Internet-Draft Fine grain OTN YANG April 2025
Tan, et al. Expires 10 October 2025 [Page]
Workgroup:
Common Control and Measurement Plane
Internet-Draft:
draft-tan-ccamp-fgotn-yang-02
Published:
Intended Status:
Standards Track
Expires:
Authors:
Y. Tan
China Unicom
Y. Zheng
China Unicom
I. Busi
Huawei Technologies
C. Yu
Huawei Technologies
X. Zhao
CAICT

YANG Data Models for fine grain Optical Transport Network

Abstract

This document defines YANG data models to describe the topology and tunnel information of a fine grain Optical Transport Network. The YANG data models defined in this document are designed to meet the requirements for efficient transmission of sub-1Gbit/s client signals in transport network.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://YuChaode.github.io/draft-tan-ccamp-fgotn-yang/draft-tan-ccamp-fgotn-yang.html. Status information for this document may be found at https://datatracker.ietf.org/doc/draft-tan-ccamp-fgotn-yang/.

Discussion of this document takes place on the Common Control and Measurement Plane Working Group mailing list (mailto:[email protected]), which is archived at https://mailarchive.ietf.org/arch/browse/ccamp/. Subscribe at https://www.ietf.org/mailman/listinfo/ccamp/.

Source for this draft and an issue tracker can be found at https://github.com/YuChaode/draft-tan-ccamp-fgotn-yang.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 October 2025.

Table of Contents

1. Introduction

Optical Transport Networks (OTN) is a mainstream layer 1 technology for the transport network. Over the years, it has continued to evolve, to improve its transport functions for the emerging requirements. The topology and tunnel information in the OTN has already been defined by generic traffic-engineering models and technology-specific models, including [I-D.ietf-ccamp-otn-topo-yang] and [I-D.ietf-ccamp-otn-tunnel-model].

In the latest version of OTN, ITU-T G.709/Y.1331 Edition 6.5 [ITU-T_G.709], the fine grain OTN (fgOTN) is introduced for the efficient transmission of low rate client signals (e.g., sub-1G).

This document presents the control interface requirements of fgOTN, and defines two YANG data models for fgOTN topology and fgOTN tunnel. The topology model can capture topological and resource-related information pertaining to fgOTN. The fgOTN tunnel YANG data model defined in this document is used for the provisioning and management of fgOTN Traffic Engineering (TE) tunnels and Label Switched Paths (LSPs).

Furthermore, this document also imports the generic Layer 1 types defined in [I-D.ietf-ccamp-layer1-types].

The YANG data models defined in this document conform to the Network Management Datastore Architecture (NMDA) defined in [RFC8342].

1.1. Terminology and Notations

Some of the key terms used in this document are listed as follow.

  • fgTS: fine grain Tributary Slot.

  • fgODUflex: fine grain Optical channel Data Unit flex.

The following terms are defined in [RFC7950] and are not redefined here:

  • client

  • server

  • augment

  • data model

  • data node

The following terms are defined in [RFC6241] and are not redefined here:

  • configuration data

  • state data

The terminology for describing YANG data models is found in [RFC7950].

1.2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.3. Tree Diagram

A simplified graphical representation of the data model is used in Section 5 of this document. The meaning of the symbols in this diagram is defined in [RFC8340].

1.4. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.5. Prefixes in Model Names

In this documents, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in the following table.

Table 1: Prefixes and corresponding YANG modules
Prefix Yang Module Reference
l1-types ietf-layer1-types [RFC YYYY]
otnt ietf-otn-topology [RFC ZZZZ]
te ietf-te [RFC KKKK]
otn-tnl ietf-otn-tunnel [RFC JJJJ]
fgotnt ietf-fgotn-topology RFC XXXX
fgotn-tnl ietf-fgotn-tunnel RFC XXXX

RFC Editor Note: Please replace XXXX with the number assigned to the RFC once this draft becomes an RFC. Please replace YYYY with the RFC numbers assigned to [I-D.ietf-ccamp-layer1-types]. Please replace ZZZZ with the RFC numbers assigned to [I-D.ietf-ccamp-otn-topo-yang]. Please replace KKKK with the RFC numbers assigned to [I-D.ietf-teas-yang-te]. Please replace JJJJ with the RFC numbers assigned to [I-D.ietf-ccamp-otn-tunnel-model]. Please remove this note.

1.6. Model Tree Diagrams

The tree diagrams extracted from the module(s) defined in this document are given in subsequent sections as per the syntax defined in [RFC8340].

2. Fine grain Optical Transport Network Scenarios Overview

OTN network will cover a larger scope of networks, it may include the backbone network, metro core, metro aggregation, metro access, and even the OTN CPE in the customers' networks [ITU-T_G.709.20]. In general, the metro OTN networks support both fgODUflex and ODUk switching. At the boundary nodes (e.g., metro-core nodes) of the metro OTN networks, the fgODUflexes to other metro OTN networks are multiplexed into ODUk of backbone networks. Therefore, the backbone OTN network could only support ODUk switching.

The typical scenarios for fgOTN is to provide low bit rate private line or private network services for customers. The interface function requirements of fgOTN mainly include resource allocation and service provisioning. Three scenarios that require special consideration are listed based on the characteristics of fgOTN.

2.1. Retrieve Server Tunnels Scenario of fgOTN

Figure 1 below shows an example of scenario to retrieve server tunnels for multi-domain fgOTN service. In this example, some small bandwidth fgOTN service are aggregated by the access ring (10G), and then aggregated into a bigger bandwidth in metro ring (100G). The allocation of TS to support fgOTN switching maybe different in access ring and metro ring. E.g. there could be three ODU0 allocated in the access ring while there could be two ODU2 are allocated in the metro ring to support fgOTN switching. In this example, the server layer ODUk tunnel for fgOTN tunnel from node A to node E is ODU0, and the server layer tunnel from node E to node G is ODU2. The server layer tunnel for fgOTN tunnel will include one ODU0 tunnel and one ODU2 tunnel.

      +-----+
      |  A  | \                                 |
      +-----+  \            Domain 1            |      Domain 2
         |      \                               |
         |  10G  \                              |
         |        \                             |
      +-----+       +-----+         +-----+     |     +-----+
      |  B  | \     |  E  |---------|  G  |-----------|  I  |---------
      +-----+  \  / +-----+         +-----+           +-----+
                \/    |      100G      |                 |    100G
                /\    |                |                 |
      +-----+  /  \ +-----+         +-----+           +-----+
      |  C  | /     |  F  |---------|  H  |-----------|  J  |---------
      +-----+       +-----+         +-----+           +-----+
         |         /
         |  10G   /
         |       /
      +-----+   /
      |  D  |  /
      +-----+

Figure 1: The Scenario to Retrieve Server Tunnels

2.2. Multi-layer Path Splicing Scenario of fgOTN

Not all nodes in the operator network support fgOTN, as shown in Figure 2, node N-f5 and node N-f6 do not support fgOTN. To present the end-to-end primary-path and secondary-path of the services on the client side, it is necessary to complete the end-to-end path splicing based on the the ODU tunnel information associated with the fgotn tunnel.

                   +-----+            +-----+
               ----|  f2 |------------|  f3 |----
              /    +-----+            +-----+    \
             / ----------primary-path------------ \
            / /                                  \ \
           +-----+                            +-----+
         |  f1 |                                |  f4 |
           +-----+                            +-----+
            \ \                                  / /
             \ ---------secondary-path----------- /
              \    +------+          +------+    /
               ----| N-f5 |----------| N-f6 |----
                   +------+          +------+
Figure 2: Protection Scenario of fgOTN

2.3. Hitless Resizing Scenario of fgOTN

[ITU-T_G.709] defines the data plane procedure to support fgODUflex hitless resizing. The support of management of hitless resizing of fgODUflex needs to be carefully considered.

The range of fgOTN service's Bandwidth on Demand (BoD) cannot exceed its server layer's bandwidth.

The client needs to know how many bandwidth of a link is allocated for fgOTN. During the hitless resizing process, it is necessary to reserve or mark the corresponding bandwidth resources first, and then trigger the the resizing actions.

Multi-domain hitless resizing should be supported. In the case of hitless resizing within a single domain, the "explicit route object" structure is not required. However, for multi-domain hitless resizing scenario, it is necessary to specify the ODUk TS and fgts numbers information on the ports of cross domain nodes in "explicit route objects" structure. For example, node 2 and node 3 in Figure 3. When there are multiple cross domain fgOTN service hitless resizing, the MDSC coordinator needs to issue the service resizing instructions to the domain controllers where the service source and destination are located separately.

                     +----------+
                  ----------------------|   MDSC   |---------------------
                 /                      |          |                     \
                /                       +----------+                      \
               /                             |                             \
              /                              |                              \
        +------------+                 +------------+               +------------+
        | Controller |                 | Controller |               | Controller |
        |     1      |                 |     2      |               |     3      |
        +------------+                 +------------+               +------------+
                                    End-to-end fgOTN service
   <--------------------------------------------------------------------------------->
   +------+       +------+       +------+       +------+       +------+       +------+
   | node |-------| node |-------| node |-------| node |-------| node |-------| node |
   |  1   |-------|  2   |-------|  3   |-------|  4   |-------|  5   |-------|  6   |
   +------+       +------+   |   +------+       +------+   |   +------+       +------+
    source                   |                             |                 destination
          Domain 1           |          Domain 2           |           Domain 3
                             |                             |
Figure 3: Hitless Resizing Scenario of fgOTN

3. YANG Data Model for fine grain Optical Transport Network Overview

In order to provide fgOTN capabilities, this document defines two YANG data models augmenting the OTN topology and the OTN tunnel YANG data models, as defined in [I-D.ietf-ccamp-otn-topo-yang] and [I-D.ietf-ccamp-otn-tunnel-model].

As defined in Annex M of [ITU-T_G.709], fgOTN is defining a new path layer network which complements the existing OTN. Therefore:

This document aims to describe the data model for fine grain OTN topology. The YANG module presented in this document augments from OTN topology data model, i.e., the ietf-otn-topology, as specified in [I-D.ietf-ccamp-otn-topo-yang]. In section 6 of [I-D.ietf-ccamp-otn-topo-yang], the guideline for augmenting OTN topology model was provided, and in this draft, we augment the OTN topology model to describe the topology characteristics of fgOTN.

Common types, identities and groupings defined in [I-D.ietf-ccamp-layer1-types] is reused in this document.

[RFC8345] defines an abstract (generic, or base) YANG data model for network/service topologies and inventories, and provides the fundamental model for [RFC8795]. OTN topology module in [I-D.ietf-ccamp-otn-topo-yang] augments from the TE topology YANG model defined in [RFC8795]. Figure 4 shows the augmentation relationship.

    +--------------+      +-----------------------+
    | ietf-network |      | ietf-network-topology |
    +--------------+      +-----------------------+
                ^             ^
                |_____   _____|
                      | |
                      | | Augments
             +-------------------+
             | ietf-te-topology  |
             +-------------------+
                       ^
                       | Augments
                       |
             +-------------------+
             | ietf-otn-topology |
             +-------------------+
                       ^
                       | Augments
                       |
            +----------+----------+
            | ietf-fgotn-topology |
            +---------------------+
Figure 4: Relationship between fgOTN topology and OTN topology model

The entities, TE attributes and OTN attributes, such as nodes, termination points and links, are still applicable for describing an fgOTN topology and the model presented in this document only specifies technology-specific attributes/information. The fgOTN-specific attributes including the fgTS, can be used to represent the bandwidth and label information. At the same time, it is necessary to extend the encoding and switching-capability enumeration values in [I-D.busi-teas-te-types-update] to identify that the current Tunnel Termination Point (TTP) is a termination point of an fgOTN tunnel.

3.1. Termination Point Augmentation

There are a few characteristics augmenting to the OTN topology.

The fine grain tributary slot granularity (FGTSG) attribute defines the granularity, such as 10M, used by the TSs of a given OTN link.

A boolean value is specified to augment the generic TE link termination point to describe whether the point can support fgOTN switching capability.

augment /nw:networks/nw:network/nw:node/nt:termination-point/tet:te:
   +--rw supported-fgotn-tp?   boolean

The boolean value supported-fgotn-tp is used to indicate whether the termination point can support fgOTN switching capability.

3.2. Bandwidth Augmentation

Based on the OTN topology model, we augment the bandwidth information of fgOTN, including the max-link-bandwidth and unreserved-bandwidth. The augmented parameter fgotn-bandwidth is used to indicate how much of the bandwidth has been allocated for the usage of fgOTN. For example, if 2 ODU0s are allocated to support fgOTN switching switching, the fgotn-bandwidth is 2500, and the unit is Mbps.

augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes
          /tet:max-link-bandwidth/tet:te-bandwidth/otnt:otn-bandwidth
          /otnt:odulist:
   +--rw fgotn-bandwidth?   string

The augmented fgotnlist structure is used to describe the unreserved TE bandwidth of fgOTN in the server ODUk. The odu-ts-number is used to indicate the index of server ODUk channel.

augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes
          /tet:unreserved-bandwidth/tet:te-bandwidth
          /otnt:otn-bandwidth:
   +--rw fgotnlist* [odu-type odu-ts-number]
      +--rw odu-type           identityref
      +--rw odu-ts-number?     string
      +--rw fgotn-bandwidth?   string

3.3. Label Augmentation

The model augments the label-restriction list with fgOTN technology-specific label information using the otn-label-range-info grouping defined in [I-D.ietf-ccamp-layer1-types].

augment /nw:networks/tet:te/tet:templates/tet:link-template
        /tet:te-link-attributes/tet:label-restrictions
        /tet:label-restriction/otnt:otn-label-range:
   +--rw fgts-range* [odu-type odu-ts-number]
      +--rw odu-type           identityref
      +--rw odu-ts-number?     string
      +--rw fgts-reserved?     string
      +--rw fgts-unreserved?   string

The fgts-range list is used to describe the availability of fgOTN timeslot in the server ODUk, including the fgts-reserved and fgts-unreserved. The odu-ts-number is used to indicate the index of server ODUk channel.

4. YANG Data Model for fgOTN Tunnel

## Fine Grain OTN Tunnel Data Model Overview

This document aims to describe the data model for fgOTN tunnel. The fgOTN tunnel model augments to OTN tunnel [I-D.ietf-ccamp-otn-tunnel-model] with fgOTN-specific parameters, including the bandwidth information and label information. Figure 5 shows the augmentation relationship.

                +------------------+
                |      ietf-te     |
                +------------------+
                          ^
                          | Augments
                          |
                +-----------------+
                | ietf-otn-tunnel |
                +-----------------+
                          ^
                          | Augments
                          |
               +----------+--------+
               | ietf-fgotn-tunnel |
               +-------------------+
Figure 5: Relationship between fgOTN and OTN tunnel model

It's also worth noting that the fgOTN tunnel provisioning is usually based on the fgOTN topology. Therefore the fgOTN tunnel model is usually used together with fgOTN topology model specified in this document. The OTN tunnel model also imports a few type modules, including ietf-layer1-types and ietf-te-types. A new identity based on odu-type should be defined for fgODUflex in an updated version of [I-D.ietf-ccamp-layer1-types] to indicate the bandwidth of fgotn tunnel.

4.1. Bandwidth Augmentation

The model augment TE bandwidth information of fgOTN tunnel.

augment /te:te/te:tunnels/te:tunnel/te:te-bandwidth/te:technology
        /otn-tnl:otn:
   +--rw fgoduflex-bandwidth?   string

The string value fgoduflex-bandwidth is used to indicate the bandwidth of this fgOTN tunnel.

4.2. Label Augmentation

The module augments TE label-hop for the explicit route objects included or excluded by the path computation of the primary-paths and secondary-paths using the fgts-numbers. The fgts-numbers is used to specify fgTS information on inter-domain ports of the routing path. When specifying the fgotn time slot in the routing constraint information, the ODU time slot must also be specified. We also augment the TE label-hop for the record route of the LSP using the fgts-numbers.

5. YANG Tree for fgOTN topology

Figure 6 below shows the tree diagram of the YANG data model defined in module "ietf-fgotn-topology" (Figure 7).

module: ietf-fgotn-topology

  augment /nw:networks/nw:network/nw:node/nt:termination-point
            /tet:te:
    +--rw supported-fgotn-tp?   boolean
  augment /nw:networks/nw:network/nt:link/tet:te
            /tet:te-link-attributes/tet:max-link-bandwidth
            /tet:te-bandwidth/otnt:otn-bandwidth/otnt:odulist:
    +--rw fgotn-bandwidth?   string
  augment /nw:networks/nw:network/nt:link/tet:te
            /tet:te-link-attributes/tet:unreserved-bandwidth
            /tet:te-bandwidth/otnt:otn-bandwidth:
    +--rw fgotnlist* [odu-type odu-ts-number]
       +--rw odu-type           identityref
       +--rw odu-ts-number      string
       +--rw fgotn-bandwidth?   string
  augment /nw:networks/tet:te/tet:templates/tet:link-template
            /tet:te-link-attributes/tet:label-restrictions
            /tet:label-restriction/otnt:otn-label-range:
    +--rw fgts-range* [odu-type odu-ts-number]
       +--rw odu-type           identityref
       +--rw odu-ts-number      string
       +--rw fgts-reserved?     string
       +--rw fgts-unreserved?   string
Figure 6

6. YANG Data Model for fgOTN topology

<CODE BEGINS> file "[email protected]"

 module ietf-fgotn-topology {
   /* TODO: FIXME */
  yang-version 1.1;

  namespace "urn:ietf:params:xml:ns:yang:ietf-fgotn-topology";
  prefix "fgotnt";

  import ietf-network {
    prefix "nw";
    reference
      "RFC8345: A YANG Data Model for Network Topologies";
  }

  import ietf-network-topology {
    prefix "nt";
    reference
      "RFC8345: A YANG Data Model for Network Topologies";
  }

  import ietf-te-topology {
    prefix "tet";
    reference
      "RFC 8795: YANG Data Model for Traffic Engineering (TE)
                 Topologies";
  }

  import ietf-layer1-types {
    prefix "l1-types";
    reference
      "RFC YYYY: A YANG Data Model for Layer 1 Types";
  }

  /* Note: The RFC Editor will replace YYYY with the number assigned
     to the RFC once draft-ietf-ccamp-layer1-types becomes an RFC.*/

  import ietf-otn-topology {
    prefix "otnt";
    reference
      "RFC ZZZZ: A YANG Data Model for Optical Transport Network
                 Topology";
  }

  /* Note: The RFC Editor will replace ZZZZ with the number assigned
     to the RFC once draft-ietf-ccamp-otn-topo-yang becomes an RFC.*/

  organization
    "Internet Engineering Task Force (IETF) CCAMP WG";
  contact
    "
      ID-draft editor:
        Yanxia Tan ([email protected]);
        Yanlei Zheng ([email protected]);
        Italo Busi ([email protected]);
        Chaode Yu ([email protected]);
        Xing Zhao ([email protected]);
    ";

  description
    "This module defines a YANG data model for fgOTN-specific
     extension based on existing network topology models. The model
     fully conforms to the Network Management Datastore Architecture
     (NMDA).

     Copyright (c) 2024 IETF Trust and the persons
     identified as authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Revised BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC XXXX; see
     the RFC itself for full legal notices.";

  // RFC Ed.: replace XXXX with actual RFC number and remove this
  // note.
  // RFC Ed.: update the date below with the date of RFC publication
  // and remove this note.

  revision 2025-04-08 {
    description
      "initial version";
    reference
      "RFC XXXX: YANG Data Models for fine grain Optical Transport
                 Network";
  }

  augment "/nw:networks/nw:network/nw:node/nt:termination-point" +
          "/tet:te" {
    description
      "specific augmentation of fgOTN termination point";
    leaf supported-fgotn-tp {
      type boolean;
      description
        "It is used to indicate whether the TP can support fgOTN
         switching capability.";
    }
  }

  augment "/nw:networks/nw:network/nt:link/tet:te" +
          "/tet:te-link-attributes/tet:max-link-bandwidth" +
          "/tet:te-bandwidth/otnt:otn-bandwidth/otnt:odulist" {
    description
      "specific augmentation of fgOTN link on maximum link
      bandwidth";
    leaf fgotn-bandwidth {
      type string;
      description
        "It is used to indicate how much of the bandwidth has been
         allocated for the usage of fgOTN.";
    }
  }

  augment "/nw:networks/nw:network/nt:link/tet:te" +
          "/tet:te-link-attributes/tet:unreserved-bandwidth" +
          "/tet:te-bandwidth/otnt:otn-bandwidth" {
    description
      "specific augmentation of fgOTN link on unreserved link
      bandwidth";
    list fgotnlist {
      key "odu-type odu-ts-number";
      description
        "This structure is used to describe the unsreserved
         bandwidth of fgOTN in the server ODUk";
      leaf odu-type {
        type identityref {
          base l1-types:odu-type;
        }
        description
          "The granularity of server ODUk";
      }

      leaf odu-ts-number {
        type string;
        description
          "The index of server ODUk channel";
      }

      leaf fgotn-bandwidth {
        type string;
        description
          "The unsreserved bandwidth of fgOTN in this server ODUk";
      }
    }
  }

  augment "/nw:networks/tet:te/tet:templates/tet:link-template"+
          "/tet:te-link-attributes/tet:label-restrictions" +
          "/tet:label-restriction/otnt:otn-label-range" {
    description
      "specific augmentation of fgOTN label";
    list fgts-range {
      key "odu-type odu-ts-number";
      description
        "This structure is used to describe the availability of
         fgOTN timeslot in the server ODUk";
      leaf odu-type {
        type identityref {
          base l1-types:odu-type;
        }
        description
          "The granularity of server ODUk";
      }

      leaf odu-ts-number {
        type string;
        description
          "The index of server ODUk channel";
      }

      leaf fgts-reserved {
        type string;
        description
          "The reserved fgOTN timeslot in this server ODUk";
      }

      leaf fgts-unreserved {
        type string;
        description
          "The unreserved fgOTN timeslot in this server ODUk";
      }
    }
  }
}

<CODE ENDS>
Figure 7: fgOTN topology YANG module

7. YANG Tree for fgOTN tunnel

Figure 8 below shows the tree diagram of the YANG data model defined in module "ietf-fgotn-tunnel" (Figure 9).

module: ietf-fgotn-tunnel

  augment /te:te/te:tunnels/te:tunnel/te:te-bandwidth/te:technology
            /otn-tnl:otn:
    +--rw fgoduflex-bandwidth?   string
  augment /te:te/te:tunnels/te:tunnel/te:primary-paths
            /te:primary-path/te:explicit-route-objects
            /te:route-object-include-exclude/te:type/te:label
            /te:label-hop/te:te-label/te:technology/otn-tnl:otn
            /otn-tnl:otn-label:
    +--rw fgts-numbers?   uint16
  augment /te:te/te:tunnels/te:tunnel/te:primary-paths
            /te:primary-path/te:primary-reverse-path
            /te:explicit-route-objects
            /te:route-object-include-exclude/te:type/te:label
            /te:label-hop/te:te-label/te:technology/otn-tnl:otn
            /otn-tnl:otn-label:
    +--rw fgts-numbers?   uint16
  augment /te:te/te:tunnels/te:tunnel/te:secondary-paths
            /te:secondary-path/te:explicit-route-objects
            /te:route-object-include-exclude/te:type/te:label
            /te:label-hop/te:te-label/te:technology/otn-tnl:otn
            /otn-tnl:otn-label:
    +--rw fgts-numbers?   uint16
  augment /te:te/te:tunnels/te:tunnel/te:secondary-reverse-paths
            /te:secondary-reverse-path/te:explicit-route-objects
            /te:route-object-include-exclude/te:type/te:label
            /te:label-hop/te:te-label/te:technology/otn-tnl:otn
            /otn-tnl:otn-label:
    +--rw fgts-numbers?   uint16
  augment /te:te/te:lsps/te:lsp/te:lsp-actual-route-information
            /te:lsp-actual-route-information/te:type/te:label
            /te:label-hop/te:te-label/te:technology/otn-tnl:otn
            /otn-tnl:otn-label:
    +--ro fgts-numbers?   uint16
Figure 8

8. YANG Data Model for fgOTN tunnel

<CODE BEGINS> file "[email protected]"

module ietf-fgotn-tunnel {
  /* TODO: FIXME */
  yang-version 1.1;

  namespace "urn:ietf:params:xml:ns:yang:ietf-fgotn-tunnel";
  prefix "fgotn-tnl";

  import ietf-te {
    prefix "te";
    reference
      "RFC KKKK: A YANG Data Model for Traffic Engineering Tunnels,
                 Label Switched Paths and Interfaces";
  }

  /* Note: The RFC Editor will replace KKKK with the number assigned
     to the RFC once draft-ietf-teas-yang-te becomes an RFC.*/

  import ietf-otn-tunnel {
    prefix "otn-tnl";
    reference  "RFC JJJJ: OTN Tunnel YANG Model";
  }

  /* Note: The RFC Editor will replace JJJJ with the number assigned
     to the RFC once draft-ietf-ccamp-otn-tunnel-model becomes
     an RFC.*/

  organization
    "Internet Engineering Task Force (IETF) CCAMP WG";
  contact
    "
      ID-draft editor:
        Yanxia Tan ([email protected]);
        Yanlei Zheng ([email protected]);
        Italo Busi ([email protected]);
        Chaode Yu ([email protected]);
        Xing Zhao ([email protected]);
    ";

  description
    "This module defines a YANG data model for fgOTN-specific
     extension based on existing network topology models. The model
     fully conforms to the Network Management Datastore Architecture
     (NMDA).

     Copyright (c) 2024 IETF Trust and the persons
     identified as authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Revised BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC XXXX; see
     the RFC itself for full legal notices.";

  // RFC Ed.: replace XXXX with actual RFC number and remove this
  // note.
  // RFC Ed.: update the date below with the date of RFC publication
  // and remove this note.

  revision 2025-04-08 {
    description
      "initial version";
    reference
      "RFC XXXX: YANG Data Models for fine grain Optical Transport
                 Network";
  }

  /**
  augment "/te:te/te:tunnels/te:tunnel/te:primary-paths" +
          "/te:primary-path/te:te-bandwidth/te:technology" +
          "/otn-tnl:otn/otn-tnl:otn-bandwidth" {
    leaf fgoduflex-bandwidth {
      type string;
      description
        "The bandwidth of this fgOTN tunnel";
    }
  }
**/

  augment "/te:te/te:tunnels/te:tunnel/"
        + "te:te-bandwidth/te:technology/otn-tnl:otn" {
    description
      "augmentation of fgOTN tunnel on bandwidth structure";
    leaf fgoduflex-bandwidth {
      type string;
      description
        "Augment TE bandwidth of the fgOTN tunnel";
    }
  }

  augment "/te:te/te:tunnels/te:tunnel/"
        + "te:primary-paths/te:primary-path/"
        + "te:explicit-route-objects/"
        + "te:route-object-include-exclude/te:type/te:label/"
        + "te:label-hop/te:te-label/te:technology/otn-tnl:otn" +
          "/otn-tnl:otn-label" {
    description
      "augmentation of fgOTN label";
    leaf fgts-numbers {
      type uint16;
      description
        "Augment fgOTN timeslot information of this label hop";
    }
  }

  augment "/te:te/te:tunnels/te:tunnel/te:primary-paths" +
          "/te:primary-path/te:primary-reverse-path" +
          "/te:explicit-route-objects" +
          "/te:route-object-include-exclude/te:type/te:label" +
          "/te:label-hop/te:te-label/te:technology/otn-tnl:otn" +
          "/otn-tnl:otn-label" {
    description
      "augmentation of fgOTN label";
    leaf fgts-numbers {
      type uint16;
      description
        "Augment fgOTN timeslot information of this label hop";
    }
  }

  augment "/te:te/te:tunnels/te:tunnel/te:secondary-paths" +
          "/te:secondary-path/te:explicit-route-objects" +
          "/te:route-object-include-exclude/te:type/te:label" +
          "/te:label-hop/te:te-label/te:technology/otn-tnl:otn" +
          "/otn-tnl:otn-label" {
    description
      "augmentation of fgOTN label";
    leaf fgts-numbers {
      type uint16;
      description
        "fgOTN timeslot information of this label hop";
    }
  }

  augment "/te:te/te:tunnels/te:tunnel/te:secondary-reverse-paths" +
          "/te:secondary-reverse-path/te:explicit-route-objects" +
          "/te:route-object-include-exclude/te:type/te:label" +
          "/te:label-hop/te:te-label/te:technology/otn-tnl:otn" +
          "/otn-tnl:otn-label" {
    description
      "augmentation of fgOTN label";
    leaf fgts-numbers {
      type uint16;
      description
        "fgOTN timeslot information of this label hop";
    }
  }

  augment "/te:te/te:lsps/te:lsp/te:lsp-actual-route-information" +
          "/te:lsp-actual-route-information/te:type/te:label" +
          "/te:label-hop/te:te-label/te:technology/otn-tnl:otn" +
          "/otn-tnl:otn-label" {
    description
      "augmentation of fgOTN label";
    leaf fgts-numbers {
      type uint16;
      description
        "fgOTN timeslot information of this label hop";
    }
  }
}

<CODE ENDS>
Figure 9: fgOTN tunnel YANG module

9. Manageability Considerations

<Add any manageability considerations>

10. Security Considerations

<Add any security considerations>

11. IANA Considerations

<Add any IANA considerations>

12. References

12.1. Normative References

[I-D.ietf-ccamp-layer1-types]
Zheng, H. and I. Busi, "Common YANG Data Types for Layer 1 Networks", Work in Progress, Internet-Draft, draft-ietf-ccamp-layer1-types-18, , <https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-layer1-types-18>.
[I-D.ietf-ccamp-otn-topo-yang]
Zheng, H., Busi, I., Liu, X., Belotti, S., and O. G. de Dios, "A YANG Data Model for Optical Transport Network Topology", Work in Progress, Internet-Draft, draft-ietf-ccamp-otn-topo-yang-20, , <https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-otn-topo-yang-20>.
[I-D.ietf-ccamp-otn-tunnel-model]
Zheng, H., Busi, I., Belotti, S., Lopez, V., and Y. Xu, "A YANG Data Model for Optical Transport Network (OTN) Tunnels and Label Switched Paths", Work in Progress, Internet-Draft, draft-ietf-ccamp-otn-tunnel-model-22, , <https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-otn-tunnel-model-22>.
[I-D.ietf-teas-yang-te]
Saad, T., Gandhi, R., Liu, X., Beeram, V. P., and I. Bryskin, "A YANG Data Model for Traffic Engineering Tunnels, Label Switched Paths and Interfaces", Work in Progress, Internet-Draft, draft-ietf-teas-yang-te-37, , <https://datatracker.ietf.org/doc/html/draft-ietf-teas-yang-te-37>.
[IANA_YANG]
IANA, "YANG Parameters", n.d., <https://www.iana.org/assignments/yang-parameters>.
[ITU-T_G.709]
ITU-T Recommendation G.709, "Interfaces for the optical transport network", ITU-T Recommendation G.709, Amendment 3 , , <https://www.itu.int/rec/T-REC-G.709/>.
[ITU-T_G.709.20]
ITU-T Recommendation G.709.20, "Overview of fine grain OTN", ITU-T Recommendation G.709.20 , , <https://www.itu.int/rec/T-REC-G.709.20/>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/rfc/rfc2119>.
[RFC6241]
Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, , <https://www.rfc-editor.org/rfc/rfc6241>.
[RFC7950]
Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, , <https://www.rfc-editor.org/rfc/rfc7950>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/rfc/rfc8174>.
[RFC8340]
Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, , <https://www.rfc-editor.org/rfc/rfc8340>.
[RFC8342]
Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, , <https://www.rfc-editor.org/rfc/rfc8342>.

12.2. Informative References

[I-D.busi-teas-te-types-update]
Busi, I., Guo, A., Liu, X., Saad, T., Gandhi, R., Beeram, V. P., and I. Bryskin, "Updated Common YANG Data Types for Traffic Engineering", Work in Progress, Internet-Draft, draft-busi-teas-te-types-update-02, , <https://datatracker.ietf.org/doc/html/draft-busi-teas-te-types-update-02>.
[RFC8345]
Clemm, A., Medved, J., Varga, R., Bahadur, N., Ananthakrishnan, H., and X. Liu, "A YANG Data Model for Network Topologies", RFC 8345, DOI 10.17487/RFC8345, , <https://www.rfc-editor.org/rfc/rfc8345>.
[RFC8795]
Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and O. Gonzalez de Dios, "YANG Data Model for Traffic Engineering (TE) Topologies", RFC 8795, DOI 10.17487/RFC8795, , <https://www.rfc-editor.org/rfc/rfc8795>.

Appendix A. Acknowledgments

Contributors

Chen Li
Fiberhome Telecommunication Technologies Co.,LTD

Authors' Addresses

Yanxia Tan
China Unicom
Beijing
China
Yanlei Zheng
China Unicom
Beijing
China
Italo Busi
Huawei Technologies
Chaode Yu
Huawei Technologies
China
Xing Zhao
CAICT
China