mmmmmmmmmmmmmmmmm

LYV ISANYAL



This manual is about a small (RUBY) script that can be used to run a script or open a document which
is located somewhere in the texmf tree. There is not so much to tell about texmfstart, so we stick
to demonstrating how to launch the program.

Start the texexec PERL script:

texmfstart texexec.pl --pdf somefile
Start the pstopdf RUBY script:

texmfstart pstopdf.rb --method=3 cow.eps
Or without suffix:

texmfstart texexec --pdf somefile
texmfstart pstopdf --method=3 cow.eps

The suffixless method is slower unless the scripts are known. For familiar CONTEXT scripts it’s best
not to use the suffix since this permits us to change the scripting language.

You can also say:
texmfstart --file=pstopdf --method=3 cow.eps

When locating a file to run, several methods are applied, one being kpsewhich. You can control the
path searching by providing a program space, which by default happens to be context.

texmfstart --program=context --file=pstopdf --method=3 cow.eps
The general pattern is:
texmfstart switches filename arguments

where switches control texmfstart’s behaviour, and arguments are passed to the program
identified by filename.

texmfstart showcase.pdf

This will open the document showcase.pdf, when found. The chance is minimal that such a
document can be located by kpsewhich. In that case, texmfstart will search the tree itself.

Given that it is supported on your platform, you can also open a PDF file on a given page.
texmfstart --page=2 showcase.pdf

On MS WINDOWS the following command will open the PDF file in a web browser. This is needed
when you want support for form submission.

texmfstart --browser examplap.pdf
When kpsewhich cannot locate the file, the following environment variables will be used:

RUBYINPUTS ruby scripts with suffix rb
PERLINPUTS perl scripts with suffix pl
PYTHONINPUTS python scripts with suffix py



JAVAINPUTS java archives with suffix jar
PDFINPUTS pdf documents with suffix pdf

The script accepts a few directives:

—--program the program space where kpsewhich will search
--verbose report some status and progress information
--report don’t run, only report the full location of the file
—--browser start the document in a web browser

--page open the document at this page

--file an alternative for providing the file

—--arguments an alternative for providing the arguments to be passed
—--direct run a program without searching for it’s location
--execute use RUBY’s ’exec’ instead of ’system’

This scripts evolved out of earlier experiments and is related to scripts and programs like runperl,
runruby and irun.

You can create startup scripts by providing one of the following switches in combination with a
filename.

--make create a start script or batch file for the given program
--windows when making a startup file, create a windows batch file
--linux when making a startup file, create a unix script

--stubpath destination of the startup file
--indirect always use texmfstart in a stub file

The performance of the indirect call is of course less than a direct call. You can gain some time by
setting the environment variables or by using a small TgX tree.

The script tries to be clever. First it tries to honor a given path, and if that fails it will strip the path
part and look on the current path. When in bad luck, it will consult the environment variables. Then
it will use kpsewhich and when that fails as well, it will start searching the TgX trees. This may take
a while, especially when you have a complete tree, like the one on TgX Live.!

You can provide a path where the stub will be written. This permits tricks like the following. Say that
on a CDROM we have the following structure:

tex/texmf-mswin/bin/texexec.bat
tex/texmf-linux/bin/texexec
tex/texmf-local/scripts/context/perl/texexec.pl

If we are on the main tex path, we can run texmfstart as follows:

On my computer I use multiple trees parallel to the latest TgX Live tree. This results in a not that intuitively and predictable
search process. The cover of this manual reflects state of those trees.



texmfstart --make --windows --stubpath=tex/texmf-mswin/bin \
../../texmf-local/scripts/context/perl/texexec.pl

texmfstart --make --unix --stubpath=tex/texmf-linux/bin \
../../texmf-local/scripts/context/perl/texexec.pl

This will generate start up scripts that point directly to the PERL script. Such a link may fail when files
get relocated. In that case you can use the ——indirect directive, which will force the texmfstart
into the stub file.

texmfstart --make --windows --indirect --stubpath=tex/texmf-mswin/bin \
../../texmf-local/scripts/context/perl/texexec.pl

texmfstart --make --unix --indirect --stubpath=tex/texmf-linux/bin \
../../texmf-local/scripts/context/perl/texexec.pl

You can also use texmfstart to launch other programs that need files in one of the TgX trees:
texmfstart --direct xsltproc kpse:somescript.xsl somefile.xml

or shorter:
texmfstart bin:xsltproc kpse:somescript.xsl somefile.xml

In both cases somescript.xsl will be resolved and in the second case bin: will be stripped. The
—-direct switch and bin: prefix tell texmfstart not to search for the program, but to assume that
itis a binary. The kpse: prefix also works for previously mentioned usage.

A convenient way to edit your local context system setup file is the following; we don’t need to go to
the path where the file resides.

texmfstart bin:scite kpse:cont-sys.tex
Because editing is happenign a lot, you can also say:
texmfstart --edit kpse:cont-sys.tex
You can set the environment variable TEXMFSTART_EDITOR to your favourite editor.

One of the reasons for writing texmfstart is that it permits me to write upward compatible scripts
(batch files), so instead of

texexec --pdf somefile
texexec --pdf anotherfile

I prefer to use:

texmfstart texexec —-pdf somefile
texmfstart texexec —--pdf anotherfile

A bit obscure feature is triggered with ——iftouched, for instance:



texmfstart --iftouched=normal.pdf,lowres.pdf \
downsample.rb --verylow normal.pdf lowres.pdf

Here, downsample.rb is only executed when normal.pdf and lowres.pdf have a different
modification time. After execution, the times are synchronized. This feature is rather handy when you
want to minimize runtime.

There are a few more handy features built in. The reason for putting those into this launching program
is that the sooner they are executed, the less runtime is needed later in the process.

Imagine that you have installed your tree on a network attached storage device. In that case you can
say:

texmfstart --tree=//nas-1/tex texexec --pdf yourfile

There should be a file setuptex.tmf in the root of the tree. An example of such a file is part of the
CONTgXT distribution (minimal trees). This feature permits you to have several trees alongside and
run specific ones.

Another feature is conditional running. We need this for instance when we do runtime graphic
conversions. By checking beforehand if the original file has changed, we can prevent redundant runs.
This feature is used in the resource library tools.

texmfstart —--iftouched=foo.bar,bar.foo convert_foo_to_bar.rb

There are a few more (experimental) features which we will describe in due time.



