisk and
each name fragment forms a part.)

EQA1792S Only the ADDR and POINTER built-in
functions may be used to specify an
address in the LIST STORAGE
command.

Explanation: LIST STORAGE(built-in function(...))

is invalid if the built-in function is not the ADDR or
POINTER built-in function.

EQA1793S ENTRY, FILE, LABEL, AREA, EVENT or
TASK variables are not valid in a LIST
command.

Explanation: The contents of these program control
variables can be displayed by using the HEX or UNSPEC
built-in functions or by using the LIST STORAGE

command.

EQA1806E The command element character is
invalid.

Explanation: The command entered could not be
parsed because the specified element is invalid.

EQA1807E The command element character is
ambiguous.

Explanation: The command entered could not be
parsed because the specified element is ambiguous.

EQA1808E The hyphen cannot appear as the last
character in an identifier.

Explanation: COBOL identifiers cannot end in a
hyphen.

EQA1809E Incomplete command specified.

Explanation: The command, as it was entered,
requires additional command elements (for example,
keywords, variable names).

Programmer Response: Refer to the definition of the
command and verify that all required elements of the
command are present.

 Appendix E. Debug Tool Messages 383

 EQA1810E � EQA1823E

EQA1810E End-of-source has been encountered
after an unmatched comment marker.

Explanation: A /* ... was entered but an */ was not
present to close the comment. The command is dis-
carded.

Programmer Response: You must either add an */ to
the end of the comment or explicitly indicate continua-
tion with an SBCS hyphen.

EQA1811E End-of-source has been encountered
after an unmatched quotation mark.

Explanation: The start of a constant was entered (a
quotation mark started the constant) but another quota-
tion mark was not found to terminate the constant
before the end of the command was reached.

Programmer Response: There could be several sol-
utions for this, among them:

1. You must either add a quotation mark to the end of
the constant or explicitly indicate continuation (with
an SBCS hyphen).

2. If DBCS is ON you should also verify that you didn't
try to start a constant with an SBCS quotation mark
and terminate it with a DBCS quotation mark (or
vice versa).

3. You might have entered a character constant that
contained a quotation mark -- and you didn't double
it.

EQA1812E A decimal exponent is required.

Explanation: In COBOL, an E in a float constant must
be followed by at least one decimal digit (optionally pre-
ceded by a sign). In C, if a + or − sign is specified after
an E in a float constant, it must followed by at least one
decimal digit.

EQA1813E Error reading DBCS character codes.

Explanation: An unmatched or nested shift code was
found.

EQA1814E Identifier is too long.

Explanation: All identifiers must be contained in 255
bytes or less. COBOL identifiers must be contained in
30 bytes or less and C identifiers in 255 bytes or less.

EQA1815E Invalid character code within DBCS
name, literal or DBCS portion of mixed
literal.

Explanation: A character code point was encountered
that was not within the defined code values for the first
or second byte of a DBCS character.

EQA1816E An error was found at line line-number in
the current input file.

Explanation: An error was detected while parsing a
command within a USE file, or within a file specified on
the run-time TEST option. It occurred at the record
number that was displayed.

EQA1817E Invalid hexadecimal integer constant
specified.

Explanation: A hexadecimal digit must follow 0x.

EQA1818E Invalid octal integer constant specified.

Explanation: Only an octal digit can follow a digit-0.

EQA1819E A COBOL DBCS name must contain at
least one nonalphanumeric double byte
character.

Explanation: All COBOL DBCS names must have at
least one double byte character not defined as double
byte alphanumeric. For EBCDIC, these are characters
with X'42' in the leading byte, with the trailing byte in
the range X'41' to X'FE'. For ASCII, the leading byte
is X'82' and the trailing byte is in the range X'40' to
X'7E'.

EQA1820E Invalid double byte alphanumeric char-
acter found in a COBOL DBCS name.
Valid COBOL double byte alphanumeric
characters are: A-Z, a-z, 0-9.

Explanation: Alphanumeric double-byte characters
have a leading byte of X'42' in EBCDIC and X'82' in
ASCII. The trailing byte is an alphanumeric character.
The valid COBOL subset of these is A-Z, a-z, 0-9.

EQA1821E The DBCS representation of the hyphen
was the first or last character in a DBCS
name.

Explanation: COBOL DBCS names cannot have a
leading or trailing DBCS hyphen.

EQA1822E A DBCS Name, DBCS literal or mixed
SBCS/DBCS literal may not be con-
tinued.

Explanation: Continuation rules do not apply to DBCS
names, DBCS literals or mixed SBCS/DBCS literals.
These items must appear on a single line.

EQA1823E An end of line was encountered before
the end of a DBCS name or DBCS literal.

Explanation: An end of line was encountered before
finding a closing shift-in control code. This message is
for the System/370 environment.

384 Debug Tool User's Guide and Reference

 EQA1824E � EQA1877E

EQA1824E A DBCS literal or DBCS name contains
no DBCS characters.

Explanation: A shift-out shift-in pair of control charac-
ters were found with no intervening DBCS characters.
This message is for the System/370 environment.

EQA1825E End-of-source was encountered while
processing a DBCS name or DBCS
literal.

Explanation: No closing Shift-In control code was
found before end of file. This message is for the
System/370 environment.

EQA1826E A DBCS literal was not delimited by a
trailing quote or apostrophe.

Explanation: No closing quotation mark

EQA1827E Invalid separator character found fol-
lowing a DBCS name.

EQA1828E Fixed binary constants are limited to 31
digits.

Explanation: A fixed binary constant must be between
−2**31 and 2**31 exclusive.

EQA1829E Fixed decimal constants are limited to 15
digits.

Explanation: A fixed decimal constant must be
between −10**15 and 10**15 exclusive.

EQA1830E Float binary constants are limited to 109
digits.

Explanation: This limit applies to all PL/I FLOAT
BINARY constants.

EQA1831E Float decimal constants are limited to 33
digits.

Explanation: This limit applies to all PL/I FLOAT
DECIMAL constants.

EQA1832E Floating-point exponents are limited to 3
digits.

Explanation: This limit applies to all C float constants
and to all PL/I FLOAT BINARY constants.

EQA1833E Float decimal exponents are limited to 2
digits.

Explanation: This limit applies to all PL/I FLOAT
DECIMAL constants.

EQA1834E Float binary constants must be less than
1E+252B.

Explanation: This limit applies to all PL/I FLOAT BINARY

constants.

EQA1835E Float decimal constants must be less
than
7.23700557733226221397318656304298E+75.

Explanation: This limit applies to all PL/I FLOAT
DECIMAL constants.

EQA1836E Float constants are limited to 35 digits.

Explanation: This limit applies to all C float con-
stants.

EQA1837E Float constants must be bigger than
5.3976053469340278908664699142502496E-79
and less than
7.2370055773322622139731865630429929E+75.

Explanation: This is the range of values allowed by C.

EQA1872E An error occurred while opening file: file
name .

Explanation: An error during the initial processing
(OPEN) of the file occurred.

EQA1873E An error occurred during an input or
output operation.

Explanation: An error occurred performing an input or
output operation.

EQA1874I The command command name can be
used only in full screen mode.

Explanation: This command is one of a collection that
is allowed only when your terminal is operating in full-
screen mode. The function is not supported in line
mode or in a batch mode.

EQA1875I Insufficient storage available.

Explanation: This message is issued when not
enough storage is available to process the last
command issued or to handle the last invocation.

EQA1876E Not enough storage to display results.

Explanation: Increase size of virtual storage.

EQA1877E An error occurred in writing messages to
the dump file.

Explanation: This could be caused by a bad file name
specified with the call dump FNAME option.

 Appendix E. Debug Tool Messages 385

 EQA1878E � EQA1918S

EQA1878E The cursor is not positioned at a variable
name.

Explanation: A command, such as LIST, LIST TITLED,
LIST STORAGE, or DESCRIBE ATTRIBUTES, which takes
input from the source window was entered with the
cursor in the source window, but the cursor was not
positioned at a variable name.

Programmer Response: Reposition the cursor and
reenter.

EQA1879E The listing file name given is too long.

Explanation: Under MVS, data definition names are
limited to 8 characters and data set names are limited
to 44 characters. If a partitioned data set is named, the
member name must be specified (with up to 8 charac-
ters, enclosed in parentheses).

EQA1880E You may not resume execution when the
program is waiting for input.

Explanation: The user attempted to issue a GOS/RUN or
STEP request when the program was waiting for input.
The input must be entered to resume execution.

EQA1881E The INPUT command is only valid when
the program is waiting for input.

Explanation: The user attempted to enter the INPUT
command when the program was not waiting for any
input.

EQA1882E The logical record length for filename is
out of bounds. It will be set to the
default.

Explanation: The logical record length is less than 32
bytes or greater than 256 bytes.

EQA1883E Error closing previous log file; Return
code = rc

Explanation: The user attempted to open a new log
file and the old one could not be closed; the new log file
is used, however.

EQA1884E An error occurred when processing the
source listing. Check return code return
code in the Using the Debug Tool manual
for more detail.

Explanation: An error occurred during processing of
the list lines command. Possible return codes:

2 - The listing file could not be found or allocated.

5 - The CU was not compiled with the correct
compile option.

7 - Failed due to inadequate resources.

EQA1902W The command has been terminated
because of the attention request.

Explanation: The previously-executing command was
terminated because of an attention request. Normal
debugging can continue.

EQA1903E An attention request has been issued.
Enter QUIT to terminate Debug Tool or
GO or RUN to resume execution.

Explanation: The attention key was pressed three
times because the application was looping either in
system code or application code without debugging
hooks. Only the GO/RUN and QUIT commands are valid
at this point.

EQA1904E The STEP and GO/RUN commands are
not allowed at termination.

Explanation: The STEP and GO/RUN commands are not
allowed after the application program ends.

EQA1905W You cannot trigger a condition in your
program at this time.

Explanation: The environment is in a position that it
would not be meaningful to trigger a condition. For
example, you have control during environment initializa-
tion.

EQA1906S The condition named CONDITION name
is unknown.

Explanation: A condition name was expected, but the
name entered is not the name of a known condition.

EQA1907W The attempt to trigger this condition has
failed.

Explanation: For some reason, when Debug Tool
tried to trigger the specified condition, it failed and the
condition was not signaled.

EQA1918S The block name block-qualification :>
block_name is ambiguous.

Explanation: There is another block that has the
same name as this block.

Programmer Response: Provide further block name
qualification—by load module name, by compile unit
name, or by additional block names if a nested block.

386 Debug Tool User's Guide and Reference

 EQA1919E � EQA1931S

EQA1919E The present block is not nested. You
cannot QUALIFY UP.

Explanation: While you can QUALIFY to any block, you
cannot QUALIFY UP (for example, change the qualifica-
tion to the block's parent) unless there really is a parent
of that block. In this case, there is no parent of the
currently-qualified block.

Programmer Response: You have either misinter-
preted your current execution environment or you have
to qualify to some block explicitly.

EQA1920E The present block has no dynamic
parent. You cannot QUALIFY RETURN.

Explanation: While you can QUALIFY to any block you
cannot QUALIFY RETURN (for example, change the quali-
fication to the block's invoker) unless there really is an
invoker of that block. In this case, there is no invoker of
the currently-qualified block.

Programmer Response: You have either misinter-
preted your current run-time environment or you have to
qualify to some block explicitly.

EQA1921S There is no block named block_name .

Explanation: The block that you named could not be
located by Debug Tool.

Programmer Response: Provide further block name
qualification—by load module name, by compile unit
name, or by additional block name(s) if a nested block.

EQA1922S There is no block named block_name
within block block-qualification.

Explanation: The qualification you are using (or the
spelling of the block names) prevented Debug Tool from
locating the target block.

Programmer Response: Verify that the named block
should be within the current qualification.

EQA1923S There is no compilation unit named
cu_name.

Explanation: The compilation unit (program) that you
named could not be located by Debug Tool.

EQA1924S Statement statement_id is not valid.

Explanation: The statement number does not exist or
cannot be used. Note that the statement number could
exist but is unknown.

EQA1925S There is no load module named load
module name.

Explanation: Load module qualification is referring to
a load module that cannot be located.

Programmer Response: The load module might be
missing or it might have been loaded before Debug
Tool was first used. On the System/370, Debug Tool is
aware of additional load modules only if they were
FETCHed after Debug Tool got control for the first time.

EQA1926S There is no cu named cu_name within
load module load module name.

Explanation: The compilation unit might be misspelled
or missing.

EQA1927S There are number CUs named cu_name,
but neither belongs to the current load
module.

Explanation: The compilation unit you named is not
unique.

Programmer Response: Add further qualification so
that the correct load module will be known.

EQA1928S The block name block_name is ambig-
uous.

Explanation: There is another block that has the
same name as this block.

Programmer Response: Provide further block name
qualification—by load module name, by compile unit
name, or by additional block names if a nested block.

EQA1929S Explicit qualification is required because
the location is unknown.

Explanation: The current location is unknown; as
such, the reference or statement must be explicitly qual-
ified.

Programmer Response: Either explicitly set the quali-
fication using the SET QUALIFY command or supply the
desired qualification to the command in question.

EQA1930S There is no compilation unit named
CU-name in the current enclave.

Explanation: The compilation unit (program) that you
named could not be located in the current enclave by
Debug Tool.

EQA1931S There is no cu named CU-name within
load module load module name in the
current enclave.

Explanation: The compilation unit might be misspelled
or missing, or it might be outside of the current enclave.

 Appendix E. Debug Tool Messages 387

 EQA1932S � EQA1960S

EQA1932S Block or CU block_name is not currently
available

Explanation: The block or CU that you named could
not be located by Debug Tool.

Programmer Response: Provide further block name
qualification--by load module name, by compile unit
name, or by additional block names(s) if a nested block.

EQA1940E variable name is a not a level-one identi-
fier.

Explanation: You are trying to clear an element of a
structure. You must clear the entire structure by
naming its level-one identifier.

EQA1941E ATANH(x) is undefined if x is REAL and
ABS(x) >= 1.

Explanation: This applies to the PL/I ATANH built-in
function.

EQA1942E LOG(z) is undefined if z is COMPLEX
and z = 0.

Explanation: This applies to the PL/I LOG built-in func-
tion.

EQA1943E built-in function (x) is undefined if x is
REAL and x <= 0.

Explanation: This applies to the PL/I LOG, LOG2 and
LOG1ð built-in functions.

EQA1944E built-in function (x,y) is undefined if x=0
and y=0.

Explanation: This applies to the PL/I ATAN and ATAND
built-in functions.

EQA1950E The MONITOR table is empty. If the first
MONITOR command entered is num-
bered, it must have number 1.

Explanation: A MONITOR n command was issued when
the MONITOR table is empty, but n is greater than 1.

EQA1951E The number of entries in the MONITOR
table is monitor-number. New MONITOR
commands must be unnumbered or have
a number less than or equal to monitor-
number.

Explanation: A MONITOR n command was issued but n
is greater than 1 plus the highest numbered MONITOR
command.

EQA1952E The MONITOR command table is full. No
unnumbered MONITOR commands will
be accepted.

Explanation: A MONITOR command was issued but the
MONITOR table is full.

EQA1953E No command has been set for MONITOR
monitor-number .

Explanation: A LIST MONITOR n or CLEAR MONITOR n

command was issued, but n is greater than the highest
numbered MONITOR command.

EQA1954E The command for MONITOR monitor-
number has already been cleared.

Explanation: A CLEAR MONITOR n command was
issued, but MONITOR has already been cleared.

EQA1955E There are no MONITOR commands
established.

Explanation: A LIST MONITOR or CLEAR MONITOR

command was issued, but there are no MONITOR com-
mands established.

EQA1956E No previous FIND argument exists. FIND
operation not performed.

Explanation: A FIND command must include a string
to find when no previous FIND command has been
issued.

EQA1957E String could not be found.

Explanation: A FIND attempt failed to find the
requested string.

EQA1958E The requested SYSTEM command could
not be run.

Explanation: A SYSTEM command was issued. The
underlying operating system received it but did not
process it successfully.

EQA1959E The requested SYSTEM command was
not recognized.

Explanation: The underlying operating system was
passed a command that was not recognized. The
system could not process the command.

EQA1960S There is an error in the definition of vari-
able variable name . Attribute information
cannot be displayed.

Explanation: The specified variable has an error in its
definition or length and address information is not cur-
rently available in the execution of the program.

388 Debug Tool User's Guide and Reference

 EQA1963S � EQA1980E

EQA1963S The command command is not supported
on this platform.

Explanation: The given command is not supported on
the current platform.

EQA1964E Source or Listing data is not available.

Explanation: The source or listing information is not
available. Some of the possible conditions that could
cause this are: The listing file could not be found, the
CU was not compiled with the correct compile options,
inadequate resources were available.

EQA1965E Attributes of source of assignment state-
ment conflict with target variable name.
The assignment cannot be performed.

Explanation: The assignment contains incompatible
data types; the assignment cannot be made.

EQA1966E The AREA condition would have been
raised during an AREA assignment, but
since WARNING is on, the assignment
will not be performed.

Explanation: The operation, if performed, would result
in the AREA condition. The condition is being avoided
by rejecting the operation.

EQA1967E The subject of the built-in function name
pseudovariable (character string) must be
complex numeric.

Explanation: You are trying to get apply the PL/I IMAG
or REAL pseudovariable to a variable that is not complex
numeric.

EQA1968W You cannot use the GOTO command at
this time.

Explanation: The program environment is such that a
GOTO cannot be performed correctly. For example, you
could be in control during environment initialization and
base registers (supporting the GOTOs logic) have not
been established yet.

EQA1969E GOTO label-constant will not be permitted
because that constant is the label for a
FORMAT statement.

Explanation: There are several statement types that
are not allowable as the target of a GOTO. FORMAT state-
ments are one of them.

EQA1970E The 3-letter national language code
national language is not supported for
this installation of Debug Tool. Upper-
case United States English (UEN) will be
used instead.

Explanation: The national-language-specified conflicts
with the supported national languages for this installa-
tion of Debug Tool.

Programmer Response: Verify that the Language
Environment run-time NATLANG option is correct.

EQA1971E The return code in the QUIT command
must be nonnegative and less than 1000.

Explanation: For PL/I, the value of the return code
must be nonnegative and less than 1000.

EQA1972E variable name is not a LABEL constant No
AT commands can be issued against it

Explanation: LABEL variables cannot be the object of
the AT command.

EQA1973E The FIND argument cannot exceed a
string length of 64

Explanation: Shorten the search argument to a string
length 64 or less.

EQA1974E The FIND argument is invalid, the string
length is zero

Explanation: Supply a search argument inside the
quotes.

EQA1975E error message string

Explanation: Unable to evaluate the expression. See
output string provided.

EQA1980E Invalid symbolic_destination_name -
symbolic_destination_name.

Explanation: Conversation initialization failed due to
an invalid symbolic_destination_name in the Session
Parameter. The symbolic_destination_name was either
not found in the APPC/MVS side information file, or it is
longer than 8 characters.

Programmer Response: If the length of the
symbolic_destination_name is valid, contact your
APPC/MVS system administrator to verify its existence
in the side information file. For a description of the
Session Parameter and its contents, see the CODE/370
Debug Tool manual.

 Appendix E. Debug Tool Messages 389

 EQA1981E � EQA1984E

EQA1981E Invalid mode name, transaction program
name, or partner LU name associated
with symbolic_destination_name.
Mode_name= mode_name and
partner_LU_name= partner_LU_name

Explanation: A conversation allocation request failed
due to invalid conversation characteristics obtained from
the APPC/MVS side information file. There could be
several reasons for this:

1. The mode_name characteristic specifies a mode
name that is either not recognized by the LU as
valid or is reserved for SNA service transaction pro-
grams.

2. The TP_name characteristic specifies an SNA
service transaction program name.

3. The partner_LU_name characteristic specifies a
partner LU name that is not recognized by the LU
as being valid.

Programmer Response: Contact your APPC/MVS
system administrator to modify the characteristics asso-
ciated with the given symbolic_destination_name in the
side information file. For information about the recom-
mended values for mode_name and TP_name, see the
CODE/370 Installation manual.

The OS/2 system error log can contain valuable diag-
nostic information. To access the system error log,
select System Error Log from the FFST/2 folder or
type SYSLOG at the OS/2 command line.

EQA1982E Permanent conversation allocation
failure for symbolic_destination_name.
Partner_LU_name= partner_LU_name and
mode_name= mode_name

Explanation: The conversation cannot be allocated
because of a condition that is not temporary. There
could be several reasons for this:

1. The workstation where the partner_LU_name is
defined is turned off or Communications Manager/2
is not started.

2. The partner_LU_name has not been defined.

3. The current session limit for the specified
partner_LU_name and mode_name pair is zero.

4. A system definition error or a session-activation pro-
tocol error has occurred.

Programmer Response: Ensure that you specified
the correct symbolic_destination_name or contact your
APPC/MVS system administrator to correct the condi-
tion.

The OS/2 system error log can contain valuable diag-
nostic information. To access the system error log,
select System Error Log from the FFST/2 folder or
type SYSLOG at the OS/2 command line.

EQA1983E Temporary conversation allocation
failure for symbolic_destination_name.
Partner_LU_name= partner_LU_name and
mode_name= mode_name.

Explanation: The conversation cannot be allocated
because of a condition that might be temporary. There
could be several reasons for this:

1. Undefined mode_name (not temporary)

2. Temporary lack of resources at the host LU or
workstation LU

Programmer Response: Verify that mode_name is
defined on the target workstation using the CM/2 Com-
munication Manager Setup panels. If mode_name is
defined on the workstation, contact your MVS/ESA
system programmer to ensure that mode_name is also
defined on the MVS system.

The OS/2 system error log can contain valuable diag-
nostic information. To access the system error log,
select System Error Log from the FFST/2 folder or
type SYSLOG at the OS/2 command line.

EQA1984E The workstation transaction program is
permanently unavailable at
symbolic_destination_name.
Partner_LU_name= partner_LU_name.

Explanation: Partner_LU_name rejected the allocation
request because the host program specified a work-
station program that partner_LU_name recognizes but it
cannot start. There could be several reasons for this:

1. Missing transaction program definition on the work-
station.

2. Invalid OS/2 program path and file name specified
in the transaction program definition.

Programmer Response: Define the transaction
program on the workstation or ensure that the trans-
action program definition is correct. The
symbolic_destination_name can be used to obtain the
workstation transaction program name from the
APPC/MVS side information table. For information
about the recommended values for TP_name, see the
CODE/370 Installation manual.

The OS/2 system error log can contain valuable diag-
nostic information. To access the system error log,
select System Error Log from the FFST/2 folder or
type SYSLOG at the OS/2 command line.

390 Debug Tool User's Guide and Reference

 EQA1985E � EQA2001E

EQA1985E Unrecognized transaction program name
at symbolic_destination_name.
Partner_LU_name= partner_LU_name.

Explanation: Partner_LU_name rejected the allocation
request because the host program specified a work-
station TP_name that partner_LU_name does not rec-
ognize. The transaction program definition is missing
on the workstation.

Programmer Response: Define the transaction
program on the workstation. The
symbolic_destination_name can be used to obtain the
workstation transaction program name from the
APPC/MVS side information table. For information
about the recommended values for TP_name, see the
CODE/370 Installation manual.

The OS/2 system error log can contain valuable diag-
nostic information. To access the system error log,
select System Error Log from the FFST/2 folder or
type SYSLOG at the OS/2 command line.

EQA1986E Unexpected LU 6.2 error. Module=
module_name, Location= location_id,
CPI-C call= call_type, return_code= rc.

Explanation: The host communications code received
an unexpected return code from a CPI-C call. The
information displayed is for diagnostic purposes.

� module_name is the name of the communications
module issuing the CPI-C call

� location_id is an internal 3 digit identifier for the
CPI-C call within the module

� call_type is the CPI-C call type (for example,
CMINIT or CMALL)

� rc is the unexpected return_code which is displayed
in decimal.

Programmer Response: Forward a copy of this
message to your APPC/MVS system administrator.
Diagnostic information was recorded in either the
EVFERROR.LOG or the EQALU62.LOG. The path
where these logs are stored is in the CODETMPDIR
environment variable in CONFIG.SYS.

The OS/2 system error log can contain valuable diag-
nostic information for your IBM service representative.
To access the system error log, select System Error
Log from the FFST/2 folder or type SYSLOG at the
OS/2 command line.

EQA1987E Debugger terminated, execution con-
tinues.

Explanation: The initialization of the LU 6.2 conversa-
tion between the host and the workstation (in a batch
process) has failed. The debugger is terminated and
the execution of the batch application continues. Note
the accompanying messages as to possible causes.

EQA1988E Severe internal error. PWS Debug Tool
terminated.

Explanation: PWS Debug Tool detected a severe
internal error. It has been shutdown.

Programmer Response: Diagnostic information was
recorded in either the EVFERROR.LOG or the
EQALU62.LOG. The path where these logs are stored
is in the CODETMPDIR environment variable in
CONFIG.SYS.

EQA1989E Invalid session ID - session_ID

Explanation: Conversation initialization failed due to
an invalid session ID in the Session Parameter. There
could be several reasons for this,

1. The session ID is longer than 8 characters or con-
tains invalid characters. Valid session IDs consist
of 1-8 alphanumeric characters.

2. There is already another PWS Debug Tool session
with the given session ID.

Programmer Response: Diagnostic information is
recorded in either the EVFERROR.LOG or the
EQALU62.LOG. The path where these logs are stored
is in the CODETMPDIR environment variable in
CONFIG.SYS.

If there is already an existing PWS Debug Tool session
with the given session ID then a different session ID
must be provided for concurrent debug sessions on the
same workstation. If a session ID is not specified, it
defaults to CODEDT. For a description of the Session
Parameter and its contents, see the CODE/370 Debug
Tool manual.

EQA1990E Invalid session parameter -
session_parameter

Explanation: Conversation initialization failed. A
batch program, attempting to start an LU 6.2 debug
session, has passed an invalid Session Parameter. For
example, LU2 or MFI has been specified for session
type or a session ID longer than eight characters has
been specified. For a description of the Session
Parameter and its contents, see the CODE/370 Debug
Tool manual.

Programmer Response: Correct the Session Param-
eter and invoke the batch application again.

EQA2001E Ambiguous conversion between "&1"
and "&2".

Problem Determination: (where &1 is a C/C++ type
&2 is a C/C++ type)

Explanation: The debugger was not able to find a
single type common to the two specified types and was
therefore unable to convert from one to the other.

 Appendix E. Debug Tool Messages 391

 EQA2002E � EQA2010E

Programmer Response: Explicitly cast the type to an
intermediate type and then convert to requested type.

EQA2002E A return value is not allowed for this
function.

Explanation: A function with a return type of "void"
cannot return a value.

Programmer Response: Remove the value or
expression from the return statement, remove the return
statement, or change the return type of the function.

EQA2003E Identifier "&1" is undefined.

Problem Determination: (where &1 is a C/C++
name)

Explanation: The specified identifier is used but has
not been defined.

Programmer Response: Define the identifier before
using it. Check its spelling. If the identifier has been
defined in a header file, check that any required macros
have been defined.

EQA2004E &1 member "&2" cannot be accessed.

Problem Determination: (where &1 is the keyword
"private" or "protected" &2 is a class member name)

Explanation: The specified member is private, pro-
tected, or is a member of a private base class and
cannot be accessed from the current scope.

Programmer Response: Check the access specifica-
tion rules for the member function and change the
access specifier if necessary. If the member function
belongs to a base class, check the access specifier of
the base class where the current class is defined.

EQA2005E Return value of type "&1" is expected.

Problem Determination: (where &1 is a C/C++ type)

Explanation: No value is returned from the current
function, but the function is expecting a nonvoid return
value. The function was declared with a return type but
the debugger did not detect a return statement. Only
functions with a void return type can have no return
statement or have a return statement with no return
value.

Programmer Response: Return a value from the
function or change the function's return type to void.

EQA2006E "&1" cannot be made a &2 member.

Problem Determination: (where &1 is a class
member name &2 is the keyword "public", "protected"
or "private")

Explanation: An attempt is made to give private
access to a base class member or to give an access
that is different from the access the member was

declared with. A derived class can only change the
access of a base class member to public or protected if
the access of that member was not private in the base
class.

Programmer Response: Remove the invalid access
statement or change the access specifier in the base
class.

EQA2007E The array boundary in "&1" is missing.

Problem Determination: (where &1 is a C/C++ type)

Explanation: An array must be defined with at least
one element. Use a pointer if you want to dynamically
allocate memory for the array.

Programmer Response: Add an array bound.

EQA2008E The bit-field length must be an integral
constant expression.

Explanation: The bit-field length, which is the value to
the right of the colon, must be an integer. A constant
expression has a value that can be determined during
compilation and does not change during execution.

Programmer Response: Change the bit-field length to
an integral constant expression.

EQA2009E "&1" is not a base class of "&2".

Problem Determination: (where &1 is a class name
&2 is a class name)

Explanation: A derived class attempted to access ele-
ments of a class it did not inherit from. A derived class
can only access elements of its base class or base
classes.

Programmer Response: Ensure the class names are
correct and the classes are derived properly.

EQA2010E The array bound must be a positive inte-
gral constant expression.

Explanation: The debugger detected an array declara-
tion that did not have a constant that is greater than 0
for the array bounds. Use pointers if you want to
dynamically allocate storage for arrays.

Programmer Response: Change the array bound to
an integral constant expression or change it to a
pointer. A constant expression has a value that can be
determined during compilation and does not change
during execution.

392 Debug Tool User's Guide and Reference

 EQA2011E � EQA2022E

EQA2011E "&1" has the same name as its con-
taining class.

Problem Determination: (where &1 is a C++name)

Explanation: The debugger has detected conflicting
names for objects within a class declaration. Nested
class declarations must have different names.

Programmer Response: Change the name of the
conflicting class.

EQA2012E A destructor can only be used in a func-
tion declaration or in a function call.

Explanation: The debugger has detected an incorrect
destructor call.

Programmer Response: Check the call to the
destructor to ensure no braces are missing. If the
braces are correct, remove the destructor call.

EQA2013E An initializer is not allowed for "&1".

Problem Determination: (where &1 is a C/C++ name
or keyword)

Explanation: The debugger detected an initializer
where one is not allowed. For example, a class
member declarator cannot contain an initializer.

Programmer Response: Remove the initializer.

EQA2014E The string must be terminated before the
end of the line.

Explanation: The debugger detected a string that was
not terminated before an end-of-line character was
found.

Programmer Response: End the string before the
end of the line, or use "\" to continue the string on the
next line. The "\" must be the last character on the
line.

EQA2015E An expression of type "&1" cannot be
followed by the function call operator ().

Explanation: The debugger detected an expression
followed by the function call operator. The expression
must be of type function, pointer to function, or refer-
ence to function.

Programmer Response: Change the type of
expression or remove the function call operator.

EQA2016E The "this " keyword is only valid in class
scope.

Explanation: An attempt to use the C++ keyword this
was detected outside class scope. The keyword this
cannot be used outside a class member function body.

Programmer Response: Remove or move the this
keyword.

EQA2017E A destructor cannot have arguments.

Programmer Response: Remove the arguments from
the destructor.

EQA2018E A declaration has been made without a
type specification.

Explanation: The debugger detected a typedef spec-
ification that did not have a type associated with it.

Programmer Response: Add a type specification to
the declaration.

EQA2019E Class qualification for "&1" is not
allowed.

Problem Determination: (where &1 is a C++ name)

Explanation: Explicit class qualification is not allowed
in this context.

Programmer Response: Remove the class qualifica-
tion.

EQA2020E The "&1" operator is not allowed
between "&2" and "&3".

Problem Determination: (where &1 is a C/C++ oper-
ator &2 is a C/C++ type &3 is a C/C++ type)

Explanation: The debugger detected an illegal oper-
ator between two operands. For user-defined types,
you must overload the operator to accept the user-
defined types.

Programmer Response: Change the operator or
change the operands.

EQA2021E "&1" cannot be converted to "&2".

Problem Determination: (where &1 is a C/C++ type
&2 is a C/C++ type)

Explanation: The type conversion cannot be per-
formed because there is no conversion between the
types. This can occur in an initialization, assignment, or
expression statement.

Programmer Response: Change one of the types or
overload the operator.

EQA2022E Operand for "&1" must be a pointer or
an array.

Problem Determination: (where &1 is a C/C++ oper-
ator)

Explanation: The specified operator must have an
operand which is a pointer or an array.

Programmer Response: Change the operand to
either a pointer or an array.

 Appendix E. Debug Tool Messages 393

 EQA2023E � EQA2033E

EQA2023E Syntax error - "&1" is not a class name.

Problem Determination: (where &1 is a C++ name)

Explanation: A class name must be specified in this
context.

Programmer Response: Specify a class name.
Check the spelling.

EQA2024E Operand of "&1" operator must be an
lvalue.

Problem Determination: (where &1 is a C/C++ oper-
ator)

Explanation: The debugger detected an operand that
is not an lvalue. An lvalue is an expression that repres-
ents an object. For example, the left hand side of an
assignment statement must be an lvalue.

Programmer Response: Change the operand to an
lvalue.

EQA2025E const expression cannot be modified.

Explanation: You can initialize a const object, but its
value cannot change afterwards.

Programmer Response: Eliminate the const type
qualifier from the expression or do not use it with the
increment/decrement operators.

EQA2026E An expression of type "&1" is not
allowed on the left side of "&2&3".

Problem Determination: (where &1 is a C/C++ type
&2 is a C/C++ operator &3 is a C/C++ name)

Explanation: The debugger detected a mismatch
between the operands of an operator.

Programmer Response: Change the operand type or
use a different operator.

EQA2027E "&1" is neither an immediate base class
nor a nonstatic data member of class
"&2".

Problem Determination: (where &1 is a C++ name)

Explanation: The debugger has detected an element
of the initializer list that is not an element of the
member list. In the constructor initializer list, you can
only initialize immediate base classes and data
members not inherited from a base class.

Programmer Response: Change the constructor
initializer list.

EQA2028E Constructor initializer list is not allowed
for nonconstructor function.

Explanation: An attempt is being made to give a
constructor initializer list to a nonconstructor function. A
constructor initializer list is only allowed for a
constructor function.

Programmer Response: Remove the constructor
initializer list.

EQA2029E Variable "&1" is not allowed in an argu-
ment initializer.

Problem Determination: (where &1 is a C++ name)

Explanation: The debugger has detected a default
argument initialized by a parameter.

Programmer Response: Remove the parameter from
the default argument initialization.

EQA2030E There are too many initializers in the
initializer list.

Explanation: The debugger detected more initializers
than were present in the function declaration.

Programmer Response: Remove one or more
initializers from the initializer list. Make sure the
number of initializers in the initializer list corresponds to
the number of arguments in the function declaration.

EQA2031E An initializer is not allowed for an array
allocated by "new".

Programmer Response: Remove the initializer or
remove the "new" allocation.

EQA2032E The bit-field length must not be more
than &1.

Problem Determination: (where &1 is a number)

Explanation: The bit-field length must not exceed the
maximum bit size of the bit-field type.

Programmer Response: Reduce the bit-field length.

EQA2033E The type of "&1" cannot be "&2".

Problem Determination: (where &1 is a C++ con-
struct &2 is a C++ type)

Explanation: The debugger detected a conflict in a
type declaration.

Programmer Response: Change the type.

394 Debug Tool User's Guide and Reference

 EQA2034E � EQA2042E

EQA2034E Function overloading conflict between
"&1" and "&2".

Problem Determination: (where &1 is a function type
&2 is a function type)

Explanation: The debugger detected function argu-
ment types that did not match.

Programmer Response: Change the argument decla-
rations of the functions.

EQA2035E Declarations of the same &1 must not
specify default initializers for the same
argument.

Problem Determination: (where &1 is the word
"function" or the keyword "template")

Explanation: The debugger has detected a duplicate
default initializer value for the same argument in both
overloaded functions or in both templates.

Programmer Response: Ensure that you wanted to
declare the same function or template. If that is the
case, remove one of the default initializers. Otherwise,
remove one of the declarations or overload the function.

EQA2036E Call does not match any argument list
for "&1".

Problem Determination: (where &1 is a function
name)

Explanation: No variant of the overloaded function
matches the argument list. The argument mismatch
could be by type or number of arguments.

Programmer Response: Change the argument list on
the call to the overloaded function or change the argu-
ment list on one of the overloaded function variants so
that a match is found.

EQA2037E Call to "&1" matches more than one
function.

Problem Determination: (where &1 is a function
name)

Explanation: More than one variant of the overloaded
function matches equally well with the argument list
specified on the call.

Programmer Response: Change the argument list on
the call to the overloaded function or change the argu-
ment list on one of the overloaded function variants so
that only one match is found.

EQA2038E The "operator " declaration must declare
a function.

Explanation: The keyword "operator" can only be
used to declare an operator function.

Programmer Response: Check the declaration of the
operator and make sure the function declarator ()
appears after it. Use the "operator" keyword to declare
an operator function or remove it.

EQA2039E Operand for "&1" is of type "&2" which
is not of type pointer to member.

Problem Determination: (where &2 is a C++ type)

Explanation: The specified operator must have an
operand which is of type pointer to member.

Programmer Response: Change the operand to type
pointer to member.

EQA2040E "&1" is not allowed as a function return
type.

Problem Determination: (where &1 is a C/C++ type)

Explanation: You cannot declare a function with a
function or an array as its return type.

Programmer Response: Declare the function to
return a pointer to the function or the array element
type.

EQA2041E "&1" is not allowed as an array element
type.

Problem Determination: (where &1 is a C/C++ type)

Explanation: The declaration of an array of functions
or references, or an array of type void is not valid.

Programmer Response: Remove the declaration or
change the declaration so that it is an array of pointer to
functions, pointers to references, or pointers to void.

EQA2042E const variable "&1" does not have an
initializer.

Problem Determination: (where &1 is a variable
name)

Explanation: You can only assign a value to a const
variable using an initializer. This variable has no
initializer, so it can never be given a value.

Programmer Response: Initialize the variable or
remove the const keyword.

 Appendix E. Debug Tool Messages 395

 EQA2043E � EQA2052E

EQA2043E Nonstatic member "&1" must be associ-
ated with an object or a pointer to an
object.

Problem Determination: (where &1 is a class
member name)

Explanation: The debugger detected a nonstatic
member making a reference to an object that has not
been instantiated. You can reference only static
members without associating them with an instance of
the containing class.

Programmer Response: Check the spelling and the
class definition. Change the name of the class or func-
tion, or define the function as static in that class.

EQA2044E "&1" is not a member of "&2".

Problem Determination: (where &1 is a C++ name
&2 is a class name)

Explanation: The class is used explicitly as the scope
qualifier of the member name, but the class does not
contain a member of that name.

Programmer Response: Check the spelling of the
scope qualifier. Change the scope qualifier to the class
containing that member, or remove it.

EQA2045E Wrong number of arguments for "&1".

Problem Determination: (where &1 is a function or
type name)

Explanation: A function or an explicit cast has been
specified with the wrong number of arguments.

Programmer Response: Use the correct number of
arguments. Ensure that overloaded functions have the
correct number and type of arguments.

EQA2046E "&1" must be a class member.

Problem Determination: (where &1 is a C++ name)

Explanation: Conversion functions and certain oper-
ator functions must be class members. They cannot be
defined globally.

Programmer Response: Remove the global definition
or make the function a class member.

EQA2047E An argument type of "&1" is not allowed
for "&2".

Problem Determination: (where &1 is a C/C++ type
&2 is a function name)

Explanation: The function being declared has
restrictions on what types its arguments can have. The
specified type is not allowed for this argument.

Programmer Response: Change the argument type.

EQA2048E "&2" cannot have a return type of "&1".

Problem Determination: (where &1 is a C++ type &2
is an operator function)

Explanation: The specified operator function has the
wrong return type.

Programmer Response: Change the return type.

EQA2049E The array operator must have one
operand of pointer type and one of inte-
gral type.

Explanation: This error can result from the incorrect
use of the array operator.

Programmer Response: Change the operands of the
array operator.

EQA2050E Wrong number of arguments specified in
the function call.

Explanation: The number of arguments in the function
call does not match the number of arguments in the
function declaration.

Programmer Response: Ensure the function declara-
tion and function call specify the same number of argu-
ments.

EQA2051E "&1" operator is not allowed for type
"&2".

Problem Determination: (where &1 is a C/C++ oper-
ator &2 is a C/C++ type)

Explanation: The specified operator cannot be used
with operands of this type.

Programmer Response: Change either the operator
or the operands.

EQA2052E Syntax error - expected "&1" and found
"&2".

Problem Determination: (where &1 is a C++ token
&2 is a C++ token)

Explanation: A syntax error was found while parsing
the expression. The message identifies what the
debugger expected and what it actually found. Often
the source of the error is an unmatched parenthesis or
a missing semicolon.

Programmer Response: Correct the syntax.

396 Debug Tool User's Guide and Reference

 EQA2053E � EQA2062E

EQA2053E "&1" is not allowed for &2.

Problem Determination: (where &1 is a keyword &2
is a C++ construct)

Explanation: The attribute or name cannot be speci-
fied in the given context. The debugger detected
incompatible names that conflict with the language defi-
nition.

Programmer Response: Remove the attribute or
name.

EQA2054E "&1" conflicts with previous "&2" decla-
ration.

Problem Determination: (where &1 is a keyword &2
is a keyword)

Explanation: The declaration conflicts with a previous
declaration of the same symbol.

Programmer Response: Remove one of the declara-
tions or make them identical.

EQA2055E The "operator– >" function must return a
class type that contains an "operator– >"
function.

Explanation: The "operator–>" function must return
either a class type, a reference to a class type, or a
pointer to class type, and the class type must itself have
an "operator–>" function.

Programmer Response: Change the return value of
the "operator–>" function.

EQA2056E Unused "&1" definition.

Problem Determination: (where &1 is the keyword
struct or class)

Explanation: An unnamed class or struct definition
was found that has no object associated with it. The
definition can never be referenced. A class can be
unnamed, but it cannot be passed as an argument or
returned as a value. An unnamed class cannot have
any constructors or destructors.

Programmer Response: Create an object for the
class or struct, or remove the definition.

EQA2057E Internal debugger error at line &1 in
module "&2": &3.

Explanation: The debugger detected an error within
itself from which it cannot recover. The error was found
within the debugger itself.

Programmer Response: Note the line and module
references in this message. Contact your IBM Repre-
sentative Debug Tool support.

EQA2058E Reference to member "&1" of undefined
class "&2".

Problem Determination: (where &1 is a member
name &2 is a class name)

Explanation: The member has been explicitly given
the specified class as a scope qualifier but the class
(and hence the member) has not been defined.

Programmer Response: Check the spelling of the
scope qualifier. Change the scope qualifier to the class
containing that member, or remove it.

EQA2059E Pointer conversion may be wrong if the
classes are related in a multiple
inheritance hierarchy.

Explanation: The relationship between the classes in
a pointer conversion is not known. If the target class is
later defined as a base class of the source class in a
multiple inheritance, this conversion will be wrong if the
value of the pointer should have been modified by the
conversion.

Programmer Response: Change the ambiguous ref-
erence in the conversion.

EQA2060E The reference variable "&1" is uninitial-
ized.

Problem Determination: (where &1 is a variable
name)

Explanation: Reference variables must be initialized.

Programmer Response: Initialize the reference vari-
able or remove it.

EQA2061E "&1" must already be declared.

Problem Determination: (where &1 is a class or
enum name)

Explanation: The specified class or enum name must
have been declared before this use of the name.

Programmer Response: Declare the class or enum
name before you use it. Check the correct spelling of
the name.

EQA2062E Unrecognized source character "&1",
code point &2.

Problem Determination: (where &1 is a character &2
is an integer)

Explanation: The specified character is not a valid
character in a C/C++ expression. The code point dis-
played represents its hexadecimal value.

Programmer Response: Remove the character.

 Appendix E. Debug Tool Messages 397

 EQA2063E � EQA2071E

EQA2063E A local class cannot have a non-inline
member function "&1".

Problem Determination: (where &1 is a function
name)

Explanation: A class declared within a function must
have all of its member functions defined inline, because
the class will be out of scope before non-inline functions
can be defined.

Programmer Response: Define the functions inline,
or move the class definition out of the scope of the
function.

EQA2064E The size of "&1" is unknown in "&2"
expression.

Problem Determination: (where &1 is a C/C++ type)

Explanation: The operation cannot be performed
because the size of the specified type is not known.

Programmer Response: Ensure the size of the type
is known before this expression.

EQA2065E Assignment in logical expression.

Explanation: The logical expression contains an
assignment (=). An equality comparison (==) might
have been intended.

Programmer Response: Change the operator or the
expression.

EQA2066E Conversion from "&1" to "&2" may
cause truncation.

Problem Determination: (where &1 is a C/C++ type
&2 is a C/C++ type)

Explanation: The specified conversion from a wider to
a narrower type might cause the loss of significant data.

Programmer Response: Remove the conversion from
a wider to a narrower type.

EQA2067E "goto &1 " bypasses initialization of
"&2".

Problem Determination: (where &1 is the C/C++
label used with the goto keyword &2 is the variable
being initialized)

Explanation: Jumping past a declaration with an
explicit or implicit initializer is not valid unless the decla-
ration is in an inner block or unless the jump is from a
point where the variable has already been initialized.

Programmer Response: Enclose the initialization in a
block statement.

EQA2068E References to "&1" may be ambiguous.
The name is declared in base classes
"&2" and "&3".

Problem Determination: (where &3 is a C++ class
name)

Explanation: The debugger detected the base classes
of a derived class have members with the same names.
This will cause ambiguity when the member name is
used. This is only an informational message because
the declaration of a member with an ambiguous name
in a derived class is not an error. The ambiguity is only
flagged as an error if you use the ambiguous member
name.

Programmer Response: Change one of the names,
or always fully qualify the name.

EQA2069E Ambiguous reference to "&1", declared
in base classes "&2" and "&3".

Problem Determination: (where &3 is a C++ class
name)

Explanation: The derived class made a reference to a
member that is declared in more than one of its base
classes and the debugger cannot determine which base
class member to choose.

Programmer Response: Change one of the names,
or always fully qualify the name.

EQA2070E Conversion from "&1" to "&2" is ambig-
uous.

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: There is more than one way to perform
the specified conversion. This ambiguity can be caused
by an overloaded function.

Programmer Response: Change or remove the con-
version.

EQA2071E "&1" is only valid for non-static member
functions.

Problem Determination: (where &1 is the keyword
const or volatile)

Explanation: const and volatile are only significant for
nonstatic member functions, since they are applied to
the "this" pointer.

Programmer Response: Remove const and volatile
from all static members.

398 Debug Tool User's Guide and Reference

 EQA2072E � EQA2082E

EQA2072E Character literal is null.

Explanation: An empty character literal has been
specified. A string literal might have been intended.

Programmer Response: Remove the character literal,
change it to a string literal, or give it a value.

EQA2073E "&1" has more than one base class
"&2".

Problem Determination: (where &1 is a class name
&2 is a class name)

Explanation: A derived class has inherited the same
base class in more than one path and the debugger
cannot determine which one to choose.

Programmer Response: Remove one of the
inheritances.

EQA2074E "&1" is a &2 base class of "&3".

Problem Determination: (where &1 is a class name
&2 is the keyword private or protected &3 is a class
name)

Explanation: An attempt is being made to convert a
pointer to a derived class into a pointer to a private or
protected base class.

Programmer Response: Remove the pointer conver-
sion.

EQA2075E &1 "&2" is not allowed in a union.

Problem Determination: (where &1 is a C++ con-
struct &2 is a C++ name)

Explanation: Unions must not be declared with base
classes, virtual functions, static data members,
members with constructors, members with destructors,
or members with class copying assignment operators.

Programmer Response: Remove any such members
from the union declaration.

EQA2076E union "&1" cannot be used as a base
class.

Problem Determination: (where &1 is a union name)

Explanation: Unions cannot be used as base classes
for other class declarations.

Programmer Response: Remove the union as a base
class for other class declarations.

EQA2077E Local variable "&1" is inaccessible from
"&2".

Problem Determination: (where &1 is a variable
name &2 is a class name)

Explanation: An automatic variable within a function is
not accessible from local classes declared within the
function.

Programmer Response: Remove the reference to the
local variable, or move the variable to a different scope.

EQA2078E Value of enumerator "&1" is too large.

Problem Determination: (where &1 is an enumerator
name)

Explanation: The value of an enumerator must be a
constant expression that is promotable to a signed
integer value.

Programmer Response: Reduce the value of the
enumerator.

EQA2079E A constant is being used as a condi-
tional expression.

Explanation: The condition to an if, for, or switch is
constant and therefore, that condition will always hold.

Programmer Response: Remove the constant or
ignore this message.

EQA2080E The argument to a not (!) operator is
constant.

Explanation: The debugger has detected a constant
after the ! operator which might be a coding error.

Programmer Response: Remove the constant or
ignore this message.

EQA2081E There is more than one character in a
character constant.

Explanation: Using more than one character in a
character constant (for example, 'ab') might not be port-
able across machines.

Programmer Response: Remove the extra
character(s) or change the character constant to a
string constant.

EQA2082E Possible pointer alignment problem with
the "&1" operator.

Problem Determination: (where &1 is a C/C++ oper-
ator)

Explanation: A pointer that points to a type with less
strict alignment requirements is being assigned, cast,
returned or passed as a parameter to a pointer that is a
more strictly aligned type. This is a potential portability
problem.

 Appendix E. Debug Tool Messages 399

 EQA2083E � EQA2094E

Programmer Response: Remove the pointer refer-
ence or change the alignment.

EQA2083E A constant expression is being cast to a
pointer.

Explanation: Casting a constant value to a pointer is
not portable to other platforms.

Programmer Response: Remove the constant
expression from the cast expression.

EQA2084E Precision will be lost in assignment to
(possibly sign-extended) bit-field "&1".

Explanation: A constant is being assigned to a signed
bit field that cannot represent the constant. Precision
might be lost and the stored value will be incorrect.

Programmer Response: Increase the size of the bit
field.

EQA2085E Precision will be lost in assignment to
bit-field "&1".

Explanation: A constant is being assigned to a bit
field, and because the bit field has a smaller size, the
precision will be lost.

Programmer Response: Change the assignment
expression.

EQA2086E Enumeration type clash with the "&1"
operator.

Problem Determination: (where &1 is a C++ oper-
ator)

Explanation: Operands from two different enumer-
ations are used in an operation.

Programmer Response: Ensure both operands are
from the same enumeration.

EQA2087E Comparison of an unsigned value with a
negative constant.

Explanation: An unsigned value is being compared to
a negative number. The unsigned value will always
compare greater than the negative number. This might
be a programming error.

Programmer Response: Remove the comparison or
change the type.

EQA2088E Unsigned comparison is always true or
always false.

Explanation: The comparison is either "unsigned >=
0", which is always true, or "unsigned < 0", which is
always false.

Programmer Response: Remove or change the com-
parison.

EQA2089E Comparison is equivalent to "unsigned
value &1 0 ".

Explanation: The comparison is either "unsigned > 0"
or "unsigned <= 0", and could be written as "unsigned
!= 0" or "unsigned == 0".

Programmer Response: Change the comparison.

EQA2090E Argument &1 for "&2" must be of type
"&3".

Problem Determination: (where &1 is an argument
number &2 is a function name &3 is a C++ type)

Explanation: The indicated function requires an argu-
ment of a particular type. However, the argument spec-
ified is of a different type than the type required.

Programmer Response: Ensure that the argument is
of the correct type.

EQA2091E Definition of "&1" is not allowed.

Problem Determination: (where &1 is the keyword
class, struct, union or enum.)

Explanation: You cannot define a type in a type cast
or a conversion function declaration.

Programmer Response: Move the definition to a new
location, or remove it.

EQA2092E Reference to "&1" is not allowed.

Problem Determination: (where &1 is a C++ name)

Explanation: The name has a special meaning in a
C++ program and cannot be referenced in this way.

Programmer Response: Remove the reference.

EQA2093E Escape sequence &1 is out of the range
0-&2. Value is truncated.

Problem Determination: (where &2 is the maximum
allowed value of the escape sequence)

Programmer Response: Make the escape sequence
small enough to fit the specified range.

EQA2094E A wide character constant is larger than
the size of a "wchar_t ". Only the last
character is used.

Explanation: A wide character constant can only
contain one character.

Programmer Response: Make the wide character
constant smaller.

400 Debug Tool User's Guide and Reference

 EQA2095E � EQA2105E

EQA2095E A character constant is larger than the
size of an "int ". Only the rightmost &1
characters are used.

Problem Determination: (where &1 is an integer
number)

Programmer Response: Make the character constant
smaller.

EQA2096E Linkage specification must be at file
scope.

Explanation: A linkage specification can only be
defined at file scope, that is, outside all functions and
classes.

Programmer Response: Move the linkage specifica-
tion or remove it.

EQA2097E Default initializers cannot be followed by
uninitialized arguments.

Explanation: If a default initializer is specified in an
argument list, all following arguments must also have
default initializers.

Programmer Response: Remove the default
initializers, or provide them for the following arguments,
or move the arguments to the end of the list.

EQA2098E You cannot take the address of "&1".

Problem Determination: (where &1 is a C++ name)

Explanation: You cannot take the address of a
constructor, a destructor or a reference member.

Programmer Response: Remove the address oper-
ator (&) from the expression or remove the expression.

EQA2099E Duplicate qualifier "&1" ignored.

Problem Determination: (where &1 is a keyword)

Explanation: The keyword has been specified more
than once. Extra occurrences are ignored.

Programmer Response: Remove one of the duplicate
qualifiers.

EQA2100E "&1" operator cannot be overloaded.

Problem Determination: (where &1 is an operator
name)

Explanation: The specified operator cannot be over-
loaded using an operator function. The following opera-
tors cannot be overloaded: . .* :: ?:

Programmer Response: Remove the overloading
declaration or definition.

EQA2101E At least one argument of "&1" must be
of class or enum type.

Problem Determination: (where &1 is an operator
function name)

Explanation: The nonmember operator function must
have at least one argument which is of class or enum
type.

Programmer Response: Add an argument of class or
enum type.

EQA2102E The divisor for the modulus or division
operator cannot be zero.

Programmer Response: Change the expression used
in the divisor.

EQA2103E The address of the bit-field "&1" cannot
be taken.

Problem Determination: (where &1 is a member
name)

Explanation: An expression attempts to take the
address of a bit-field, or to use the bit-field to initialize a
reference variable or argument.

Programmer Response: Remove the expression
causing the error.

EQA2104E "&1" must not have default initializers.

Problem Determination: (where &1 is an operator
function name or "template function")

Explanation: Default initializers are not allowed within
the declaration of an operator function or a template
function.

Programmer Response: Remove the default
initializers.

EQA2105E The &1 "&2" cannot be initialized
because it does not have a default
constructor.

Problem Determination: (where &1 is 'base class' or
'class member' &2 is a C++ name)

Explanation: The specified base class or member
cannot be constructed since it is not initialized in the
constructor initializer list and its class has no default
constructor.

Programmer Response: Specify a default constructor
for the class or initialize it in the constructor initializer
list.

 Appendix E. Debug Tool Messages 401

 EQA2106E � EQA2115E

EQA2106E Template class "&1" has the wrong
number of arguments.

Problem Determination: (where &1 is a template
class name)

Explanation: A template class instantiation has a dif-
ferent number of template arguments than the template
declaration.

Programmer Response: Ensure that the template
class has the same number of declarations as the tem-
plate declaration.

EQA2107E Non-&1 member function "&2" cannot be
called for a &1 object.

Problem Determination: (where &2 is a function
name with arguments)

Explanation: The member function is being called for
a const or volatile object but the member function has
not been declared with the const or volatile qualifier.

Programmer Response: Supply a version of the
member function with the correct set of "const" and
"volatile" qualifiers.

EQA2108E Null statement.

Explanation: Possible extraneous semicolon has been
specified.

Programmer Response: Check for extra semicolons
in statement.

EQA2109E Bit-field "&1" cannot be used in a condi-
tional expression that is to be modified.

Explanation: The bit-field is part of a conditional
expression that is to be modified. Only objects that can
have their address taken are allowed as part of such an
expression, and you cannot take the address of a bit
field.

Programmer Response: Remove the bit-field from the
conditional expression.

EQA2110E The "&1" qualifier cannot be applied to
"&2".

Problem Determination: (where &2 is a name or a
type)

Explanation: The qualifier is being applied to a name
or a type for which it is not valid.

Programmer Response: Remove the qualifier.

EQA2111E Local type "&1" cannot be used as a &2
argument.

Problem Determination: (where &2 is either the
keyword template or the keyword function)

Explanation: The type cannot be used as a function
argument or in the instantiation of a template because
the scope of the type is limited to the current function.

Programmer Response: Remove the local type.

EQA2112E Default initializers for nontype template
arguments are only allowed for class
templates.

Explanation: Default initializers have been given for
nontype template arguments, but the template is not
declaring a class.

Programmer Response: Remove the default
initializers.

EQA2113E A function argument must not have type
"void ".

Explanation: A function argument can be an
expression of any object type. However, "void" is not
the type of any object and cannot be used as an argu-
ment type.

Programmer Response: Change the type of the func-
tion argument.

EQA2114E Insufficient memory in line &1 of file
"&2".

Problem Determination: (where &1 is a line number
&2 is a file name)

Explanation: The debugger ran out of memory.

Programmer Response: Increase your storage and
rerun.

EQA2115E Unable to initialize source conversion
from codepage &1 to codepage &2.

Problem Determination: (where &1 is a codepage
name i.e. IBM-1047 &2 is a codepage name i.e.
IBM-1047)

Explanation: An error occurred when attempting to
convert source between the codepages specified.

Programmer Response: Ensure the codepages are
correct and that conversion between these codepages
is supported.

402 Debug Tool User's Guide and Reference

 EQA2116E � EQA2125E

EQA2116E An object of abstract class "&1" cannot
be created.

Problem Determination: (where &1 is a class name)

Explanation: You cannot create instances of abstract
classes. An abstract class is a class that has or inherits
at least one pure virtual function.

Programmer Response: Derive another object from
the abstract class.

EQA2117E Invalid use of an abstract class.

Explanation: An abstract class must not be used as
an argument type, as a function return type, or as the
type of an explicit conversion.

Programmer Response: Derive another class from
the abstract, instantiate it so it becomes a concrete
object, and then use it instead.

EQA2118E "&1" has been used more than once in
the same base class list.

Problem Determination: (where &1 is base class
name)

Explanation: A base class can only be specified once
in the base class list for a derived class.

Programmer Response: Remove one of the specifi-
cations.

EQA2119E Template argument &1 of type "&2" does
not match declared type "&3".

Problem Determination: (where &1 is an integer
number &2 is a C++ type &3 is a C++ type)

Explanation: A nontype template argument must have
a type that exactly matches the type of the corre-
sponding argument in the template declaration.

Programmer Response: Ensure that the types match.

EQA2120E Template argument &1 of type "&2" is
not an allowable constant value or
address.

Problem Determination: (where &1 is an integer
number &2 is a C++ type)

Explanation: A nontype template argument must be a
constant value or the address of an object, function, or
static data member that has external linkage. String
literals cannot be used as template arguments because
they have no name, and therefore no linkage.

Programmer Response: Change the template argu-
ment.

EQA2121E Template argument list is empty.

Explanation: At least one template argument must be
specified in a template declaration.

Programmer Response: Specify a template argument
in the declaration.

EQA2122E Formal template argument &1 is of type
"&2" which is not an allowable integral,
enumeration, or pointer type.

Problem Determination: (where &1 is an integer
number &2 is a C++ type)

Explanation: A nontype template argument must be of
integral, or enumeration, or pointer type, so that it can
be matched with a constant integral value.

Programmer Response: Change the template argu-
ment.

EQA2123E "&1" is defined in a template declaration
but it is not a static member.

Problem Determination: (where &1 is a C++ name)

Explanation: A member of a template class defined in
a template declaration must be a static member.

Programmer Response: Make the member static or
remove it from the template declaration.

EQA2124E Template argument "&1" is not used in
the declaration of the name or the argu-
ment list of "&2".

Problem Determination: (where &1 is a template
argument name &2 is a C++ name)

Explanation: All template arguments for a nonclass
template must be used in the declaration of the name or
the function argument list.

Programmer Response: Ensure all template argu-
ments are used in the declaration of the name or the
function argument list.

EQA2125E Template declaration does not declare a
class, a function, or a template class
member.

Explanation: Following the template argument, a tem-
plate declaration must declare a class, a function, or a
static data member of a template class.

Programmer Response: Change the template decla-
ration to declare a class, a function, or a template class
member.

 Appendix E. Debug Tool Messages 403

 EQA2126E � EQA2136E

EQA2126E Return type "&1" for function "&2"
differs from previous return type of "&3".

Problem Determination: (where &1 is a C/C++ type
&2 is a function name &3 is a C/C++ type)

Explanation: The declaration of the function differs
from a previous declaration in only the return type.

Programmer Response: Change the return type so
that it matches the previous return type.

EQA2127E "&1" is a member of "&2" and cannot be
used without qualification.

Problem Determination: (where &2 is a possibly
qualified class name)

Explanation: The specified name is a class member,
but no class qualification has been used to reference it.

Programmer Response: Add a class qualification to
the class member.

EQA2128E "&1" cannot be initialized multiple times.

Problem Determination: (where &1 is a member or
base class name)

Explanation: An initializer was already specified in the
constructor definition.

Programmer Response: Remove the additional
initializer.

EQA2129E No suitable copy assignment operator
exists to perform the assignment.

Explanation: A copy assignment operator exists but it
does not accept the type of the given parameter.

Programmer Response: Change the copy assign-
ment operator.

EQA2130E Explicit call to constructor "&1" is not
allowed.

Problem Determination: (where &1 is a constructor
name)

Explanation: You cannot call a constructor explicitly.
It is called implicitly when an object of the class is
created.

Programmer Response: Remove the call to the
constructor.

EQA2131E No default constructor exists for "&1".

Problem Determination: (where &1 is a class name)

Explanation: An array of class objects must be initial-
ized by calling the default constructor, but one has not
been declared.

Programmer Response: Declare a default constructor
for the array.

EQA2132E More than one default constructor exists
for "&1".

Problem Determination: (where &1 is a class name)

Explanation: An array of class objects must be initial-
ized by calling the default constructor, but the call is
ambiguous.

Programmer Response: Ensure that only one default
constructor exists.

EQA2133E The debugger cannot generate a default
copy constructor for "&1".

Explanation: The default copy constructor cannot be
generated for this class because there exists a member
or base class that has a private copy constructor, or
there are ambiguous base classes, or this class has no
name.

Programmer Response: Ensure that a member or
base class does not have a private copy constructor. If
not then ensure the class is named and there are no
ambiguous references to base classes.

EQA2134E The debugger cannot generate a default
copy assignment operator for "&1".

Explanation: The default copy assignment operator
cannot be generated for this class because it has a
const member or a reference member or a member (or
base class) with a private copy assignment operator.

Programmer Response: Ensure there are no const
members, reference members or members with a
private copy assignment operator.

EQA2135E Pure virtual function called.

Explanation: A call has been made to a pure virtual
function from a constructor or destructor. In such func-
tions, the pure virtual function would not have been
overridden by a derived class and a run-time error
would occur.

Programmer Response: Remove the call to the pure
virtual function.

EQA2136E "&1" is not allowed as a conversion
function type.

Problem Determination: (where &1 is a C/C++ type)

Explanation: A conversion function cannot be
declared with a function or an array as its conversion
type, since the type cannot be returned from the func-
tion.

Programmer Response: Declare the function as con-
verting to a pointer to the function or the array element
type.

404 Debug Tool User's Guide and Reference

 EQA2137E � EQA2145E

EQA2137E Syntax error - "&1" is followed by "&3"
but is not the name of a &2.

Problem Determination: (where &1 is a C++ name
&2 is the keyword class or template &3 is the token '::'
or '<')

Explanation: The name is not a class or template
name but the context implies that it should be.

Programmer Response: Change the name to a class
or template name.

EQA2138E The previous &1 messages apply to the
definition of template "&2".

Problem Determination: (where &1 is an integer
number &2 is a template name)

Explanation: The instantiation of the specified tem-
plate caused the messages, even though the line
numbers in the messages refer to the original template
declaration.

Programmer Response: This message supplies addi-
tional information for previously emitted messages.
Refer to the descriptions of those messages for
recovery information.

EQA2139E The previous message applies to the
definition of template "&1".

Problem Determination: (where &1 is a template
name)

Explanation: The instantiation of the specified tem-
plate caused the message, even though the line
number in the message refers to the original template
declaration.

Programmer Response: This message supplies addi-
tional information for previously emitted messages.
Refer to the descriptions of those messages for
recovery information.

EQA2140E No suitable constructor exists for con-
version from "&1" to "&2".

Problem Determination: (where &1 is a class name
&2 is a C++ type)

Explanation: A constructor is required for the class
but no user-defined constructor exists and the debugger
could not generate one.

Programmer Response: Create a suitable constructor
for conversion.

EQA2141E class "&1" does not have a copy assign-
ment operator.

Problem Determination: (where &1 is a class name)

Explanation: A copy assignment operator is required
for the class but no user-defined copy assignment oper-
ator exists and the debugger could not generate one.

Programmer Response: Create a copy assignment
operator.

EQA2142E "&1" cannot be used as a template name
since it is already known in this scope.

Problem Determination: (where &1 is a C++ name)

Explanation: A template name must not match the
name of an existing template, class, function, object,
value or type.

Programmer Response: Change one of the template
names.

EQA2143E "&1" is expected for template argument
&2.

Problem Determination: (where &1 is either
'expression' or 'type name' &2 is an integer number)

Explanation: Either the argument is a type and the
template has a nontype argument, or the argument is
an expression and the template has a type argument.

Programmer Response: Ensure the argument
matches the template.

EQA2144E "&1" cannot be defined before the tem-
plate definition of which it is an instance.

Problem Determination: (where &1 is a class tem-
plate name)

Explanation: An explicit definition of a template class
cannot be given before the corresponding template defi-
nition.

Programmer Response: Move the template definition
so that it occurs before any template class definitions.

EQA2145E An ellipsis (...) cannot be used in the
argument list of a template function.

Explanation: Since an exact match is needed for tem-
plate functions, an ellipsis cannot be used in the func-
tion argument list.

Programmer Response: Remove the ellipsis from the
argument list.

 Appendix E. Debug Tool Messages 405

 EQA2146E � EQA2157E

EQA2146E The suffix for the floating point constant
is not valid.

Explanation: You have provided an incorrect suffix for
the floating point constant. Valid suffixes for floating
point constants are L and F.

Programmer Response: Change the suffix for the
floating point constant.

EQA2147E Statement has no effect.

Explanation: The expression has no side effects and
produces a result that is not used.

Programmer Response: Remove the statement or
use its result.

EQA2148E The suffix for the integer constant is not
valid.

Explanation: The integer constant is a suffix letter that
is not recognized as a valid suffix.

Programmer Response: Change the suffix to either
"u" or "l".

EQA2149E The expression contains a division by
zero.

Programmer Response: Remove the division by zero
from the expression

EQA2150E The expression contains a modulus by
zero.

Programmer Response: Remove the modulus by
zero from the expression.

EQA2151E Static member "&1" can only be defined
at file scope.

Programmer Response: Move the static member so
that it is defined at file scope.

EQA2152E "&1" needs a constructor because &2
"&3" needs a constructor initializer.

Problem Determination: (where &1 is a class name
&2 is 'class member' or 'base class' &3 is the member
or base class name.)

Explanation: You have not provided a constructor for
the class, because the member or base class does not
have a default constructor.

Programmer Response: Add a constructor.

EQA2153E Conversion from "&1" to a reference to a
non-const type "&2" requires a tempo-
rary.

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A temporary can only be used for con-
version to a reference type when the reference is to a
const type.

Programmer Response: Change to a const type.

EQA2154E "&2" is too small to hold a value of type
"&1".

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A conversion from a pointer type to an
integral type is only valid if the integral type is large
enough to hold the pointer value.

Programmer Response: Remove the conversion from
a pointer type to an integral type or use a larger integral
type.

EQA2155E Object of type "&1" cannot be con-
structed from "&2" expression.

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: There is no constructor taking a single
argument that can be called using the given expression.

Programmer Response: Change the expression.

EQA2156E The debugger cannot generate a copy
constructor for conversion to "&1".

Problem Determination: (where &1 is a C++ type)

Explanation: A copy constructor is required for the
conversion. No suitable user-defined copy constructor
exists and the debugger could not generate one.

Programmer Response: Create a copy constructor
for the conversion.

EQA2157E No suitable constructor or conversion
function exists for conversion from "&1"
to "&2".

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A constructor or conversion function is
required for the conversion but no such constructor or
function exists.

Programmer Response: Create a constructor or con-
version function for the conversion.

406 Debug Tool User's Guide and Reference

 EQA2158E � EQA2167E

EQA2158E Syntax error - "&1" has been inserted
before "&2".

Problem Determination: (where &1 is a token &2 is a
token)

Explanation: A syntax error was found while parsing
the expression. The message identifies what the
debugger expected and what it actually found.

Programmer Response: Correct the syntax.

EQA2159E Call to "&1" matches some functions
best in some arguments, but no function
is a best match for all arguments.

Problem Determination: (where &1 is a function
name)

Explanation: No function matches each call argument
as well as or better than all other functions.

Programmer Response: Change the function call so
that it matches only one function.

EQA2160E Call matches "&1".

Problem Determination: (where &1 is a function
name and type)

Explanation: The debugger detected an overloaded
function or operator that is similar to another and is pro-
viding additional information.

Programmer Response: Ensure this is the desired
match.

EQA2161E Cannot adjust access of "&1::&2 "
because a member in "&3" hides it.

Problem Determination: (where &1 is a class name
&2 is a member name &3 is the name of the derived
class.)

Explanation: You cannot modify the access of the
specified member because a member of the same
name in the specified class hides it.

Programmer Response: Remove the access adjust-
ment expression or unhide the member.

EQA2162E "&1" cannot be redeclared.

Problem Determination: (where &1 is a C++ name)

Explanation: The specified name cannot be rede-
clared because it has already been used.

Programmer Response: Change or remove one of
the declarations.

EQA2163E Syntax error - "&1" is not allowed; "&2"
has already been specified.

Problem Determination: (where &1 is a keyword &2
is a keyword)

Explanation: You cannot use both of the specified
attributes in the same declaration.

Programmer Response: Remove the attributes.

EQA2164E Call to "&1" matches more than one tem-
plate function.

Problem Determination: (where &1 is a function
name and type)

Explanation: More than one template for the function
matches equally well with the argument list specified on
the call.

Programmer Response: Change the call so that it
matches only one template function.

EQA2165E "&1" is declared inline, but is undefined.

Problem Determination: (where &1 is a function
name and type)

Explanation: An inline function must be defined in
every compilation unit in which it is used.

Programmer Response: Define the inline function in
this compilation unit.

EQA2166E Non-&1 member function called for a &1
object via pointer of type "&2".

Problem Determination: (where &2 is a pointer or
member-pointer type)

Explanation: The member function is being called
indirectly for a const or volatile object but it has not
been declared with the corresponding const or volatile
attribute.

Programmer Response: Ensure that the function call
and the function declaration match.

EQA2167E "&1" cannot be a base of "&2" because
"&3" contains the type name "&2".

Problem Determination: (where &1 is a class name
&2 is both the derived class name and a type name &3
is the class containing &2)

Explanation: A class cannot inherit a type name that
is the same as the class name.

Programmer Response: Change the name of either
the derived class or the inherited class.

 Appendix E. Debug Tool Messages 407

 EQA2168E � EQA2177E

EQA2168E "&1" cannot be a base of "&2" because
"&3" contains the enumerator "&2".

Problem Determination: (where &1 is a class name
&2 is both the derived class name and the enumerator
name &3 is the class containing &2)

Explanation: A class cannot inherit an enumerator
with the same name as the class name.

Programmer Response: Change the name of either
the derived class or the inherited enumerator.

EQA2169E Symbol length of &1 exceeds limit of &2
bytes.

Problem Determination: (where &1 is an integer
number &2 is an integer number)

Explanation: The debugger limit for the length of a
symbol has been exceeded.

Programmer Response: Shorten the symbol length.

EQA2170E The result of this pointer to member
operator can be used only as the
operand of the function call operator ().

Explanation: If the result of the .* or –>* is a function,
that result can be used only as the operand for the
function call operator ().

Programmer Response: Make the result the operand
of the function call operator ().

EQA2171E When "&1" is used as an operand to the
arrow or dot operator, the result must be
used with the function call operator ().

Problem Determination: (where &1 is a member
name)

Explanation: If the result of the dot or arrow operator
is a function, that result can be used only as the
operand for the function call operator ().

Programmer Response: Make the result the operand
of the function call operator ().

EQA2172E A class with a reference or const
member needs a constructor.

Explanation: const and reference members must be
initialized in a constructor initializer list.

Programmer Response: Add a constructor to the
class.

EQA2173E Base class initializers cannot contain
virtual function calls.

Explanation: The virtual function table pointers are not
set up until after the base classes are initialized.

Programmer Response: Remove the call to a virtual
function in the base class initializer.

EQA2174E The previous declaration of "&1" did not
have a linkage specification.

Explanation: If you want to declare a linkage specifi-
cation for a function, it must appear in the first declara-
tion of the function.

Programmer Response: Add a linkage specification
to the first declaration of the function.

EQA2175E The destructor for "&1" does not exist.
The call is ignored.

Problem Determination: (where &1 is a C++ type)

Explanation: The destructor call is for a type that
does not have a destructor. The call is ignored.

Programmer Response: Add a destructor to the type.

EQA2176E "&1" has been added to the scope of
"&2".

Problem Determination: (where &1 is the name on a
friend declaration &2 is a class name)

Explanation: Because the friend class has not been
declared yet, its name has been added to the scope of
the class containing the friend declaration.

Programmer Response: If this is not intended, move
the declaration of the friend class so that it appears
before it is declared as a friend.

EQA2177E The body of friend member function
"&1" cannot be defined in the member
list of "&2".

Problem Determination: (where &1 is the friend
member function &2 is a class name)

Explanation: A friend function that is a member of
another class cannot be defined inline in the member
list.

Programmer Response: Define the body of the friend
function at file scope.

408 Debug Tool User's Guide and Reference

 EQA2178E � EQA2188E

EQA2178E The initializer list must be complete
because "&1" does not have a default
constructor.

Problem Determination: (where &1 is a class without
a default constructor.)

Explanation: An array of objects of a class with
constructors uses the constructors in initialization. If
there are fewer initializers in the list than elements in
the array, the default constructor is used. If there is no
default constructor the initializer list must be complete.

Programmer Response: Complete the initializer list or
add a default constructor to the class.

EQA2179E A pure virtual destructor needs an out-
of-line definition in order for its class to
be a base of another class.

Programmer Response: Move the definition of the
pure virtual destructor so that it is not inline.

EQA2180E The braces in the initializer are incorrect.

Programmer Response: Correct the braces on the
initializer.

EQA2181E Invalid octal integer constant.

Explanation: The octal integer constant contains an '8'
or a '9'. Octal numbers include 0 through 7.

Programmer Response: Ensure that the octal integer
constant is valid.

EQA2182E All the arguments must be specified for
"&1" because its default arguments have
not been checked yet.

Problem Determination: (where &1 is a function
name and type)

Explanation: For member functions, names in default
argument expressions are bound at the end of the class
declaration. Calling a member function as part of a
second member function's default argument is an error
if the first member function's default arguments have not
been checked and the call does not specify all of the
arguments.

Programmer Response: Specify all the arguments for
the function.

EQA2183E Ellipsis (...) cannot be used for "&1".

Problem Determination: (where &1 is an operator
name)

Explanation: An operator function has been specified
with an ellipsis (...), but since the number of operands
of an operator are fixed, an ellipsis is not allowed.

Programmer Response: Remove the ellipsis, and
specify the correct number of operands.

EQA2184E Syntax error - expected "&1" or "&2"
and found "&3".

Problem Determination: (where &1 is a token &2 is a
token &3 is a token)

Explanation: A syntax error was found while parsing
the program. The message identifies what the
debugger expected and what it actually found.

Programmer Response: Correct the syntax error.

EQA2185E A character constant must end before
the end of the line.

Explanation: The debugger detected a character con-
stant that was not terminated before an end-of-line
character was found.

Programmer Response: End the character constant
or use "\" to continue it on the next line. The "\" must
be the last character on the line.

EQA2186E A pure virtual function initializer must be
0.

Explanation: To declare a pure virtual function use an
initializer of 0.

Programmer Response: Set the virtual function
initializer to 0.

EQA2187E "&1" is given "&2" access.

Problem Determination: (where &1 is a member
name &1 is the keyword public, protected or private)

Explanation: Access of the class has changed.

Programmer Response: Ensure this change is as
intended.

EQA2188E "&1" has been qualified with the "this "
pointer.

Problem Determination: (where &1 is a member
name)

Programmer Response: Ensure this qualification is
intended.

 Appendix E. Debug Tool Messages 409

 EQA2189E � EQA2199E

EQA2189E Invalid escape sequence; the backslash
is ignored.

Explanation: You have provided invalid character(s)
after the backslash that does not represent an escape
sequence. Therefore, the backslash is ignored and the
rest of the escape sequence is read as is.

Programmer Response: Ensure the escape
sequence is valid.

EQA2190E The result of an address expression is
being deleted.

Programmer Response: Ensure this action is
intended.

EQA2191E Conversion from "&1" to "&2" matches
more than one conversion function.

Explanation: More than one conversion function could
be used to perform the specified conversion.

Programmer Response: Create a new conversion
function for this conversion or change one of the types.

EQA2192E Conversion matches "&1".

Problem Determination: (where &1 is a function
name and type)

Programmer Response: Ensure this is the intended
match.

EQA2193E "&1" cannot be initialized with an
initializer list.

Problem Determination: (where &1 is a class name)

Explanation: Only an object of a class with no
constructors, no private or protected members, no
virtual functions and no base classes can be initialized
with an initializer list.

Programmer Response: Remove the class from the
initializer list.

EQA2194E A pointer to a virtual base "&1" cannot
be converted to a pointer to a derived
class "&2".

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A pointer to a class B can be explicitly
converted to a pointer to a class D that has B as a
direct or indirect base class, only if an unambiguous
conversion from D to B exists, and B is not a virtual
base class.

Programmer Response: Remove the conversion of
the pointer.

EQA2195E The arguments passed using the ellipsis
may not be accessible.

Explanation: Arguments passed using an ellipsis are
only accessible if there is an argument preceding the
ellipsis and the preceding argument is not passed by
reference.

Programmer Response: Ensure that there is an argu-
ment preceding the ellipsis and that the preceding argu-
ment is not passed by reference.

EQA2196E Assignment to a constant expression is
not allowed.

Explanation: The left hand side of the assignment
operator is an expression referring to a "const" location.
For example, in "a.b", either "b" is a "const" member
or "a" is a "const" variable.

Programmer Response: Remove the assignment.

EQA2197E Assignment to const variable "&1" is not
allowed.

Problem Determination: (where &1 is the variable
name)

Explanation: The left hand side of the assignment
operator is a variable with the "const" attribute.
"const" variables can be initialized once at the point
where they are declared, but cannot be subsequently
assigned new values.

Programmer Response: Remove the assignment to
the const variable.

EQA2198E The return type for the "operator– >"
cannot be the containing class.

Explanation: The return type for the "operator–>"
must be a pointer to a class type, a class type, or a
reference to a class type. If it is a class or reference,
the class must be previously defined and must contain
an "operator–>" function.

Programmer Response: Change the return type for
the "operator–>".

EQA2199E The previous message applies to func-
tion argument &1.

Problem Determination: (where &1 is an integer cor-
responding to the function argument number)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the pre-
vious message.

410 Debug Tool User's Guide and Reference

 EQA2200E � EQA2208E

EQA2200E Conversion from "&1" to a reference to a
non-const type "&2" requires a tempo-
rary.

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A temporary can only be used for con-
version to a reference type when the reference is to a
const type. This is a warning rather than an error
message because the "compat" language level is
active.

Programmer Response: Change the reference so
that it is to a const type.

EQA2201E The pointer to member function must be
bound to an object when it is used with
the function call operator ().

Explanation: The pointer to member function must be
associated with an object or a pointer to an object when
it is used with the function call operator ().

Programmer Response: Remove the pointer or asso-
ciate it with an object.

EQA2202E The direct base "&1" of class "&2" is
ignored because "&1" is also an indirect
base of "&2".

Problem Determination: (where &1 is a base class
name)

Explanation: A reference to a member of "&1" will be
ambiguous because it is inherited from two different
paths.

Programmer Response: Remove the indirect
inheritance.

EQA2203E The "&1" operator cannot be applied to
undefined class "&2".

Problem Determination: (where &1 is a class type)

Explanation: A class is undefined until the definition of
its tag has been completed. A class tag is undefined
when the list describing the name and type of its
members has not been specified. The definition of the
tag must be given before the operator is applied to the
class.

Programmer Response: Complete the definition of
the class before applying an operator to it.

EQA2204E "&1" hides the &2 "&3".

Problem Determination: (where &1 is the name of
the derived class's member &2 is "pure virtual" or
"virtual" &3 is the name of the hidden virtual function)

Explanation: A member in the derived class hides a
virtual function member in a base class.

Programmer Response: Ensure the hiding of the
virtual function member is intended.

EQA2205E "&1" is not the name of a function.

Problem Determination: (where &1 is a C++ name)

Explanation: A function name is required in this
context. The specified name has been declared but it is
not the name of a function.

Programmer Response: Check the spelling. If nec-
essary, change to a function name.

EQA2206E The virtual functions "&1" and "&2" are
ambiguous since they override the same
function in virtual base class "&3".

Problem Determination: (where &1 is a function
name and type &2 is a function name and type)

Explanation: The two functions are ambiguous and
the virtual function call mechanism will not be able to
choose the correct one at run time.

Programmer Response: Remove one of the virtual
functions.

EQA2207E The "this " address for "&1" is ambig-
uous because there are multiple
instances of "&2".

Problem Determination: (where &1 is a function
name and type &2 is a class name)

Explanation: Two or more "this" addresses are pos-
sible for this virtual function. The virtual function call
mechanism will not be able to determine the correct
address at run time.

Programmer Response: Remove the "this"
expression or change the function name.

EQA2208E Conversion from "&1" matches more
than one conversion function.

Problem Determination: (where &1 is a function
name and type)

Explanation: More than one conversion function could
be applied to perform the conversion from the specified
type.

Programmer Response: Create a new conversion
function or remove the conversion.

 Appendix E. Debug Tool Messages 411

 EQA2209E � EQA2219E

EQA2209E "&1" cannot be a base of "&2" because
"&3" contains a member function called
"&2".

Problem Determination: (where &1 is a class name
&2 is both the derived class name and the member
function &3 is the class containing &2)

Explanation: A class cannot inherit a function that has
the same as the class.

Programmer Response: Change the name of either
the base class or the inherited function.

EQA2210E Forward declaration of the enumeration
"&1" is not allowed.

Explanation: The declaration of an enumeration must
contain its member list.

Programmer Response: Fully declare the enumer-
ation.

EQA2211E The previous message applies to argu-
ment &1 of function "&2".

Problem Determination: (where &1 is the argument
number &2 is the function name and type)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the pre-
vious message.

EQA2212E The nested class object "&1" needs a
constructor so that its &2 members can
be initialized.

Problem Determination: (where &1 is the nested
class name &2 is the word const or reference)

Programmer Response: Create a constructor for the
nested class object.

EQA2213E The integer constant is out of range.

Explanation: You have provided an integer constant
that is out of range. For the range of integer constants
check limits.h.

Programmer Response: Ensure the integer constant
is in range.

EQA2214E The floating point constant is out of
range.

Explanation: You have provided a floating point con-
stant that is out of range. For the range of floating point
constants check float.h.

Programmer Response: Ensure the floating point
constant is in range.

EQA2215E The &1 member "&2" must be initialized
in the constructor's initializer list.

Problem Determination: (where &1 is the word const
or reference &2 is the member name)

Explanation: Using the constructor's member initializer
list is the only way to initialize nonstatic const and refer-
ence members.

Programmer Response: Initialize the member in the
constructor's initializer list.

EQA2216E Constructors and conversion functions
are not considered when resolving an
explicit cast to a reference type.

Explanation: You cannot resolve an explicit cast to a
reference type using constructors or conversion func-
tions.

Programmer Response: Cast the type to a temporary
type and then take the reference to it.

EQA2217E A character string literal cannot be con-
catenated with a wide string literal.

Explanation: A string that has a prefix L cannot be
concatenated with a string that is not prefixed.

Programmer Response: Ensure both strings have the
same prefix, or no prefix at all.

EQA2218E All members of type "&1" must be
explicitly initialized with all default argu-
ments specified.

Problem Determination: (where &1 is a class name
&2 is the member name)

Explanation: Default arguments for member functions
are not checked until the end of the class definition.
Default arguments for member functions of nested
classes are not semantically checked until the con-
taining class is defined. A call to a member function
must specify all of the arguments before the default
arguments have been checked.

Programmer Response: Specify all default arguments
with all members of the type.

EQA2219E The address of an overloaded function
can be taken only in an initialization or
an assignment.

Programmer Response: Ensure the address of an
overloaded function is used on an initialization or an
assignment, or remove the expression.

412 Debug Tool User's Guide and Reference

 EQA2220E � EQA2229E

EQA2220E Syntax error - found "&1 &2" : "&1" is
not a type name.

Problem Determination: (where &1 is a token &2 is a
token)

Explanation: The debugger detected a nontype
symbol where a type is required. A type must be used
to declare an object.

Programmer Response: Change to a type name or
remove the expression.

EQA2221E A temporary of type "&1" is needed:
"&2" is an abstract class.

Explanation: The debugger has determined that it
must use a temporary to store the result of the
expression, but the result is an abstract base type. An
abstract base type cannot be used to create an object.

Programmer Response: Change the type of the
result.

EQA2222E "&1" hides pure virtual function "&2" in
the nonvirtual base "&3".

Problem Determination: (where &1 is the derived
member's name &2 is the name of the pure virtual func-
tion &3 is the name of the class that contains the pure
virtual)

Explanation: The pure virtual function in a nonvirtual
base cannot be overridden once it has been hidden.

Programmer Response: Make the pure virtual func-
tion visible, or make the base it is derived from virtual.

EQA2223E The class qualifier "&1" for "&2" must
be a template class that uses the tem-
plate arguments.

Problem Determination: (where &1 is a (possibly
qualified) class name. &2 is a C++ name.)

Explanation: A nonclass template can only declare a
global function or a member of a template class. If it
declares a member of a template class, the template
class arguments must include at least one of the non-
class template arguments.

Programmer Response: Change the template decla-
ration so that it either declares a global function or a
member of a template class that uses the nonclass tem-
plate arguments.

EQA2224E The class "&1" cannot be passed by
value because it does not have a copy
constructor.

Problem Determination: (where &1 is a class name)

Explanation: The debugger needs to generate a tem-
porary to hold the return value of the function. To gen-
erate the temporary object, a copy constructor is

needed to copy the contents of the object being
returned into the temporary object.

Programmer Response: Create a copy constructor
for the class or change the argument to pass by value.

EQA2225E "&1" cannot have an initializer list.

Problem Determination: (where &1 is a function
name)

Explanation: A member function that is not a
constructor is defined with an initializer list.

Programmer Response: Remove the initializer list.

EQA2226E Return value of type "&1" is expected.

Problem Determination: (where &1 is a C/C++ type)

Explanation: No return value is returned from the
current function but the function is expecting a nonvoid
return value.

Programmer Response: Ensure a value is returned,
or change the return type of the function to void.

EQA2227E "&1" bypasses initialization of "&2".

Problem Determination: (where &1 is one of the
keywords default, case &2 is the variable being initial-
ized)

Explanation: It is invalid to jump past a declaration
with an explicit or implicit initializer unless the declara-
tion is in an inner block that is also jumped past.

Programmer Response: Enclose the initialization in a
block statement.

EQA2228E "&1" is being redeclared as a member
function. It was originally declared as a
data member.

Problem Determination: (where &1 is a variable
name)

Explanation: The template redeclares a data member
of a class template as a member function.

Programmer Response: Change the original declara-
tion of the variable to a member function, or change the
redeclaration of the variable to a data member.

EQA2229E "&1" is being redeclared as a nonfunc-
tion member or has syntax errors in its
argument list.

Problem Determination: (where &1 is a variable
name)

Explanation: The template redeclares a member func-
tion of a class template as a data member. There
might be syntax errors in the declaration.

Programmer Response: Change one of the declara-
tions, if necessary.

 Appendix E. Debug Tool Messages 413

 EQA2230E � EQA2241E

EQA2230E A string literal cannot be longer than &1
characters.

Problem Determination: (where &1 is a number.
This number is system dependent.)

Explanation: The debugger limit for the length of a
string literal has been exceeded. The string literal is too
long for the debugger to handle.

Programmer Response: Specify a shorter string
literal.

EQA2231E A wide string literal cannot be longer
than &1 characters.

Problem Determination: (where &1 is a number.
This number is system dependent.)

Explanation: The debugger limit for the length of a
wide string literal has been exceeded. The wide string
literal is too long for the debugger to handle.

Programmer Response: Specify a shorter string
literal.

EQA2232E Invalid "multibyte character sequence
character " (MBCS) character.

Explanation: The debugger has detected a multibyte
character sequence that it does not recognize.

Programmer Response: Replace the "multibyte char-
acter sequence character" (MBCS) character.

EQA2233E "&1" is an undefined pure virtual func-
tion.

Explanation: The user tried to call a member function
that was declared to be a pure virtual function.

Programmer Response: Remove or define the func-
tion as pure virtual.

EQA2234E Template "&1" cannot be instantiated
because the actual argument for formal
argument "&2" has more than one
variant.

Problem Determination: (where &1 is the name of a
function template. &2 is the name of a formal template
argument.)

Explanation: The argument is a function template or
an overloaded function with two or more variants. The
debugger cannot decide which variant to choose to bind
to the argument type.

Programmer Response: Change the formal template
argument or remove the extra variants.

EQA2235E Pointer to a built-in function not allowed.

Explanation: Because you cannot take the address of
a built-in function, you cannot declare a pointer to a
built-in function.

Programmer Response: Remove the pointer.

EQA2236E Built-in function "&1" not recognized.

Problem Determination: (where &1 is the name of a
function.)

Explanation: The function declared as a built-in is not
recognized by the debugger as being a built-in function.

Programmer Response: Ensure the function is a
built-in function or remove the built-in keyword from the
declaration.

EQA2237E "&1" is not supported.

Problem Determination: (where &1 is a C++ oper-
ator)

Programmer Response: Remove the operator from
the expression.

EQA2238E Function calls are not supported.

Explanation: You can only generate this message in
the debugger, when you use an expression that
includes a function call.

Programmer Response: Remove function calls from
the expression.

EQA2239E The expression is too complicated.

Programmer Response: Simplify the expression.

EQA2240E Evaluation of the expression requires a
temporary.

Programmer Response: Change the expression so
that a temporary object is not required.

EQA2241E "&1" is an overloaded function.

Problem Determination: (where &1 is the name of a
function.)

Explanation: The identifier refers to an overloaded
function with two or more variants. The debugger
requires a prototype argument list to decide which
variant to process.

Programmer Response: Specify a prototype argu-
ment list or remove variants of the overloaded function.

414 Debug Tool User's Guide and Reference

 EQA2242E � EQA2253E

EQA2242E The bit-field length must not be negative.

Explanation: The bit-field length must be a nonnega-
tive integer value.

Programmer Response: Change the bit-field length to
a nonnegative integer value.

EQA2243E A zero-length bit-field must not have a
name.

Explanation: A named bit-field must have a positive
length; a zero-length bit-field is used for alignment only,
and must not be named.

Programmer Response: Remove the name from the
zero-length bit-field.

EQA2244E The bit-field is too small; &1 bits are
needed for "&2".

Problem Determination: (where &2 is a C++ name)

Explanation: The bit-field length is smaller than the
number of bits needed to hold all values of the enum.

Programmer Response: Increase the bit-field length.

EQA2245E The bit-field is larger than necessary;
only &1 bits are needed for "&2".

Problem Determination: (where &2 is a C++ name)

Explanation: The bit-field length is larger than the
number of bits needed to hold all values of the enum.

Programmer Response: Decrease the bit-field length.

EQA2246E A template friend declaration can only
declare, not define, a class or function.

Explanation: The class or function declared in the
template friend declaration must be defined at file
scope.

Programmer Response: Remove the definition from
the template friend declaration.

EQA2247E The function "&1" must not be declared
"&2" at block scope.

Problem Determination: (where &2 is a C++
keyword.)

Explanation: There can be no static or inline function
declarations at block scope.

Programmer Response: Move the function so that it
is not defined at block scope.

EQA2248E The previous &1 messages apply to
function argument &2.

Problem Determination: (where &1 is an integer cor-
responding to the function argument number)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the pre-
vious message.

EQA2249E The previous &1 messages apply to
argument &2 of function "&3".

Problem Determination: (where &1 is the number of
messages &2 is the argument number &3 is the func-
tion name and type)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the pre-
vious message.

EQA2250E "&1" is not a static member of "&2".

Problem Determination: (where &2 is a class name.)

Explanation: Nonstatic data members cannot be
defined outside the class definition.

Programmer Response: Make the member a static
member or move it into the class definition.

EQA2251E The initializer must be enclosed in
braces.

Explanation: Array element initializers must be
enclosed in braces.

Programmer Response: Put braces around the
initializer.

EQA2252E union "&1" has multiple initializers asso-
ciated with its constructor "&2".

Explanation: A union can only contain one member
object at any time, and therefore can be initialized to
only one value.

Programmer Response: Remove all but one of the
initializers.

EQA2253E You cannot override virtual function
"&1" because "&3" is an ambiguous
base class of "&2".

Problem Determination: (where &3 is the class name
of an ambiguous base of &2)

Explanation: The debugger must generate code to
convert the actual return type into the type that the
overridden function returns (so that calls to the original

 Appendix E. Debug Tool Messages 415

 EQA2254E � EQA2262E

overridden function is supported). However, the conver-
sion is ambiguous.

Programmer Response: Clarify the base class.

EQA2254E "&1" is not initialized until after the base
class is initialized.

Problem Determination: (where &1 is the class
member referenced in the base class initializer.)

Explanation: First, the base classes are initialized in
declaration order, then the members are initialized in
declaration order, then the body of the constructor is
executed.

Programmer Response: Do not reference the class
member in the base class initializer.

EQA2255E The expression to the left of the "&1"
operator is a relational expression
("&2"). The "&3" operator might have
been intended.

Problem Determination: (where &1 is the bitwise
operator | or &. &2 is one of the relational operators.
&3 is either the operator || or the operator &&.)

Explanation: The debugger has detected the mixing
of relational and bitwise operators in what was deter-
mined to be a conditional expression.

Programmer Response: Ensure the correct operator
is being used.

EQA2256E The expression to the left of the "&1"
operator is a logical expression ("&2").
The "&3" operator may have been
intended.

Problem Determination: (where &1 is the bitwise
operator | or &. &2 is one of the relational operators.
&3 is either the operator || or the operator &&.)

Explanation: The debugger has detected the mixing
of relational and bitwise operators in what was deter-
mined to be a conditional expression.

Programmer Response: Ensure the correct operator
is being used.

EQA2257E The expression to the left of the "&1"
operator is an equality expression
("&2"). The "&3" operator may have
been intended.

Problem Determination: (where &1 is the bitwise
operator | or &. &2 is one of the relational operators.
&3 is either the operator || or the operator &&.)

Explanation: The debugger has detected the mixing
of relational and bitwise operators in what was deter-
mined to be a conditional expression.

Programmer Response: Ensure the correct operator
is being used.

EQA2258E The expression to the right of the "&1"
operator is a relational expression
("&2"). The "&3" operator may have
been intended.

Problem Determination: (where &1 is the bitwise
operator | or &. &2 is one of the relational operators. &3
is either the operator || or the operator &&.)

Explanation: This message is generated by the /Wcnd
option. This option warns of possible redundancies or
problems in conditional expressions involving relational
expressions and bitwise operators.

Programmer Response: Ensure the correct operator
is being used.

EQA2259E Assignment to the "this " pointer is not
allowed.

Explanation: The "this" pointer is a const pointer and
cannot be modified.

Programmer Response: Remove the assignment to
the "this" pointer.

EQA2260E "&1" must not have any arguments.

Problem Determination: (where &1 is a special
member function.)

Programmer Response: Remove all arguments from
the special member function.

EQA2261E The second operand to the "offsetof "
operator is not valid.

Explanation: The second operand to the "offsetof"
operator must consist only of "." operators and "[]"
operators with constant bounds.

Programmer Response: Remove or change the
second operand.

EQA2262E "&1" is a member of "&2" and cannot be
used without qualification.

Problem Determination: (where &2 is a possibly
qualified class name)

Explanation: The specified name is a class member,
but no class qualification has been used to reference it.

Programmer Response: Use the scope operator (::)
to qualify the name.

416 Debug Tool User's Guide and Reference

 EQA2263E � EQA2271E

EQA2263E sdq.&1 " is undefined. Every variable of
type "&2" will assume "&1" has no
virtual bases and no multiple inheritance.

Problem Determination: (where &2 is a pointer to
member type)

Explanation: The definition of the class is not given
but the debugger must implement the pointer to
member. It will do so by assuming the class has at
most one nonvirtual base class.

Programmer Response: If this assumption is incor-
rect, define the class before declaring the member
pointer.

EQA2264E "&1" is undefined. The delete operator
will not call a destructor.

Problem Determination: (where &1 is a name of a
class, struct, or union)

Explanation: The definition of the class is not given so
the debugger does not know whether the class has a
destructor. No destructors will be called.

Programmer Response: Define the class.

EQA2265E Label "&1" is undefined.

Problem Determination: (where &1 is a C++ name)

Explanation: The specified label is used but is not
defined.

Programmer Response: Define the label before using
it.

EQA2266E The initializer for enumerator "&1" must
be an integral constant expression.

Problem Determination: (where &1 is an enumerator
name)

Explanation: The value of an enumerator must be a
constant expression that is promotable to a signed int
value. A constant expression has a value that can be
determined during compilation and does not change
during program execution.

Programmer Response: Change the initializer to an
integral constant expression.

EQA2267E Overriding virtual function "&1" may not
return "&2" because class "&3" has mul-
tiple base classes or a virtual base class.

Problem Determination: (where &1 is the name of a
virtual function &2 is an abstract declarator &3 is the
class being returned)

Explanation: Contravariant virtual functions are sup-

ported only for classes with single inheritance and no
virtual bases.

Programmer Response: Ensure the class has single
inheritance and no virtual bases.

EQA2268E Virtual function "&1" is not a valid virtual
function override because "&3" is an
inaccessible base class of "&2".

Problem Determination: (where &3 is the class name
of an inaccessible base of &2)

Explanation: The debugger must generate code to
convert the actual return type into the type that the
overridden function returns (so that calls to the original
overridden function is supported). However, the target
type is inaccessible to the overriding function.

Programmer Response: Make the base class acces-
sible.

EQA2269E "&1" is a member of &2 classes. To ref-
erence one of these members, "&3" must
be qualified.

Problem Determination: (where &1 is a C++ member
name &2 is an integer greater than 1 &3 is a C++
member name)

Explanation: The class member specified is defined in
more than one class nested within the base class and
cannot be referenced from the base class if it is not
qualified. This message is generated by the /Wund
option.

Programmer Response: Use the scope operator (::)
to qualify the name.

EQA2270E "&1" is not the name of a function.

Problem Determination: (where &1 is a name)

Explanation: A function name is required in this
context. The specified name has been declared but it is
not the name of a function.

Programmer Response: Ensure the name is the cor-
rectly spelled name of a function.

EQA2271E Enum type "&1" cannot contain both
negative and unsigned values.

Explanation: The enumerator type values should fit
into an integer. Specifying both unsigned and negative
values will exceed this limit.

Programmer Response: Remove the negative or
unsigned values.

 Appendix E. Debug Tool Messages 417

 EQA2272E � EQA2282E

EQA2272E Cannot take the address of the machine-
coded function "&1".

Explanation: Because the function is machine-coded,
you cannot take its address.

Programmer Response: Remove the reference to
that function.

EQA2273E An initializer is not allowed for the non-
virtual function "&1".

Problem Determination: (where &1 is a function
name)

Explanation: The declaration of a pure virtual function
must include the keyword virtual.

Programmer Response: Remove the initializer.

EQA2274E A local variable or debugger temporary
is being used to initialize reference
member "&1".

Explanation: The local variable is only active until the
end of the function, but it is being used to initialize a
member reference variable.

Programmer Response: Ensure that no part of your
program depends on the variable or temporary.

EQA2275E "&1" is not the SOM name of a SOM
class.

Explanation: A SOM name that represents a SOM
class is expected, and was not found. The SOM name
of a class might differ from its C++ name.

Programmer Response: Ensure that you use the
correct SOM name for the class.

EQA2276E Definition of "&1" is only allowed at file
scope.

Problem Determination: (where &1 is a C++ tem-
plate class type)

Explanation: A template class is being defined in a
scope other than file scope. Because all template class
names have file scope this definition is not allowed.

Programmer Response: Move the template class
definition to file scope.

EQA2277E Class template "&1" cannot be used
until its containing template has been
instantiated.

Problem Determination: (where &1 is a C++ class
template type)

Explanation: The class template referenced cannot be
used until the template that contains it has been
instantiated.

Programmer Response: Declare the class template
at file scope or instantiate the template that contains it.

EQA2278E Invalid wchar_t value &1.

Problem Determination: (where &1 is the value
which is not valid)

Explanation: A multibyte character or escape
sequence in a literal has been converted to an invalid
value for type wchar_t.

Programmer Response: Change the character or
escape sequence.

EQA2279E The string must be terminated before the
end of the line.

Explanation: The debugger detected a string that was
not terminated before an end-of-line character was
found.

Programmer Response: End the string or use "\" to
continue the string on the next line. The "\" must be
the last character on the line.

EQA2280E A character constant must end before
the end of the line.

Explanation: The debugger detected a character con-
stant that was not terminated before an end-of-line
character was found.

Programmer Response: End the character constant
or use "\" to continue it on the next line. The "\" must
be the last character on the line.

EQA2281E A matching &1 function named "&2"
could not be found.

Problem Determination: (where &1 is one of 'const',
'volatile' or 'const volatile'. &2 is the name of the called
function (without the argument list).)

Explanation: The call might have failed because no
member function exists that accepts the 'const/volatile'
qualifications of the object.

Programmer Response: Ensure the type qualifier is
correct and that the function name is spelled correctly.

EQA2282E "&1" is a type name being used where a
variable name is expected.

Problem Determination: (where &1 is a C/C++
name)

Explanation: The identifier must be a variable name
not a type name.

Programmer Response: Check that the identifier is a
variable name and ensure the variable is not hidden by
a type name.

418 Debug Tool User's Guide and Reference

 EQA2283E � EQA2293E

EQA2283E Template "&1" has a missing or incor-
rect template argument list.

Problem Determination: (where &1 is a C++ name)

Explanation: A template name was found where a
variable name was expected.

Programmer Response: Complete the template argu-
ment list or change the identifier to a variable name.

EQA2284E Template friend declaration does not
declare a class or a function.

Explanation: A template friend declaration must
declare a class or a function following the template
arguments.

Programmer Response: Change the template decla-
ration to declare a class or a function.

EQA2285E The 'const' object has been cast to a
non-'const' object.

Explanation: A cast has been used to possibly modify
a 'const' object. This might cause undefined behaviour
at run time.

Programmer Response: Remove the cast or make
the object nonconst.

EQA2286E Global friend functions may not be
defined in a local class.

Explanation: A local class cannot have a friend func-
tion.

Programmer Response: Make the function a member
function in the local class.

EQA2287E The address of data member "&1"
cannot be taken because the member is
being referenced through a _get_ func-
tion.

Explanation: An attribute is access through a "_get_"
method if its backing data is not accessible, or if the
SOMNoDataDirect pragma is in effect for the class.
Since the "__get" method returns the value of the
member, and not its address, it isn't possible to use the
address operator "&" on the member to create an ordi-
nary pointer. This error can also be generated if you
haven't used the "&" operator explicitly, but the
debugger needs to use it to implement your code. You
can create a pointer-to-member that refers to an attri-
bute.

Programmer Response: Rewrite the expression that
causes the address to be taken, or remove the
SOMAttribute pragma.

EQA2288E '!' was specified for "&1", which was
introduced in the current class.

Problem Determination: (where &1 is a C++ member
name.)

Explanation: '!' must only be used for names intro-
duced in a base class.

Programmer Response: Remove the '!' from the
SOMReleaseOrder entry.

EQA2289E Function linkage differs from that of
overridden function "&1".

Explanation: The linkage of a virtual function must
agree with the linkage of base class member functions
that it overrides.

Programmer Response: Change the linkage keyword
to agree with the base class method.

EQA2290E The physical size of a struct or union is
too large.

Explanation: The debugger cannot handle any size
which is too large to be represented internally.

Programmer Response: Reduce the size of the struct
or union members.

EQA2291E The "&1" qualifier is not supported on
the target platform.

Explanation: A qualifier has been specified on a plat-
form that does not support it.

Programmer Response: Remove the qualifier.

EQA2292E The array bound is too large.

Explanation: The array bound should be a value less
than or equal to max int.

Programmer Response: Reduce the number of ele-
ments in the array.

EQA2293E "&1" was not specified in the previous
declaration of "&2".

Problem Determination: (where &1 is an attribute. &2
is a name.)

Explanation: An attribute has been specified that con-
flicts with the previous declaration of a name.

Programmer Response: Remove the attribute.

 Appendix E. Debug Tool Messages 419

 EQA2500E � EQA2515I

EQA2500E Incorrect or missing data

Explanation: The data at the cursor location is either
incorrect or some data is missing. There could be
several reasons for this:

1. Invalid combination of options specified.
2. Invalid data for field.
3. Data not entered, when required by options given.
4. Quotes specified when not allowed.

Programmer Response: Correct the entry where the
cursor is positioned and invoke the function again. You
can use Help (PF1) to find the context sensitive help for
that field.

EQA2501E DTCN internal error

Explanation: DTCN discovered internal error.

Programmer Response: Contact IBM service.

EQA2502E Internal CICS error

Explanation: During processing, DTCN discovered
internal CICS error

Programmer Response: Correct the error and issue
the command again. If the error persists contact your
CICS system programmer and/or IBM service.

EQA2503E Key Not Defined.

Explanation: There is no action defined with the PF
key used by the user.

Programmer Response: Use the keys displayed in
the bottom line. For more information about the actions
defined for this panel, use PF2 key for general help.

EQA2504E Add failed - profile exists

Explanation: The add command failed because the
profile for that terminal & transaction is already stored in
the Debug Tool Profile Repository.

Programmer Response: You can use Show(PF7)
command to display the profile or modify the
TermId+TranId and Add a new profile.

EQA2505E Replace failed - profile does not exist

Explanation: The profile for Terminal & Transaction Id
does not exist in the Debug Tool Profile Repository and
cannot be updated.

Programmer Response: Specify different
Terminal+Transaction Id to update. You can use
Next(PF8) command to browse the Profile Repository
starting from any point.

EQA2506E Delete failed - profile does not exist

Explanation: The profile for Terminal & Transaction Id
does not exist in the Debug Tool Profile Repository and
cannot be updated.

Programmer Response: Specify different
Terminal+Transaction Id to delete. You can use
Next(PF8) command to browse the Profile Repository
starting from any point.

EQA2507E Show failed - profile does not exist

Explanation: The profile for Terminal & Transaction Id
does not exist in the Debug Tool Profile Repository.

Programmer Response: Specify different
Terminal+Transaction Id to display. You can use
Next(PF8) command to browse the Profile Repository
from any point.

EQA2508E Next failed - profile does not exist

Explanation: There are no more profiles in the DT/370
Profile Repository.

EQA2510I DTCN closed

Explanation: DTCN deleted all profiles stored in the
Debug Tool Profiles Repository. This action affects all
users working with that CICS region.

EQA2511E Blank Terminal Id and Transaction Id not
allowed

Explanation: DTCN cannot store debugging profile for
blank Terminal Id and Transaction Id.

Programmer Response: Supply nonblank Terminal Id
(for debugging application on that terminal) or Trans-
action Id (for debugging batch CICS transaction or trou-
bleshooting transaction regionwide) or both.

EQA2512E TCP/IP for CICS is not active

Explanation: You have tried to set up a debug
session using TCP/IP, but TCP/IP for CICS is not active
in the CICS region.

Programmer Response: Either set up a non-TCP/IP
session, or refer to the TCP/IP for CICS publications for
guidance on activating it.

EQA2514I Debug Tool profile added

Explanation: A new profile was added to the Debug
Tool Profile Repository

EQA2515I Debug Tool profile replaced

Explanation: Existing profile was updated in the
Debug Tool Profile Repository.

420 Debug Tool User's Guide and Reference

 EQA2516I � EQA2516I

EQA2516I Debug Tool profile deleted

Explanation: Existing profile was deleted from the
Debug Tool Profile Repository

 Appendix E. Debug Tool Messages 421

 Bibliography

 Bibliography

High level language publications

OS/390 C/C++

OS/390 C/C++ Compiler and Run-Time Migration
Guide, SC09-2359

OS/390 C/C++ IBM Open Class Library Reference,
SC09-2364

OS/390 C/C++ IBM Open Class Library User's
Guide, SC09-2363

OS/390 C/C++ Database Access Class Library
Utility Guide, SC09-2412

OS/390 C/C++ Language Reference, SC09-2360

OS/390 C/C++ Programming Guide, SC09-2362

OS/390 C/C++ Reference Summary, SX09-1313

OS/390 C/C++ User's Guide, SC09-2361

OS/390 C/C++ SOM-Enabled Class Library User's
Guide and Reference, SC09-2366

OS/390 C/C++ Run-Time Library Reference,
SC28-1663

OS/390 C Curses, SC28-1907

IBM COBOL for OS/390 & VM

Licensed Program Specifications, GC26-9044

Installation and Customization under MVS,
GC26-9045

Language Reference, SC26-9046

Diagnosis Guide, GC26-9047

Fact Sheet, GC26-9048

Programming Guide, SC26-9049

Compiler and Run-Time Migration Guide,
GC26-4764

IBM COBOL for MVS & VM

Programming Guide, SC26-4767

Language Reference, SC26-4769

Licensed Program Specifications, GC26-4761

Compiler and Run-Time Migration Guide,
GC26-4764

Installation and Customization under MVS,
GC26-4766

Diagnosis Guide, SC26-3138

PL/I for MVS & VM

Programming Guide, SC26-3113

Language Reference, SC26-3114

Licensed Program Specifications, GC26-3116

Compiler and Run-Time Migration Guide,
SC26-3118

Installation and Customization under MVS,
SC26-3119

Diagnosis Guide, SC26-3149

Compile-Time Messages and Codes, SC26-3229

Reference Summary, SX26-3821

 Related publications

OS/390 Language Environment

OS/390 Language Environment Debugging Guide
and Run-Time Messages, SC28-1942

OS/390 Language Environment Programming
Guide, SC28-1939

OS/390 Language Environment Programming Ref-
erence, SC28-1940

OS/390 Language Environment Writing Interlan-
guage Applications, SC28-1943

OS/390 Language Environment Customization,
SC28-1941

OS/390 Language Environment Run-Time Migration
Guide, SC28-1944

OS/390 Language Environment Concepts Guide,
GC28-1945

MVS/ESA

JCL User's Guide, GC28-1653

JCL Reference, GC28-1654

MVS/Enterprise Systems Architecture Application
Development Guide, GC28-1821

MVS/Enterprise Systems Architecture System Com-
mands, GC28-1826

VM/ESA

Virtual Machine/Enterprise Systems Architecture
Operating System CP System Command
Reference, SC24-5434

TSO

MVS/Enterprise Systems Architecture TSO Pro-
gramming, GC28-1565

CICS

422  Copyright IBM Corp. 1995, 1998

 Bibliography

CICS Application Programming Primer (VS COBOL
II), SC33-0674

CICS/ESA Application Programming Reference,
SC33-1170

CICS/ESA Application Programming Guide,
SC33-1169

IMS

IMS/ESA Application Programming, SC26-4274

IMS/VS Application Programming, SH20-9026

IMS/VS Batch Terminal Simulator Program Refer-
ence and Operations Manual, SH20-5523

DB2 for MVS

Master Index, GC26-3271

Licensed Program Specifications, GC26-3272

Administration Guide, SC26-3265

Application Programming and SQL Guide,
SC26-3266

Command Reference, SC26-3267

Installation Guide, SC26-3456

Messages and Codes, SC26-3268

Data Sharing: Planning and Administration,
SC26-3269

Release Guide, SC26-3394

SQL Reference, SC26-3270

Reference for Remote DRDA Requesters and
Servers, SC26-3282

Reference Summary, SX26-3829

Utilities Guide and Reference, SC26-3395

Diagnosis Guide and Reference, LY27-9618

Diagnostic Quick Reference Card, LY27-9622

DB2 and SQL/DS

IBM DATABASE 2 Application Programming Guide,
SC26-4293

IBM DATABASE 2 Administration Guide,
SC26-4374

IBM DATABASE 2 SQL Reference, SC26-4346

 Softcopy publications
BookManager Read and Build General Information,
GC23-0447

BookManager Read/VM: Getting Started and
Command Summary, SC23-0448

BookManager Read/VM: Displaying On-line Books,
SC23-0449

BookManager Read/MVS: Getting Started and
Command Summary, SC38-2033

BookManager Read/MVS: Displaying On-line
Books, SC38-2034

 Bibliography 423

 Glossary

 Glossary

A
active block . The currently executing block that
invokes Debug Tool or any of the blocks in the CALL
chain that leads up to this one.

active server . A server that is being used by a
CODE/370 session. Contrast with inactive server. See
also server.

alias . An alternative name for a field used in some
high-level programming languages.

animation . The execution of instructions one at a time
with a delay between each so that any results of an
instruction can be viewed.

attention interrupt . An I/O interrupt caused by a ter-
minal or workstation user pressing an attention key, or
its equivalent.

attention key . A function key on terminals or work-
stations that, when pressed, causes an I/O interrupt in
the processing unit.

attribute . A characteristic or trait the user can specify.

Autosave . A choice allowing the user to automatically
save work at regular intervals.

B
batch . Pertaining to a predefined series of actions per-
formed with little or no interaction between the user and
the system. Contrast with interactive.

batch job . A job submitted for batch processing. See
batch. Contrast with interactive.

batch mode . An interface mode for use with the MFI
Debug Tool which does not require input from the ter-
minal. See batch.

block . In programming languages, a compound state-
ment that coincides with the scope of at least one of the
declarations contained within it.

breakpoint . A place in a program, usually specified by
a command or a condition, where execution can be
interrupted and control given to the user or to Debug
Tool.

C
| century window (COBOL) . The 100-year interval in
| which COBOL assumes all windowed years lie. The
| start of the COBOL century window is defined by the
| COBOL YEARWINDOW compiler option.

Change . A push button that changes a value associ-
ated with an entry or entries in a list to another value
specified by the user.

CODE/370. The IBM product formally called the
CoOperative Development Environment/370, an applica-
tion development and maintenance facility for editing,
compiling, and debugging third-generation programming
languages.

command list . A grouping of commands that can be
used to govern the startup of Debug Tool, the actions of
Debug Tool at breakpoints, and various other debug-
ging actions.

Common Programming Interface (CPI) . Definitions of
those application development languages and services
that have (or are intended to have) implementations on
and a high degree of commonality across SAA environ-
ments. See also Systems Application Architecture.

compile . To translate a program written in a high level
language into a machine-language program.

compile unit . A sequence of HLL statements that
make a portion of a program complete enough to
compile correctly. Each HLL product has different rules
for what comprises a compile unit.

compiler . A program that translates instructions
written in a high level programming language into
machine language.

condition . Any synchronous event that might need to
be brought to the attention of an executing program or
the language routines supporting that program. Condi-
tions fall into two major categories: conditions detected
by the hardware or operating system, which result in an
interrupt; and conditions defined by the programming
language and detected by language-specific generated
code or language library code. See also exception.

container . A system object that contains and organ-
izes source files. For example, a VM minidisk, or an
MVS partitioned data set.

conversational . A transaction type which accepts
input from the user, performs a task, then returns to get
more input from the user.

424  Copyright IBM Corp. 1995, 1998

 Glossary

CPI. See Common Programming Interface.

currently-qualified . See qualification.

D
data type . A characteristic that determines the kind of
value that a field can assume.

data set . The major unit of data storage and retrieval,
consisting of a collection of data in one of several pre-
scribed arrangements and described by control informa-
tion to which the system has access.

| date field . A COBOL data item that can be any of the
| following:

| � A data item whose data description entry includes a
| DATE FORMAT clause.

| � A value returned by one of the following intrinsic
| functions:

| DATE-OF-INTEGER
| DATE-TO-YYYYMMDD
| DATEVAL
| DAY-OF-INTEGER
| DAY-TO-YYYYDDD
| YEAR-TO-YYYY
| YEARWINDOW

| � The conceptual data items DATE and DAY in the
| ACCEPT FROM DATE and ACCEPT FROM DAY
| statements, respectively.

| � The result of certain arithmetic operations.

| The term date field refers to both expanded date field
| and windowed date field. See also nondate..

| date processing statement . A COBOL statement that
| references a date field, or an EVALUATE or SEARCH
| statement WHEN phrase that references a date field.

DBCS. See double-byte character set.

debug . To detect, diagnose, and eliminate errors in
programs.

Debug Tool procedure . A sequence of Debug Tool
commands delimited by a PROCEDURE and a corre-
sponding END command.

Debug Tool variable . A predefined variable that pro-
vides information about the user's program that the user
can use during a session. All of the Debug Tool vari-
ables begin with %, for example, %BLOCK or %CU.

default . A value assumed for an omitted operand in a
command. Contrast with initial setting.

double-byte character set (DBCS) . A set of charac-
ters in which each character is represented by two

bytes. Languages such as Japanese, which contain
more symbols than can be represented by 256 code
points, require double-byte character sets. Because
each character requires two bytes, the typing, dis-
playing, and printing of DBCS characters requires hard-
ware and programs that support these characters.

dynamic . In programming languages, pertaining to
properties that can only be established during the exe-
cution of a program; for example, the length of a
variable-length data object is dynamic. Contrast with
static.

dynamic link library (DLL) . A file containing execut-
able code and data bound to a program at load time or
run time. The code and data in a dynamic link library
can be shared by several applications simultaneously.
See also load module.

E
enclave . An independent collection of routines in Lan-
guage Environment, one of which is designated as the
MAIN program. The enclave contains at least one
thread and is roughly analogous to a program or
routine. See also thread.

entry point . The address or label of the first instruc-
tion executed on entering a computer program, routine,
or subroutine. A computer program can have a number
of different entry points, each perhaps corresponding to
a different function or purpose.

exception . An abnormal situation in the execution of a
program which typically results in an alteration of its
normal flow. See also condition.

execute . To cause a program, utility, or other machine
function to carry out the instructions contained within.
See also run.

execution time . See run time.

execution-time environment . See run-time environ-
ment.

| expanded date field . A COBOL date field containing
| an expanded (four-digit) year. See also date field and
| expanded year.

| expanded year . In COBOL, four digits representing a
| year, including the century (for example, 1998).
| Appears in expanded date fields. Compare with win-
| dowed year.

expression . A group of constants or variables sepa-
rated by operators that yields a single value. An
expression can be arithmetic, relational, logical, or a
character string.

 Glossary 425

 Glossary

F
file . (1) A named set of records stored or processed
as a unit. (2) An element included in a container: for
example, a VM file, an MVS member or partitioned data
set. See container. See also data set.

frequency count . A count of the number of times
statements in the currently qualified program unit have
been run.

full-screen mode . An interface mode for use with a
nonprogrammable terminal which displays a variety of
information about the program you are debugging.

H
high level language (HLL) . A programming language
such as C, COBOL, or PL/I.

HLL . See high level language.

hook . An instruction inserted into a program by a com-
piler at compile-time. Using a hook, you can set break-
points to instruct Debug Tool to gain control of the
program at selected points during its execution.

I
IBM SAA AD/Cycle Language Environment/370 .
See Language Environment.

inactive block . A block that is not currently executing,
or is not in the CALL chain leading to the active block.
See also active block, block.

initial setting . A value in effect when the user's Debug
Tool session begins. Contrast with default.

interactive . Pertaining to a program or system that
alternately accepts input and then responds. An inter-
active system is conversational; that is, a continuous
dialog exists between the user and the system. Con-
trast with batch.

I/O. Input/output.

L
Language Environment . An IBM software product
that provides a common run-time environment and
common run-time services for IBM high level language
compilers.

library routine . A routine maintained in a program
library.

line mode . An interface mode for use with a nonpro-
grammable terminal which uses a single command line
to accept Debug Tool commands.

line wrap . The function that automatically moves the
display of a character string (separated from the rest of
a line by a blank) to a new line if it would otherwise
overrun the right margin setting.

link-edit . To create a loadable computer program
using a linkage editor.

linkage editor . A program that resolves cross-
references between separately compiled object modules
and then assigns final addresses to create a single relo-
catable load module.

listing . A printout that lists the source language state-
ments of a program with all preprocessor statements,
includes, and macros expanded.

load module . A program in a form suitable for loading
into main storage for execution. In this document this
term is also used to refer to a Dynamic Load Library
(DLL).

M
multitasking . A mode of operation that enables the
concurrent performance, or interleaved execution, of
two or more tasks.

N
nonconversational . A transaction type which accepts
input, performs a task, and then ends.

| nondate . A COBOL data item that can be any of the
| following:

| � A data item whose date description entry does not
| include the DATE FORMAT clause

| � A literal

| � A reference modification of a date field

| � The result of certain arithmetic operations that may
| include date field operands; for example, the differ-
| ence between two compatible date fields.

| The value of a nondate may or may not represent a
| date.

O
Options . A choice that lets the user customize objects
or parts of objects in an application.

426 Debug Tool User's Guide and Reference

 Glossary

P
panel . In Debug Tool, an area of the screen used to
display a specific type of information.

parameter . Data passed between programs or proce-
dures.

partitioned data set (PDS) . A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

path point . A point in the program where control is
about to be transferred to another location or a point in
the program where control has just been given.

PDS. See partitioned data set.

prefix area . The eight columns to the left of the
program source or listing containing line numbers.
Statement breakpoints can be set in the prefix area.

primary entry point . See entry point.

procedure . (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of
related control statements. For example, a VM exec, or
an MVS CLIST.

process . The highest level of the Language Environ-
ment program management model. It is a collection of
resources, both program code and data, and consists of
at least one enclave.

profile . A group of customizable settings that govern
how the user's session appears and operates.

Profile . A choice that allows the user to change some
characteristics of the working environment, such as the
pace of statement execution in the Debug Tool.

program . A sequence of instructions suitable for proc-
essing by a computer. Processing can include the use
of an assembler, a compiler, an interpreter, or a trans-
lator to prepare the program for execution, as well as to
execute it.

program unit . See compile unit.

program variable . A predefined variable that exists
when Debug Tool was invoked.

pseudo-conversational transaction . The result of a
technique in CICS called pseudo-conversational proc-
essing in which a series of nonconversational trans-
actions gives the appearance (to the user) of a single
conversational transaction. See conversational and
nonconversational.

Q
qualification . A method used to specify to what proce-
dure or load module a particular variable name, function
name, label, or statement id belongs. The SETT
QUALIFY command changes the current implicit qualifica-
tion.

R
record . A group of related data, words, or fields
treated as a unit, such as one name, address, and tele-
phone number.

record format . The definition of how data is structured
in the records contained in a file. The definition
includes record name, field names, and field
descriptions, such as length and data type. The record
formats used in a file are contained in the file
description.

reference . (1) In programming languages, a language
construct designating a declared language object.
(2) A subset of an expression that resolves to an area
of storage; that is, a possible target of an assignment
statement. It can be any of the following: a variable, an
array or array element, or a structure or structure
element. Any of the above can be pointer-qualified
where applicable.

run . (1) To cause a program, utility, or other machine
function to execute. (2) An action that causes a
program to begin execution and continue until a run-
time exception occurs. If a run-time exception occurs,
the user can use Debug Tool to analyze the problem.

Run . A choice the user can make to start or resume
regular execution of a program.

run time . Any instant at which a program is being exe-
cuted.

run-time environment . A set of resources that are
used to support the execution of a program.

run unit . A group of one or more object programs that
are run together.

S
SAA . See Systems Application Architecture.

SAA language . Any of the high level languages
included in IBM's Systems Application Architecture.
This includes the following IBM programming lan-
guages: C/370, PL/I 370, and COBOL/370.

 Glossary 427

 Glossary

SBCS. See single-byte character set.

semantic error . An error in the implementation of a
program's specifications. The semantics of a program
refer to the meaning of a program. Unlike syntax
errors, semantic errors (since they are deviations from a
program's specifications) can be detected only at run
time. Contrast with syntax error.

sequence number . A number that identifies the
records within a VM file, or an MVS member or parti-
tioned data set.

session . The events that take place between the time
the user starts an application and the time the user
exits the application.

session variable . A variable the user declares during
the Debug Tool session by using Declarations.

single-byte character set (SBCS) . A character set in
which each character is represented by a one-byte
code.

source . (1) The HLL statements in a file that make up
a program.

Source window . A Debug Tool window that contains
a display of either the source code or the listing of the
program being debugged.

static . In programming languages, pertaining to prop-
erties that can be established before execution of a
program; for example, the length of a fixed-length vari-
able is static. Contrast with dynamic.

step . (1) One statement in a computer routine. (2) To
cause a computer to execute one or more statements.

Step . A choice the user can make to execute one or
more statements in the application being debugged.

storage . (1) A unit into which recorded text can be
entered, in which it can be retained, and from which it
can be retrieved. (2) The action of placing data into a
storage device. (3) A storage device.

subroutine . (1) A sequenced set of instructions or
statements that can be used in one or more computer
programs at one or more points in a computer program.

suffix area . A variable-sized column to the right of the
program source or listing statements, containing fre-
quency counts for the first statement or verb on each
line. Debug Tool optionally displays the suffix area in
the Source window. See also prefix area.

syntactic analysis . An analysis of a program done by
a compiler to determine the structure of the program
and the construction of its source statements to deter-

mine whether it is valid for a given programming lan-
guage. See also syntax checker, syntax error.

syntax . The rules governing the structure of a pro-
gramming language and the construction of a statement
in a programming language.

syntax error . Any deviation from the grammar (rules)
of a given programming language appearing when a
compiler performs a syntactic analysis of a source
program. See also syntactic analysis.

Systems Application Architecture (SAA) . A set of
IBM software interfaces, conventions, and protocols that
provide a framework for designing and developing appli-
cations that are consistent across systems.

T
temporary variable . See session variable.

thread . The basic line of execution within the Lan-
guage Environment program model. It is dispatched
with its own instruction counter and registers by the
system. Threads can execute, concurrently with other
threads. The thread is where actual code resides. It is
synonymous with a CICS transaction or task. See also
enclave.

thread id . A small positive number assigned by Debug
Tool to an Language Environment task.

token . A character string in a specific format that has
some defined significance in a programming language.

trigraph . A group of three characters which, taken
together, are equivalent to a single special character.

U
utility . A computer program in general support of com-
puter processes; for example, a diagnostic program, a
trace program, or a sort program.

V
variable . A name used to represent a data item whose
value can be changed while the program is running.

W
| windowed date field . A COBOL date field containing
| a windowed (two-digit) year. See also date field and
| windowed year.

| windowed year . In COBOL, two digits representing a
| year within a century window (for example, 98).

428 Debug Tool User's Guide and Reference

 Glossary

| Appears in windowed date fields. See also century
| window (COBOL).

| Compare with expanded year.

word wrap . See line wrap.

 Glossary 429

 Index

 Index

A
abbreviating commands 92
abbreviating keywords 194
abnormal end of application, setting breakpoint at 133
accessing PL/I program variables 189
active block, definition of 424
active server, definition of 424
%ADDRESS

description of 128
for C/C++ 142
for COBOL 177

alias, definition of 424
ALLOCATE, AT command (PL/I), syntax 209
allowable comparisons for Debug Tool IF

command 350
allowable moves for Debug Tool MOVE command 352
allowable moves for Debug Tool SET command 354
alternative methods of input under IMS 115
%AMODE

description of 128
for C/C++ 142
for COBOL 177

ANALYZE command (PL/I), syntax 205
animation, definition of 424
APPEARANCE, AT command, syntax 210
assigning values to variables 140, 172
Assignment command (PL/I), syntax 206
AT ALLOCATE command (PL/I), syntax 209
AT APPEARANCE command, syntax 210
AT CALL breakpoints, for C++ 164
AT CALL command, syntax 212
AT CHANGE command, syntax 214
AT CURSOR command (Full-Screen Mode),

syntax 217
AT DATE command (COBOL), syntax 218
AT DELETE command, syntax 218
AT ENTRY command, syntax 219
AT ENTRY/EXIT breakpoints

 for C++ 163
AT EXIT command, syntax 219
AT GLOBAL command, syntax 220
AT LABEL command, syntax 222
AT LINE, using 107
AT LOAD command, syntax 224
AT OCCURRENCE command, syntax 225
AT PATH command, syntax 228
AT prefix (Full-Screen Mode), syntax 229
AT STATEMENT command, syntax 230
AT TERMINATION command, syntax 231
AT commands 207, 232

summary table 207

attention interrupt
definition of 424
effect of during interactive sessions 135
how to initiate 135
in Debug Tool 135
required Language Environment run-time

options 135
attention key, definition of 424
attribute variables

for C/C++ 249
for PL/I 254

attribute, definition of 424
attributes of variables 125
Autosave, definition of 424

B
basic tasks of Debug Tool 41
batch job, definition of 424
batch mode

debugging DB2 programs in 111
debugging IMS programs in 115

batch mode (CICS) 116
Batch Terminal Simulator (BTS) Full-Screen Image

Support (FSS) 113, 114
batch, definition of 424
BEGIN command (PL/I), syntax 232
bind requirements for DB2 111
blanks, significance of 196
block

definition of 424
description of 128
for C/C++ 142
for COBOL 177
size 3
using, for C 156

block command (C/C++), syntax 233
block_name, description of 199
block_spec, description of 199
break command (C/C++), syntax 233
breakpoint

definition of 424
in unknown compile unit 211
removing 240
using within multiple enclaves 104

BTS full-screen image support (FSS) 113, 114
built-in functions 135

Debug Tool, using with C/C++ 148
for PL/I 191
generation 137
%HEX 148
instances 136, 148

430  Copyright IBM Corp. 1995, 1998

 Index

built-in functions (continued)
%RECURSION 148
%STORAGE 148

C
C/C++

attributes for variables 140, 249
declarations, syntax 247
equivalents for Language Environment

conditions 348
notes on using 194
reserved keywords 347

C/C++ commands
interpretive subset of 347

C++
See also ?
AT CALL breakpoints 164
AT ENTRY/EXIT breakpoints 163
blocks and block identifiers 157
classes 165
examining C++ objects 164
objects. 165
overloaded operator in C++ 163
setting breakpoints in C++ 163
static data 165
stepping through C++ programs 163
tasks for Debug Tool session

capturing output to stdout 62
debugging a DLL 62
debugging when not all parts compiled with

TEST 61
displaying raw storage 62
finding storage overwrite errors 64
finding uninitialized storage errors 65
getting a function traceback 63
getting a run-time frequency count 63
invoking interactive function calls
modifying value of variable 59
setting a breakpoint to halt 59, 65
stopping on a line if condition true 60
tracing the run-time path 63
viewing and modifying data members 60

template in C++ 163
using a C++ program 55

%CAAADDRESS
description of 128
for C/C++ 143
for COBOL 177

CAF (call access facility), using to invoke DB2
program 113

CALL %DUMP
syntax 235

call access facility (CAF), using to invoke DB2
program 113

CALL commands 234—240
summary table 234

CALL entry_name 239
CALL procedure, syntax 240
CALL, AT command, syntax 212
calls, function, for C/C++ 147
CALLS, LIST command, syntax 278
capturing I/O to system console, in COBOL 72
capturing output to stdout

in C 51
in C++ 62

CEETEST
examples, for C 33
examples, for COBOL 34
examples, for PL/I 35
invoking Debug Tool with 32
syntax 32
using 115

CEEUOPT run-time options module 111
CHANGE, AT command, syntax 214
CHANGE, Debug Tool setting, definition of 424
CHANGE, SET command, syntax 305
changing point of view 132

for C/C++ 162
for COBOL 185

changing source file in window 43
changing window layout in the session panel 95
character set 193
characters, searching 94
CICS

requirements for using Debug Tool in 116
restrictions for debugging 123

classes 165
classes in C++ 165
CLEAR commands 240—244
CLEAR prefix (Full-Screen Mode), syntax 243
closing Debug Tool session panel windows 96
CMS command (VM), syntax 244
COBOL

attributes for variables 175
command format 171
compatible attributes for 252
declarations 250
listing files 350
notes on using 194
reserved keywords 350
tasks

capturing I/O to system console 72
debugging when not all parts compiled with

TEST 72
displaying raw storage 73
finding storage overwrite errors 74
modifying the valu4 of a variable 70
sample program for COBOL 66
setting a breakpoint to halt 70
setting breakpoint to halt 75
stopping on line if condition true 71

 Index 431

 Index

COBOL (continued)
tasks (continued)

tracing the run-time path 73
COBOL commands

CALL entry_name 239
COMPUTE 245
declarations 250
EVALUATE 262
IF 271
INPUT 274
interpretive subset of 350
MOVE 288
PERFORM 293
SET 328
SET INTERCEPT 314

CODE/370, definition of 424
coexistence of Debug Tool with other debuggers 343
coexistence with unsupported HLL modules 343
Color Selection panel 98
COLOR, SET command, syntax 306
command format

Debug Tool 193
for COBOL 171

Command line, Debug Tool 89
command list, definition of 424
command sequencing, full-screen mode 90
command syntax help, getting for session 101
commands

abbreviating 92, 194
alternative methods of input under IMS 115
delimiting 232
entering 193
entering Debug Tool 85
entering multiple line, without continuation 196
for C/C++, Debug Tool subset 138
for COBOL, Debug Tool subset 168
for PL/I, Debug Tool subset 186
getting online help for 198
interpretive subsets, description of 130
interpretive subsets, for C/C++ 347
interpretive subsets, for COBOL 350
line mode 107
multiline 195
order of processing, Debug Tool 90
prefix, using in Debug Tool 91
restrictions, COBOL 169
retrieving from log and source windows, Debug

Tool 198
retrieving with RETRIEVE command 92
TSO, using to debug DB2 program 112

COMMENT command, syntax 245
comments, inserting into command stream 197
Common Programming Interface (CPI), definition

of 424
common syntax elements 199

compile unit, definition of 424
compile_unit_name, description of 200
compile, definition of 424
compiler requirements

for DB2 110
for IMS 114

compiler, definition of 424
%CONDITION

constants, for C 334
description of 128
for C 225
for C/C++ 143
for COBOL 177
handling of 133, 188
Language Environment, C/C++ equivalents 348

condition, definition of 424
constants

Debug Tool interpretation of HLL 126
entering 197
HLL 126
PL/I 191
using in expressions, for COBOL 182

constructor, stepping through 163
container, definition of 424
continuing lines 195
conversational, definition of 424
%COUNTRY

description of 128
for C/C++ 143
for COBOL 177

COUNTRY, SET command, syntax 308
CPI (Common Programming Interface), definition

of 424
__ctest()

examples 38
invoking Debug Tool with 38
syntax 38

%CU
description of 128
for C/C++ 143
for COBOL 178

cu_spec, description of 201
CURSOR

syntax 246
using 93

cursor commands
CLOSE command 96
CURSOR command 93
FIND command 94
OPEN command 96
SCROLL commands 85, 93
SIZE command 96
using in Debug Tool 91
WINDOW ZOOM command 97

CURSOR, AT command, syntax 217

432 Debug Tool User's Guide and Reference

 Index

CURSOR, LIST command (Full-Screen Mode),
syntax 278

customizing screens 84

D
data set

block size 3
definition of 425
specifying 88

data type, definition of 425
date field, definition of 425
DATE, AT command, syntax 218
DB2

bind requirements for 111
programming considerations 110
programs, debugging in batch or line mode 111,

112
using Debug Tool with 109

DBCS
definition of 425
SET DBCS command, syntax 308
using 193
using with C 194
using with COBOL 175
variable, assigning new value to 289

DBCS, SET command, syntax 308
debug session

C tasks 41
capturing output to stdout 51
debugging a DLL 52
debugging when not all parts compiled with

TEST 51
displaying raw storage 52
finding storage overwrite errors 53
finding uninitialized storage errors 54
getting a function traceback 52
invoking interactive function calls 52
modifying value of variable 50
setting a breakpoint to halt 50
setting breakpoint to halt 55
stopping on line if condition true 51
tracing run-time path for code compiled with

TEST 53
C++ tasks 59
COBOL tasks 70
ending 41
invoking your program 40
PL/I tasks 79
preparing for 40
using a C program 45
using a COBOL program 66
using a PL/I program 75

Debug Tool
C/C++ commands, interpretive subset 138
COBOL commands, interpretive subset 168

Debug Tool (continued)
commands, subset 130
condition handling 133
DB2 programs, using with 111
evaluation of HLL expressions 126
exception handling, for C/C++ and PL/I 134
functions, using with C/C++ 148
IF command, allowable comparisons 350
IMS programs, using with 114
interface 84
interpretation of HLL variables 126
invoking under IMS 115
MOVE command, allowable moves 352
multilanguage programs, using 16
optimized programs, using with 345
PL/I commands, interpretive subset 186
procedure, definition of 425
SET command, allowable moves 354
using in batch mode 107, 108
using to debug ISPF applications 109
variable, definition of 425

Debug Tool interface 42
Debug Tool, invoking your program with 40
debug, definition of 425
debuggers, other, coexistence with 343
debugging a DLL

in C 52
in C++ 62

debugging DB2 programs 109
debugging in full-screen mode 40
debugging when not all parts compiled with TEST

in C++ 61
in COBOL 72
in PL/I 81

declarations, for C/C++, syntax 247
declarations, for COBOL 250
DECLARE command (PL/I) 253
declaring temporary variables, for C 139
declaring temporary variables, for COBOL 174
DEFAULT LISTINGS, SET command, syntax 309
DEFAULT WINDOW, SET command, syntax 310
default, definition of 425
DELETE, AT command, syntax 218
DESCRIBE command

syntax 255
using 157

destructor, stepping through 163
diagnostics, expression, for C/C++ 150
DISABLE command, syntax 257, 258
displaying halted location 44
displaying raw storage

in C 52
in C++ 62
in COBOL 73
in PL/I 81

 Index 433

 Index

displaying variable value 44
DO command (PL/I), syntax 259
do/while command (C/C++), syntax 259
double-byte character set (DBCS), definition of 425
DOWN, SCROLL command 93
DTCN, using

data entry verification 122
header area 118
input area 119
message line 120
modifying other options 122
PF key definitions 121
profile repository 121
screen 118
screen areas 118

dual terminal mode (CICS) 116
%DUMP, CALL command, syntax 235

See also CALL %DUMP
dynamic link library, definition of 425
dynamic, definition of 425

E
ECHO, SET command, syntax 310
elements, unsupported, for PL/I 192
ENABLE command, syntax 262
enclave

definition of 425
invoking 103
multiple, debugging interlanguage communication

application in 125
ending a debug session 41
ending Debug Tool within multiple enclaves 104
enhancements xiii
entering multiline commands without continuation 196
entering PL/I statements, freeform 189
entry point, definition of 425
entry_name, CALL command (COBOL), syntax 239
ENTRY, AT command, syntax 219
%EPA

description of 128
for C/C++ 143
for COBOL 178

%EPRn
description of 128
for C/C++ 142
for COBOL 177

error numbers in LOG window 45
EVALUATE command

restrictions on 170
syntax 262

evaluating expressions
C/C++ 150
COBOL 181
HLL 126

evaluation, expression, for C/C++ 145
every_clause, description 208
examining C++ objects 164
examples

%HEX function for C/C++ 148
%HEX function for COBOL 182
%INSTANCES function for C/C++ 148
%STORAGE function for C/C++ 148
%STORAGE function for COBOL 182
assigning values to variables, for C/C++ 140
CEDF procedure 123
CEETEST calls, for PL/I 35
CEETEST function calls, for C 33
CEETEST function calls, for COBOL 34
changing point of view, for C/C++ 162
changing point of view, for COBOL 185
changing point of view, general 132
compile_unit_name 200
ctest funct ion 38
declaring variables, for COBOL 174
displaying program variables, for C 139
displaying results of expression evaluation, for

COBOL 181
displaying values of COBOL variables 174
expression evaluation, for C/C++ 146
function calls, for C/C++ 149
getting online command syntax help 198
invoking Debug Tool under CMS 30
invoking Debug Tool under MVS with TSO 29
line continuation, for COBOL 196
PLITEST Calls for PL/I 37
run-time TEST option 27
scope, for C 154
specifying run-time TEST option with #pragma 39
using #pragma for compile-time TEST option 8
using blocks in C 156
using COMPUTE command to assign values 173
using constants 197
using constants in expressions, for COBOL 182
using continuation characters 195
using Debug Tool with OPTIMIZE compile-time

option 346
using MOVE command to assign values 173
using qualification, for C/C++ 158, 161
using qualification, for COBOL 183
using SET command to assign values 173

exception handling for C/C++ and PL/I 134
exception, definition of 425
execute, definition of 425
execution time, definition of 425
execution-time environment, definition of 425
EXIT, AT command, syntax 219
expanded date field, definition of 425
Expression command (C/C++), syntax 264
Expression, LIST command, syntax 279

434 Debug Tool User's Guide and Reference

 Index

expressions
definition of 425
description of 201
diagnostics, for C/C++ 150
displaying values, for C 139
displaying values, for COBOL 181
evaluation for C/C++ 145, 150
evaluation for COBOL 181
evaluation of HLL 126
evaluation, operators and operands for C 347
for PL/I 191
subset, description of 202
using constants in, for COBOL 182

F
file, definition of 426
finding characters or strings 94
finding renamed source or listing file 45
finding storage overwrite errors

in C 53
in C++ 64
in COBOL 74
in PL/I 83

finding text in window 43
finding unititialized storage errors

in C 54
in C++ 65

for command (C/C++), syntax 266
freeform input, PL/I statements 189
frequency count, definition of 426
FREQUENCY, SET command, syntax 312
full-screen image support (FSS), BTS 113
full-screen mode

AT CURSOR 217
AT prefix 229
CLEAR prefix 243
continuation character, using in 195
CURSOR 91, 93, 246
definition of 426
DESCRIBE CURSOR 256
DISABLE prefix 258
ENABLE Prefix 262
FIND 265
IMMEDIATE 273
LIST CURSOR 278
PANEL 291
PANEL COLORS 98
PANEL LAYOUT 95
PANEL LISTINGS 291
PANEL PROFILE 99
PANEL SOURCE 291
Prefix 295
QUERY Prefix 299
RETRIEVE 300
SCROLL 93

full-screen mode (continued)
SET COLOR 306
SET DEFAULT SCROLL 309
SET DEFAULT WINDOW 310
SET KEYS 315
SET LOG NUMBERS 316
SET MONITOR NUMBERS 316
SET PROMPT 320
SET SCREEN 323
SET SCROLL DISPLAY 324
SET SUFFIX 325
SHOW Prefix 329
WINDOW CLOSE 96, 339
WINDOW OPEN 96, 340
WINDOW SIZE 96, 340
WINDOW ZOOM 97, 341

full-screen mode, debugging in 40
full-screen mode, using session panel in 85
full=screen session interface, description 1
function calls, for C/C++ 147
function, unsupported for PL/I 192

G
generation function 137
getting a function traceback

in C 52
in C++ 63
in PL/I 81

getting a run-time frequency count in C++ 63
global data 166
global scope operator 166
GLOBAL, AT command, syntax 220
GO command, styntax 267
GOTO command 268
GOTO LABEL command, syntax 269
%GPRn

description of 128
for C/C++ 142
for COBOL 176

H
H constant (COBOL) 197
halted location, displaying 44
%HARDWARE

description of 128
for C/C++ 143
for COBOL 178

header fields, Debug Tool session panel 84
help, how to find 42
hex function 148

for C/C++ 136
for COBOL 136, 182
for PL/I 136
hex

hex 136, 182

 Index 435

 Index

High Level Language (HLL), definition of 426
highlighting, changing in Debug Tool session panel 98
HISTORY, SET command, syntax 313
HLL, definition of 426
hook

compiling with, C 5
compiling with, COBOL 10
compiling with, PL/I 13
definition of 426
general description 3
removing from application 344
rules for placing 8, 10

I
I/O, definition of 426
IBM SAA AD/Cycle Language Environment/370, defi-

nition of 426
IF command

allowable comparisons, Debug Tool 350
restrictions on 170
syntax 271

if command (C/C++), syntax 270
IF command (PL/I), syntax 272
IMMEDIATE command, syntax 273
improving Debug Tool performance 344
IMS

programming considerations 113
programs, debugging in batch or line mode 114,

115
using Debug Tool with 113

inactive block, definition of 426
information, displaying environmental 157
initial setting, definition of 426
input areas, order of processing, Debug Tool 90
INPUT command 274
%INSTANCES 148

for C/C++ 136
for PL/I 136

interactive, definition of 426
InterLanguage Communication (ILC) application, debug-

ging 125
interlanguage programs, using with Debug Tool 16
interpretive subset

of PL/I commands 186
interpretive subsets

general description 130
of C/C++ commands 347
of COBOL commands 168, 350

interpretive subsets.
of C/C++ commands 138

INTERRUPT, Language Environment run-time
option 135

intrinsic functions, Debug Tool 127
invoking Debug Tool 29

with the CEETEST function call 37

invoking Debug Tool (continued)
ctest function 38—39
DB2 program with TSO 113
run-time TEST option 18—25
under CICS 28
under CMS 30
under IMS 115
under MVS in TSO 29
within an enclave 103

invoking Debug Tool under CICS with CEDF 123
invoking Debug Tool under CICS with compile-time

directives 122
invoking interactive function calls

in C 52
in C++ 62

invoking your program 40
ISPF applications 109

K
KEYS, SET command, syntax 315

L
LABEL, AT command, syntax 222
Language Environment

conditions, C/C++ equivalents 348
definition of 426

LANGUAGE, SET NATIONAL command, syntax 317
LANGUAGE, SET PROGRAMMING command,

syntax 319
LAST, LIST command, syntax 280
LEFT, SCROLL command 93
library routine, definition of 426
%LINE

description of 129
for C/C++ 143
for COBOL 178

line breakpoint, setting 44
line continuation 195

line continuation, for C 196
line mode

debugging DB2 programs in 112
debugging IMS programs in 114

LINE NUMBERS, LIST command, syntax 284
line wrap, definition of 426
LINE, AT command, syntax 230
LINES, LIST command, syntax 285
link requirements

for DB2 111
for IMS 114

link-edit, definition of 426
linkage editor, definition of 426
LIST (blank) command, syntax 275
LIST AT command, syntax 275

436 Debug Tool User's Guide and Reference

 Index

LIST CALLS command, syntax 278
LIST CURSOR command (Full-Screen Mode),

syntax 278
LIST Expression command, syntax 279
LIST FREQUENCY 280
LIST LAST command, syntax 280
LIST MONITOR command, syntax 281
LIST NAMES command 281
LIST ON command (PL/I), syntax 283
LIST PROCEDURES command, syntax 283
LIST REGISTERS command

syntax 284
using 167

LIST STATEMENT NUMBERS command, syntax 284
LIST STATEMENTS command, syntax 285
LIST STORAGE command

syntax 286
using with PL/I 189

LIST commands 274, 286
listing

definition of 426
files, for COBOL 350
registers 167
SET DEFAULT LISTINGS command, syntax 309

listing file, finding renamed 45
literal constants, entering 197
%LOAD
load module, definition of 426
load_module_name, description of 202
load_spec, description of 202
LOAD, AT command, syntax 224
log data set, specifying 88
LOG NUMBERS, SET command, syntax 316
LOG window, error numbers in 45
LOG, SET command, syntax 315
low-level debugging 166
%LPRn

description of 128
for C/C++ 142
for COBOL 177

M
mechanisms for invoking Debug Tool under CICS 117
mode

batch mode (CICS) 116
dual terminal (CICS) 116
single terminal (CICS) 116

modifying value of variable in C 50
MONITOR NUMBERS, SET command, syntax 316
MONITOR, LIST command, syntax 281
more than one language, debugging programs with 16
MOVE command

allowable moves, Debug Tool 352
restrictions on 169
syntax 288

MOVE command (continued)
using to assign values to variables 173

moving around windows in Debug Tool 93
moving the cursor, Debug Tool 93
MSGID, SET command, syntax 317
multilanguage programs, using with Debug Tool 16
multiline commands

continuation character, using in 195
without continuation character 196

multiple enclaves
ending Debug Tool 104
interlanguage communication application,

debugging 125
invoking 103
using breakpoints 104

multitasking, Debug Tool 108
multitasking, definition of 426
multitasking, restrictions 109

N
NATIONAL LANGUAGE, SET command, syntax 317
navigating session panel windows 93
%NLANGUAGE

description of 129
for C/C++ 143
for COBOL 178

nonconversational, definition of 426
nondate, definition of 426
Null command, syntax 289
NUMBERS, LIST STATEMENT command, syntax 284
NUMBERS, SET LOG command, syntax 316
NUMBERS, SET MONITOR command, syntax 316

O
objects, C 153
objects. 165
OCCURRENCE, AT command, syntax 225
ON command (PL/I), syntax 289
ON, LIST command (PL/I), syntax 283
online help, getting for session 101
Open Edition, PL/I 109
opening Debug Tool session panel windows 96
operators and operands for C 347
OPTIMIZE compile-time option, using Debug Tool

with 345
options module, CEEUOPT run-time 111
Options, definition of 426
options, run-time 18
overloaded operator in C++ 163

P
PACE, SET command, syntax 318

 Index 437

 Index

panel
Color Selection 98
header fields, Session 84
Profile 99
Session 85, 89
Source Identification 292
Window Layout Selection 95

parameter, definition of 427
partitioned data set (PDS), definition of 427
path point

definition of 427
differences between languages 228

PATH, AT command, syntax 228
%PATHCODE

description of 129
for C/C++ 144
for COBOL 178

PDS (partitioned data set), definition of 427
PERFORM command

restrictions on 171
syntax 293

performance, improving Debug Tool 344
PF key, setting 45
PF keys, defining in Debug Tool 91
PL/I

attributes for variables 254
built-in functions 191
condition handling 188
constants 191
DECLARE 253
expressions 191
GENERATION function for 137
notes on using 194
session variables 189
statements 186
tasks

debugging when not all parts compiled with
TEST 81

displaying raw storage 81
finding storage overwrite errors 83
getting a function traceback 81
modifying value of variable 80
setting a breakpoint to halt 79
setting breakpoint to halt 83
stopping on line if condition is true 80
tracing run-time path for code compiled with

TEST 82
PL/I commands

ANALYZE 205
Assignment 206
AT ALLOCATE 209
BEGIN 232
DO 259
IF 272
LIST ON 283
ON 289

PL/I commands (continued)
SELECT 303
SET WARNING 327

PL/I structures 190
%PLANGUAGE

description of 129
for C/C++ 144
for COBOL 180

PLITEST 37
positioning lines at top of windows 94
#pragma

specifying compile-time TEST option 8
specifying run-time TEST option with 39

precompile requirements for DB2 110
Prefix area, Debug Tool 89
prefix area, definition of 427
preparing and using CEEUOPT to invoke Debug

Tool 122
preparing for debugging 40
primary entry point, definition of 425
PROCEDURE command 295
procedure, CALL, syntax 240
procedure, definition of 427
PROCEDURES, LIST command, syntax 283
process, definition of 427
Profile panel 99
profile settings, changing in Debug Tool 99
PROFILE, PANEL command 427
Profile, definition of 427
program

CICS, debugging 116
DB2, debugging 109
definition of 427
description of 129
for C/C++ 144
for COBOL 180
IMS, debugging 113
invoking for a session 29
preparing DB2 110
preparing IMS 114
reducing size 344
stepping through 44
variables, accessing for C 138
variables, accessing for COBOL 172

program hook
compiling with, C 5
compiling with, COBOL 10
compiling with, PL/I 13
general description 3
removing 344
rules for placing 8, 10

program preparation
compile-time TEST option, for C 5
compile-time TEST option, for C++ 9
compile-time Test option, for COBOL 10
compile-time TEST option, for PL/I 13

438 Debug Tool User's Guide and Reference

 Index

program preparation (continued)
considerations, size and performance 344
for DB2 110
for IMS 114
run-time TEST option 18

program unit, definition of 427
program variable, definition of 427
PROGRAMMING LANGUAGE, SET command,

syntax 319
PROMPT, SET command, syntax 320
pseudo-conversational transaction, definition of 427
PX constant (PL/I) 197

Q
qualification

definition of 427
description of, for C/C++ 158
description of, for COBOL 183
general description 131
using, for C/C++ 160
using, for COBOL 183

QUERY command, syntax 296
QUERY Prefix, syntax 299
QUIT command 299

R
%RC

description of 129
for C/C++ 144
for COBOL 180

record format, definition of 427
record, definition of 427
%RECURSION 148

for C 136
for PL/I 136
recursion 136

recursion function 148
reference, definition of 427
references, description of 202
registers, listing 167
removing statement and symbol tables 344
repeating breakpoints 208
requirements

bind, for DB2 111
compile, for DB2 110
compile, for IMS 114
for debugging CICS programs 116
link, for DB2 111
link, for IMS 114
precompile, for DB2 110

reserved keywords
for C 347
for COBOL 350

restrictions
arithmetic expressions for COBOL 181
expression evaluation, for COBOL 181
on COBOL-like commands 169
string constants in COBOL 182
when debugging multilanguage applications 109
when debugging under CICS 123
when using a continuation character 171
when using CALL 171
when using COMPUTE 169
when using EVALUATE 170
when using IF 170
when using MOVE 169
when using PERFORM 171
when using SET 170

retrieving lines from Log or Source windows 92
REWRITE, SET command, syntax 323
RIGHT, SCROLL command 93
RUN command

See ?
RUN subcommand 112
run time

definition of 427
environment, displaying attributes of 157
option, TEST 18
option, TEST(ERROR, ...), for PL/I 189
options module, CEEUOPT 111
specifying TEST option with #pragma 39
suboption processing order 25

run unit, definition of 427
run-time environment, definition of 427
run, definition of 427
Run, definition of 427
%RUNMODE

description of 129
for C/C++ 144
for COBOL 180

running a program 44

S
SAA (Systems Application Architecture), definition

of 427
SAA language, definition of 427
sample C++ program 55
SBCS (single-byte character set), definition of 428
scopes, C 153
SCREEN, SET command, syntax 323
screens, customizing 84
SCROLL

syntax 301
using 85, 93
using SCROLL TO 94

Scroll area, Debug Tool 89
SCROLL, SET DEFAULT command, syntax 309

 Index 439

 Index

scrolling SOURCE window 43
searching for characters or strings 94
SELECT command (PL/I), syntax 303
semantic error, definition of 428
sequence number, definition of 428
session variable

definition of 428
SET CHANGE command, syntax 305
SET COLOR command, syntax 306
SET command

allowable moves, Debug Tool 354
restrictions on 170
syntax 328
using to assign values to variables 173

SET COUNTRY command, syntax 308
SET DBCS command, syntax 308
SET DEFAULT LISTINGS command, syntax 309
SET DEFAULT WINDOW command, syntax 310
SET ECHO command, syntax 310
SET EXECUTE command, syntax 312
SET FREQUENCY command, syntax 312
SET HISTORY command, syntax 313
SET INTERCEPT command

syntax 314
using with C programs 151

SET KEYS command, syntax 315
SET LOG command, syntax 315
SET LOG NUMBERS command, syntax 316
SET MONITOR NUMBERS command, syntax 316
SET MSGID command, syntax 317
SET NATIONAL LANGUAGE command, syntax 317
SET PACE command, syntax 318
SET PROGRAMMING LANGUAGE command,

syntax 319
SET PROMPT command, syntax 320
SET QUALIFY command

syntax 321
using, for C/C++ 162
using, for COBOL 185

SET REFRESH command
syntax 322
using 109

SET REWRITE command, syntax 323
SET SCREEN command, syntax 323
SET SOURCE command, syntax 324
SET SUFFIX command, syntax 325
SET TEST command, syntax 326
SET WARNING command

syntax 327
using with PL/I 192

SET commands 304, 328
setting a breakpoint to halt

before calling a NULL function
in C 55
in C++ 65

before calling an invalid program (COBOL) 75

setting a breakpoint to halt (continued)
before calling an undefined program (PL/I) 83
when certain functions are called

in C 50
in C++ 59
in PL/I 79

when certain routines are called (COBOL) 70
setting a line breakpoint 44
setting a PF key 45
setting breakpoints in C++ 163
short forms for commands, using 92
SHOW Prefix command, syntax 329
single terminal mode (CICS) 116
single-byte character set (SBCS), definition of 428
sizing session panel windows 96
source file, finding renamed 45
Source Identification panel, Debug Tool 292
source window

Debug Tool 86, 89
definition of 428
retrieving input lines from, Debug Tool 198
retrieving lines from, Debug Tool 92

SOURCE, SET command, syntax 324
specifying a range of statements 204
%STATEMENT

description of 130
for C/C++ 145
for COBOL 180

STATEMENT NUMBERS, LIST command, syntax 284
statement tables, removing 344
statement_id_range, description of 203
statement_id, description of 203
statement_label, description of 204
STATEMENT, AT command, syntax 230
STATEMENTS, LIST command, syntax 285
statements, PL/I 186, 189
statements, specifying a range 204
static data 165
static data in C++ 165
static, definition of 428
step, definition of 428
Step, definition of 428
stepping through a program 44
stepping through C++ programs 163
stmt_id_spec, description of 203
stopping on line if condition true, C program 51
storage classes, C 155
storage function 148

for C 136
for COBOL 136, 182
for PL/I 136
STORAGE

storage 136, 182
storage,definition of 428
string substitution, using 92

440 Debug Tool User's Guide and Reference

 Index

subroutine, definition of 428
subset mode, CMS 244
substitution, using string 92
%SUBSYSTEM

description of 130
for C/C++ 145
for COBOL 180

suffix area, definition of 428
SUFFIX, SET command, syntax 325
switch command (C/C++), syntax 331
symbol tables, removing 344
syntactic analysis, definition of 428
syntax diagram for

%GENERATION function 137
%INSTANCES function 136
%RECURSION function 136
%STORAGE function 136
block_spec 199
C compile-time TEST option 6
C++. compile-time TEST option 9
CEETEST, for C 32
CEETEST, for COBOL 32
CEETEST, for PL/I 32
COBOL compile-time TEST option 10
ctest function 38
cu_spec 201
HEX function 136
load_spec 202
PL/I compile-time TEST option 13
PLITEST built-in subroutine 37
run-time TEST option 19
statement_id_range 203
stmt_id_spec 203

syntax, common elements 199
%SYSTEM

description of 130
for C/C++ 145
for COBOL 180

SYSTEM command, syntax 333
system commands, issuing, Debug Tool 90
Systems Application Architecture (SAA), definition

of 428

T
template in C++ 163
temporary variable

declaring, for COBOL 174
definition of 428

TERMINATION, AT command, syntax 231
TEST

restrictions 6
TEST option, compile-time 40

for C 5
for C++ 9
for COBOL 10

TEST option, compile-time (continued)
for PL/I 13
using for DB2 110
using for IMS 114

TEST option, run-time
as parameter on RUN subcommand 112
for PL/I 189
processing order for suboptions 25
specifying with #pragma 39
syntax 19
using 18

TEST, SET command, syntax 326
thread id, definition of 428
thread, definition of 428
token, definition of 428
tracing run-time path for code compiled with TEST

in C 53
in C++ 63
in COBOL 73
in PL/I 82

TRAP, Language Environment run-time option 133,
135

TRIGGER command, syntax 334
truncating commands 92, 194
TSO command

syntax 336
using to debug DB2 program 112

U
unsupported HLL modules, coexistence with 343
unsupported PL/I language elements 192
UP, SCROLL command 93
USE command, syntax 336
using constants in expressions, for COBOL 182
using Debug Tool

finding renamed source or listing file 45
utility, definition of 428

V
values

assigning to C variables 140
assigning to COBOL variables 172

variable
accessing program, for C 138
accessing program, for COBOL 172
assigning values to, for C 140
assigning values to, for COBOL 172
compatible attributes in multiple languages 125
DBCS, assigning new value to 289
definition of 428
description of Debug Tool, for COBOL 175
displaying, for C 139
displaying, for COBOL 174
removing 240

 Index 441

 Index

variable (continued)
session, for PL/I 189

variable value, displaying 44
variables

HLL 126
modifiable Debug Tool 128
nonmodifiable Debug Tool 128
qualifying 131

viewing and modifying data members in C++ 60

W
warning, for PL/I 192
while command (C/C++), syntax 338
window control, Debug Tool

changing source files 43
displaying halted location 44
finding text 43
scrolling 43

Window id area, Debug Tool 89
Window Layout Selection panel 95
window, error numbers in 45
WINDOW, SET DEFAULT command, syntax 310
windowed date field, definition of 428
windows, Debug Tool 42
word wrap, definition of 429

Z
zooming a window, Debug Tool 97

442 Debug Tool User's Guide and Reference

We'd Like to Hear from You

Debug Tool
User's Guide and Reference
Release 2

Publication No. SC09-2137-03

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

 � Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the informa-
tion is presented. To request additional publications, or to comment on other IBM informa-
tion or the function of IBM products, please give your comments to your IBM representative
or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

Debug Tool
User's Guide and Reference
Release 2

Publication No. SC09-2137-03

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? Ø Yes Ø No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
Grammatically correct and consistent Ø Ø Ø Ø Ø
Graphically well designed Ø Ø Ø Ø Ø
Overall satisfaction Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC09-2137-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department W92/H3
International Business Machines Corporation
P.O. Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC09-2137-03

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SCð9-2137-ð3

Spine information:

IBM User's Guide and Reference
Debug Tool

Release 2

