Network Working Group K. Kobayashi draft-kobayashi-avt-rfc3189-bis-00.txt AIST Obsoletes: 3189 (if approved) K. Mishima Expires: Keio University S. Casner Packet Design C. Bormann Universitaet Bremen TZI October 2006 RTP Payload Format for DV (IEC 61834) Video Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html Copyright Notice Copyright (C) The Internet Society (2006). All Rights Reserved. Abstract This document specifies the packetization scheme for encapsulating the compressed digital video data streams commonly known as "DV" into a payload format for the Real-Time Transport Protocol (RTP). This document Obsoletes RFC 3189. 1. Introduction Kobayashi, et al. Standards Track [Page 1] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 This document specifies payload formats for encapsulating both consumer- and professional-use DV format data streams into the Real- time Transport Protocol (RTP), version 2 [6]. DV compression audio and video formats were designed for a recording format on helical- scan magnetic tape media. The DV standards for consumer-market devices, the IEC 61883 and 61834 series, cover many aspects of consumer-use digital video, including mechanical specifications of a cassette, magnetic recording format, error correction on the magnetic tape, DCT video encoding format, and audio encoding format [1]. The digital interface part of IEC 61883 defines an interface on IEEE 1394 system [2,3]. This specification set supports several video formats: SD-VCR (Standard Definition), HD-VCR (High Definition), SDL-VCR (Standard Definition - Long), PALPlus, DVB (Digital Video Broadcast) and ATV (Advanced Television). North American formats are indicated with a number of lines and "/60", while European formats use "/50". DV standards extended for professional-use were published by SMPTE as 314M and 370M, for different sampling systems, higher color resolution, and higher bit rates [4,5]. There are two kinds of DV, one for consumer use and the other for professional. The original "DV" specification designed for consumer- use digital VCRs is approved as the IEC 61834 standard set. The specifications for professional DV are published as SMPTE 314M and 370M. Both encoding formats are based on consumer DV and used in SMPTE D-7, D-9, and D-12 video systems. The RTP payload format specified in this document supports IEC 61834 consumer DV and professional SMPTE 314M and 370M (DV-Based) formats. IEC 61834 also includes magnetic tape recording for digital TV broadcasting systems (such as DVB and ATV) that use MPEG2 encoding. The payload format for encapsulating MPEG2 into RTP has already been defined in RFC 2250 [7] and others. Consequently, the payload specified in this document will support six video formats of the IEC standard: SD-VCR (525/60, 625/50), HD-VCR (1125/60, 1250/50) and SDL-VCR (525/60, 625/50), and seven of the SMPTE standards: 314M 25Mbps (525/60, 625/50), 314M 50Mbps (525/60, 625/50), and 370M 100Mbps (1080/60i, 1080/50i, and 720/60p). In the future it can be extended into other video formats managed by 80 byte DV DIF block. Throughout this specification, we make extensive use of the terminology of IEC and SMPTE standards. The reader should consult the original references for definitions of these terms. 1.1 Terminology Kobayashi, et al. Standards Track [Page 2] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [8]. 2. DV format encoding The DV format only uses the DCT compression technique within each frame, contrasted with the interframe compression of the MPEG video standards [9,10]. All video data, including audio and other system data, are managed within the picture frame unit of video. The DV video encoding is composed of a three-level hierarchical structure, i.e., DCT super block, DCT macro block, and DCT block. A picture frame is divided into rectangle- or clipped- rectangle-shaped DCT super blocks. DCT super blocks are divided into 27 rectangle- or square-shaped DCT macro blocks, and each DCT macro block consists of eight DCT blocks. Each DCT block represents rectangle region for each color, Y, Cb, and Cr, and DCT block consists of 8x8 pixels. Audio data is encoded with PCM format. The sampling frequency is 32 kHz, 44.1 kHz or 48 kHz and the quantization is 12-bit non-linear, 16-bit linear or 20-bit linear. The number of channels may be up to 8. Only certain combinations of these parameters are allowed depending upon the video format; the restrictions are specified in each document. A frame of data in the DV format stream is divided into several "DIF sequences". A DIF sequence is composed of an integral number of 80- byte DIF blocks. A DIF block is the primitive unit for all treatment of DV streams. Each DIF block contains a 3-byte ID header that specifies the type of the DIF block and its position in the DIF sequence. Five types of DIF blocks are defined: DIF sequence header, Subcode, Video Auxiliary information (VAUX), Audio, and Video. Audio DIF blocks are composed of 5 bytes of Audio Auxiliary data (AAUX) and 72 bytes of audio data. Each RTP packet starts with the RTP header as defined in RFC 3550 [6]. No additional payload-format-specific header is required for this payload format. 2.1 RTP header usage The RTP header fields that have a meaning specific to the DV format are described as follows: Payload type (PT): The payload type is dynamically assigned by means outside the scope of this document. If multiple DV encoding formats are to be used within one RTP session, then multiple dynamic payload Kobayashi, et al. Standards Track [Page 3] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 types MUST be assigned, one for each DV encoding format. The sender MUST change to the corresponding payload type whenever the encoding format is changed. Timestamp: 32-bit 90 kHz timestamp representing the time at which the first data in the frame was sampled. All RTP packets within the same video frame MUST have the same timestamp. The timestamp SHOULD increment by a multiple of the nominal interval for one frame time, as given in the following table: Mode Frame rate (Hz) Increase of one frame in 90kHz timestamp 525-60 29.97 3003 625-50 25 3600 1125-60 30 3000 1250-50 25 3600 Marker bit (M): The marker bit of the RTP fixed header is set to one on the last packet of a video frame, and otherwise, must be zero. The M bit allows the receiver to know that it has received the last packet of a frame so it can display the image without waiting for the first packet of the next frame to arrive to detect the frame change. However, detection of a frame change MUST NOT rely on the marker bit since the last packet of the frame might be lost. Detection of a frame change MUST be based on a difference in the RTP timestamp. 2.2 DV data encapsulation into RTP payload Integral DIF blocks are placed into the RTP payload beginning immediately after the RTP header. Any number of DIF blocks may be packed into one RTP packet, except that all DIF blocks in one RTP packet must be from the same video frame. DIF blocks from the next video frame MUST NOT be packed into the same RTP packet even if more payload space remains. This requirement stems from the fact that the transition from one video frame to the next is indicated by a change in the RTP timestamp. It also reduces the processing complexity on the receiver. Since the RTP payload contains an integral number of DIF blocks, the length of the RTP payload will be a multiple of 80 bytes. Audio and video data may be transmitted as one bundled RTP stream or in separate RTP streams (unbundled). The choice MUST be indicated as part of the assignment of the dynamic payload type and MUST remain unchanged for the duration of the RTP session to avoid complicated procedures of sequence number synchronization. The RTP sender MAY Kobayashi, et al. Standards Track [Page 4] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 omit DIF-sequence header and subcode DIF blocks from a stream since the information is either known out-of-band or may not be required for RTP transport. When sending DIF-sequence header and subcode DIF blocks with unbundled audio and video streams, both types of blocks MUST be included in the video stream. DV streams include "source" and "source control" packs that carry information indispensable for proper decoding, such as aspect ratio, picture position, quantization of audio sampling, number of audio channels, audio channel assignment, and language of the audio. However, describing all of these attributes with a signaling protocol would require large descriptions to enumerate all the combinations. Therefore, no Session Description Protocol (SDP) [13] parameters for these attributes are defined in this document. Instead, the RTP sender MUST transmit at least those VAUX DIF blocks and/or audio DIF blocks with AAUX information bytes that include "source" and "source control" packs containing the indispensable information for decoding. In the case of one bundled stream, DIF blocks for both audio and video are packed into RTP packets in the same order as they were encoded. In the case of an unbundled stream, only the header, subcode, video and VAUX DIF blocks are sent within the video stream. Audio is sent in a different stream if desired, using a different RTP payload type. It is also possible to send audio duplicated in a separate stream, in addition to bundling it in with the video stream. When using unbundled mode, it is RECOMMENDED that the audio stream data be extracted from the DIF blocks and repackaged into the corresponding RTP payload format for the audio encoding (DAT12, L16, L20) [11,12] in order to maximize interoperability with non-DV- capable receivers while maintaining the original source quality. In the case of unbundled transmission where both audio and video are sent in the DV format, the same timestamp SHOULD be used for both audio and video data within the same frame to simplify the lip synchronization effort on the receiver. Lip synchronization may also be achieved using reference timestamps passed in RTCP as described in RFC 3550 [6]. The sender MAY reduce the video frame rate by discarding the video data and VAUX DIF blocks for some of the video frames. The RTP timestamp must still be incremented to account for the discarded frames. The sender MAY alternatively reduce bandwidth by discarding video data DIF blocks for portions of the image which are unchanged from the previous image. To enable this bandwidth reduction, receivers SHOULD implement an error concealment strategy to Kobayashi, et al. Standards Track [Page 5] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 accommodate lost or missing DIF blocks, e.g., repeating the corresponding DIF block from the previous image. 3. SDP Signaling for RTP/DV When using SDP (Session Description Protocol) [13] for negotiation of the RTP payload information, the format described in this document SHOULD be used. SDP descriptions will be slightly different for a bundled stream and an unbundled stream. When a DV stream is sent to UDP port 31394 using RTP payload type identifier 111, the m=?? line will be like: m=video 31394 RTP/AVP 111 The a=rtpmap attribute will be like: a=rtpmap:111 DV/90000 "DV" is the encoding name for the DV video payload format defined in this document. The "90000" specifies the RTP timestamp clock rate, which for the payload format defined in this document is a 90kHz clock. In SDP, format-specific parameters are defined as a=fmtp, as below: a=fmtp:<format> <format-specific parameters> In the DV video payload format, the a=fmtp line will be used to show the encoding type within the DV video and will be used as below: a=fmtp:<payload type> encode=<DV-video encoding> The required parameter <DV-video encoding> specifies which type of DV format is used. The DV format name will be one of the following: SD-VCR/525-60 SD-VCR/625-50 HD-VCR/1125-60 HD-VCR/1250-50 SDL-VCR/525-60 SDL-VCR/625-50 314M-25/525-60 314M-25/625-50 314M-50/525-60 314M-50/625-50 370M/1080-60i 370M/1080-50i Kobayashi, et al. Standards Track [Page 6] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 370M/720-60p In order to show whether the audio data is bundled into the DV stream or not, a format specific parameter is defined as below: a=fmtp:<payload type> audio=<audio bundled> The optional parameter <audio bundled> will be one of the following: bundled none (default) If the fmtp audio parameter is not present, then audio data MUST NOT be bundled into the DV video stream. 3.1 SDP description for unbundled streams When using unbundled mode, the RTP streams for video and audio will be sent separately to different ports or different multicast groups. When this is done, SDP carries several m=?? lines, one for each media type of the session (see RFC 2327 [13]). An example SDP description using these attributes is: v=0 o=ikob 2890844526 2890842807 IN IP4 126.16.64.4 s=POI Seminar i=A Seminar on how to make Presentations on the Internet u=http://www.koganei.wide.ad.jp/~ikob/POI/index.html e=ikob@koganei.wide.ad.jp (Katsushi Kobayashi) c=IN IP4 224.2.17.12/127 t=2873397496 2873404696 m=audio 49170 RTP/AVP 112 a=rtpmap:112 L16/32000/2 m=video 50000 RTP/AVP 113 a=rtpmap:113 DV/90000 a=fmtp:113 encode=SD-VCR/525-60 a=fmtp:113 audio=none Kobayashi, et al. Standards Track [Page 7] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 This describes a session where audio and video streams are sent separately. The session is sent to a multicast group 224.2.17.12. The audio is sent using L16 format, and the video is sent using SD- VCR 525/60 format which corresponds to NTSC format in consumer DV. 3.2 SDP description for bundled streams When sending a bundled stream, all the DIF blocks including system data will be sent through a single RTP stream. An example SDP description for a bundled DV stream is: v=0 o=ikob 2890844526 2890842807 IN IP4 126.16.64.4 s=POI Seminar i=A Seminar on how to make Presentations on the Internet u=http://www.koganei.wide.ad.jp/~ikob/POI/index.html e=ikob@koganei.wide.ad.jp (Katsushi Kobayashi) c=IN IP4 224.2.17.12/127 t=2873397496 2873404696 m=video 49170 RTP/AVP 112 113 a=rtpmap:112 DV/90000 a=fmtp: 112 encode=SD-VCR/525-60 a=fmtp: 112 audio=bundled a=fmtp: 113 encode=314M-50/525-60 a=fmtp: 113 audio=bundled This SDP record describes a session where audio and video streams are sent bundled. The session is sent to a multicast group 224.2.17.12. The video is sent using both 525/60 consumer DV and SMPTE standard 314M 50Mbps formats, when the payload type is 112 and 113, respectively. Kobayashi, et al. Standards Track [Page 8] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 4. Security Considerations RTP packets using the payload format defined in this specification are subject to the security considerations discussed in the RTP specification [6], and any appropriate RTP profile. This implies that confidentiality of the media streams is achieved by encryption. Because the data compression used with this payload format is applied to end-to-end, encryption may be performed after compression so there is no conflict between the two operations. A potential denial-of-service threat exists for data encodings using compression techniques that have non-uniform receiver-end computational load. The attacker can inject pathological datagrams into the stream which are complex to decode and cause the receiver to be overloaded. However, this encoding does not exhibit any significant non-uniformity. As with any IP-based protocol, in some circumstances a receiver may be overloaded simply by the receipt of too many packets, either desired or undesired. Network-layer authentication may be used to discard packets from undesired sources, but the processing cost of the authentication itself may be too high. In a multicast environment, joining and pruning mechanism of specific sources is specified in IGMPv3 and MLDv2 [14, 15] and in multicast routing protocols to allow a receiver to select which sources are allowed to reach it [16]. 5. IANA Considerations This document defines a new RTP payload name and associated MIME type, DV. The registration forms for the MIME types for both video and audio are shown in the next sections. 5.1 DV video MIME registration form MIME media type name: video MIME subtype name: DV Required parameters: encode: type of DV format. Permissible values for encode are SD-VCR/525-60, SD-VCR/625-50, HD-VCR/1125-60 HD-VCR/1250-50, SDL-VCR/525-60, SDL-VCR/625-50, 314M-25/525-60, 314M-25/625-50, 314M-50/525-60, 314M-50/625-50, 370M/1080-60i, and 370M/1080-50i, Kobayashi, et al. Standards Track [Page 9] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 Optional parameters: audio: whether the DV stream includes audio data or not. Permissible values for audio are bundled and none. Defaults to none. Encoding considerations: DV video can be transmitted with RTP as specified in RFCXXXX (This document). Other transport methods are not specified. Security considerations: See Security consideration Section of RFCXXXX (This document). Interoperability considerations: NONE Published specification: IEC 61834 Standard SMPTE 314M SMPTE 370M RFCXXXX (This document). Applications which use this media type: Video communication. Additional information: None Magic number(s): None File extension(s): None Macintosh File Type Code(s): None Person & email address to contact for further information: Katsushi Kobayashi e-mail: ikob@koganei.wide.ad.jp Intended usage: COMMON Author/Change controller: Katsushi Kobayashi e-mail: ikob@koganei.wide.ad.jp 5.2 DV audio MIME registration form MIME media type name: audio MIME subtype name: DV Kobayashi, et al. Standards Track [Page 10] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 Required parameters: encode: type of DV format. Permissible values for encode are SD-VCR/525-60, SD-VCR/625-50, HD-VCR/1125-60 HD-VCR/1250-50, SDL-VCR/525-60, SDL-VCR/625-50, 314M-25/525-60, 314M-25/625-50, 314M-50/525-60, 314M-50/625-50, 370M/1080-60i, 370M/1080-50i, and 720/60p. Optional parameters: NONE Encoding considerations: DV video can be transmitted with RTP as specified in RFCXXXX (This document). Other transport methods are not specified. Security considerations: See Security consideration Section of RFCXXXX (This document). Interoperability considerations: NONE Published specification: IEC 61834 Standard SMPTE 314M RFCXXXX (This document). Applications which use this media type: Audio communication. Additional information: None Magic number(s): None File extension(s): None Macintosh File Type Code(s): None Person & email address to contact for further information: Katsushi Kobayashi e-mail: ikob@koganei.wide.ad.jp Intended usage: COMMON Author/Change controller: Katsushi Kobayashi e-mail: ikob@koganei.wide.ad.jp 6. Changes from RFC3189 The changes from RFC3189 are: 1. Removed SMPTE 306M, since it can Kobayashi, et al. Standards Track [Page 11] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 covered SMPTE 314M format. 2. Added SMPTE 370M 100Mbps HDTV (1080/60i, 50i and 720/60p) format. 7. References [1] IEC 61834, Helical-scan digital video cassette recording system using 6,35 mm magnetic tape for consumer use (525-60, 625-50, 1125-60 and 1250-50 systems). [2] IEC 61883, Consumer audio/video equipment - Digital interface. [3] IEEE Std 1394-1995, Standard for a High Performance Serial Bus [4] SMPTE 314M, Data structure for DV-based audio and compressed video 25 and 50Mb/s. [5] SMPTE 370M, Data Structure for DV-Based Audio, Data and Compressed Video at 100 Mb/s 1080/60i, 1080/50i, 720/60p. [6] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A transport protocol for Real-Time Applications", RFC 3550, July 2003. [7] Hoffman, D., Fernando, G., Goyal, V. and M. Civanlar, "RTP Payload Format for MPEG1/MPEG2 Video", RFC 2250, January 1998. [8] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [9] ISO/IEC 11172, Coding of moving pictures and associated audio for digital storage media up to about 1,5 Mbits/s. [10] ISO/IEC 13818, Generic coding of moving pictures and associated audio information. [11] Schulzrinne, H., "RTP Profile for Audio and Video Conferences with Minimal Control", RFC 3551, July 2003. [12] Kobayashi, K., Ogawa, A., Casner S. and C. Bormann, "RTP Payload Format for 12-bit DAT Audio and 20- and 24-bit Linear Sampled Audio", RFC 3190, January 2002. [13] Handley, M. and V. Jacobson, "SDP: Session Description Protocol", RFC 2327, April 1998. Kobayashi, et al. Standards Track [Page 12] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 [14] Cain, B., Deering, S., Kouvelas, I., Fenner, B. and Thyagarajan, A., "Internet Group Management Protocol, Version 3", RFC 3376, October 2002. [15] Vida, R. and Costa, L. Ed., "Multicast Listener Discovery Version 2 (MLDv2) for IPv6", RFC 3810, June 2004. [16] Holbrook H. and Cain, B, "Source-Specific Multicast for IP", RFC 4607, August 2006. 7. Authors' Addresses Katsushi Kobayashi National Institute of Advanced Industrial Science and Technology 1-18-13 Soto-Kanda Chiyoda-ku Tokyo 184-8795 JAPAN EMail: ikob@koganei.wide.ad.jp Kazuhiro Mishima Keio University 5322 Endo, Fujisawa Kanagawa 252 JAPAN EMail: three@sfc.wide.ad.jp Stephen L. Casner Packet Design 2465 Latham Street Mountain View, CA 94040 United States EMail: casner@acm.org Carsten Bormann Universitaet Bremen TZI Postfach 330440 D-28334 Bremen, Germany Phone: +49 421 218 7024 Fax: +49 421 218 7000 EMail: cabo@tzi.orgEMail: cabo@tzi.org Kobayashi, et al. Standards Track [Page 13] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 Intellectual Property Statement The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Disclaimer of Validity This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. Acknowledgment Funding for the RFC Editor function is currently provided by the Internet Society. Kobayashi, et al. Standards Track [Page 14] Internet-Draft RTP Payload Format for DV (IEC 61834) Video October 2006 Kobayashi, et al. Standards Track [Page 15]