
CLD

CLD

CL
D

CLD

CLD

CL
DCLD

CL
D

CL
D

CLDCLD

CLD CLD

CLD
CLD

CLD

CL
D

CLD
CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CLD
CLDCLD

CLD

CL
D

CLD
CLD

CLD CLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLDCLD

CLDCLD

CLDCLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLDCLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CL
DCLD

CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CLDCLD

CLD

CLDCLD

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD CLD

CL
D

CL
D

CLDCLD

CL
D

CLD

CLD

CL
D

CL
D

CLDCLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLDCLD

CLD
CLDCLD

CLDCLD CLD
CLD

CL
D

CLD CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CL
D

CLD

CLD
CLD

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD CLDCLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD
CLD CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD CLD

CLD

CLD
CLD

CL
D

CLD
CLD

CLD

CL
D

CLD
CLD CLD

CL
D

CLD
CLD
CLD

CL
D

CLD

CLD

CLD
CL

D
CLD

CLDCLD

CLD
CLD

CLDCLD CLDCLD

CLDCLD CLD

CLD
CLD

CLD
CLD
CLDCLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLDCLD CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLDCLD

CL
D

CLDCLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CL
D

CLD
CLD
CLD

CLD

CLDCLD

CLD

CL
D

CL
D

CLD

CLD

CLDCLD

CL
D

CLD

CLD

CL
D

CL
DCLD

CLD

CLD

CLD
CLDCLD

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CLD CLD

CL
D

CLD

CLDCLD

CL
D

CLD CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CLD
CLD
CLDCLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD
CL

D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CLDCLD

CLDCLD

CLD
CL

D

CLD

CL
D

CLD

CLDCLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CL
D

CL
D

CLD CLD

CLDCLD

CL
D

CL
D

CL
D

CLD

CLD
CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD CLD
CLD

CLDCLD
CLDCLD

CLD

CLD CLD CLD

CLDCLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD CLD
CLD
CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CLD
CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD
CLDCLD

CLD

CLD
CLD
CLD

CL
DCLD CLD CLD

CL
D

CLD

CL
D

CLDCLD

CLD
CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD CLD

CLD

CLD

CL
DCLD

CLD

CL
D

CLD
CLDCLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLD CLD
CLDCLD

CLDCLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CLDCLD CLD

CLD
CLD

CL
D

CL
D

CLD CLD

CLD

CL
D

CLD

CLD
CLD
CLD

CL
D

CL
D

CLDCLD

CLD
CLD

CLDCLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD CLD

CL
D

CLD

CL
D

CLDCLD

CLDCLD

CL
DCLDCLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLDCLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLDCLD
CLD

CLD
CLD
CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD
CLD
CLD

CL
D

CLD
CLD

CLD
CLD

CL
D

CLD CLD

CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
DCLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CLD
CLD
CLD

CLDCLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLDCLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
DCLD

CLD

CLD
CL

D

CLD

CL
D

CLD
CLD
CLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLDCLD

CL
D

CLD

CLD

CL
D

CLD CLD
CLD

CL
D

CLDCLD

CLD

CLD

CL
D

CL
DCLD

CLD

CLD

CLD

CLD

CLDCLDCLD CLD
CLD

CLDCLD

CLD

CLD
CLD

CLDCLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLDCLD CLD

CL
D

CLD
CLD

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD

CLD CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD
CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CLDCLDCLD CLD

CLD

CLDCLDCLD CLD
CLD

CLDCLD

CL
D

CLD

CLD
CLD

CLDCLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CLDCLDCLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD
CLDCLDCLD

CL
D

CL
D

CLD CLD

CLD CLD
CLD

CL
D

CLD
CLD

CLD

CL
D

CLD
CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLDCLD

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD
CLD
CLD

CLD

CL
DCLD

CLD

CL
D

CLD

CLD

CLD

CLDCLD

CL
D

CLD

CL
D

CLD
CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CL
DCLD

CL
D

CL
D

CLDCLD CLD

CLD

CLD
CLD

CLD CLD

CLD
CLD
CLDCLD

CLD

CL
D

CLD
CLDCLD

CL
D

CL
D

CLD

CLD CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLDCLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLDCLD CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD
CLD

CLD
CLD

CL
D

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CL
D

CLDCLD
CLDCLD

CL
D

CLDCLDCLD CLD

CLD

CL
D

CLD CLD

CLD

CLD

CL
D

CLDCLD CLD

CLD
CLD
CLD
CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLDCLD

CLDCLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD
CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
DCLD

CL
D

CLD

CLD

CL
D

CLD

CLD CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD CLD
CLD

CLD
CLD

CLD
CLD

CL
D

CLD

CL
D

CLD
CLD
CLDCLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD
CLDCLD

CLD

CL
D

CL
D

CLD

CL
D

CLDCLDCLD
CLD

CLD CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD CLDCLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLDCLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD CLD

CLD
CLD
CLD
CLD

CLD

CLDCLD
CLD

CL
D

CLD

CLDCLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLDCLD

CLD

CL
D

CLD
CL

D

CLDCLD

CLD

CL
D

CLD
CL

D
CLD

CLD
CLDCLD

CLD
CL

D

CLDCLD

CLD

CLD

CLD

CLD
CLD

CLDCLD
CL

D

CL
D

CLD

CL
D

CLD

CLD
CL

D

CLD

CLD

CLD
CL

D

CLD
CLD
CLD

CL
D

CLD

CLDCLD

CLDCLD

CLD CLD
CLD

CL
D

CL
D

CL
DCLD

CLDCLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLDCLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLDCLD

CLD
CLD
CLD

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CLDCLDCLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD
CLDCLD

CLD

CL
D

CLD
CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CLDCLD

CLD

CL
D

CLD
CLD

CLD
CLD CLD

CL
D

CLD
CLD
CLDCLD

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLDCLD

CLDCLD

CLDCLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CL
DCLD CLD

CL
D

CLDCLD CLDCLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLDCLDCLD

CLD

CLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CLD

CLD CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD
CLD

CLD
CLD

CL
D

CLD

CLD
CLD

CLD CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLDCLD

CLD
CLD

CLD

CLD

CL
DCLD

CLD

CLD

CLD
CLD

CLD

CLD
CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CLDCLD
CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLDCLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CLDCLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLDCLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLDCLD

CLD
CL

DCLDCLD

CLD

CL
D

CL
D

CLDCLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLDCLD

CL
D

CLD
CLD CLDCLD

CL
D

CL
D

CLD
CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD CLD

CLD

CL
D

CL
D

CLD
CLD

CLD
CLD CLD

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD
CLD

CLD

CLD

CLD
CLDCLD

CL
D

CL
D

CLD

CLD

CLD

CLD
CL

D

CLD
CLDCLD

CL
DCLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
DCLD

CLD

CLD
CLD
CLD
CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
DCLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CL
D

CLD
CLDCLD

CL
D

CLD

CL
DCLD

CLD
CLD
CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLDCLD

CL
D

CLD CLD

CLDCLD

CL
D

CL
D

CL
D

CLD
CLD
CLD

CLD

CLD

CL
D

CL
D

CL
D

CLDCLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLDCLDCLD

CLDCLD
CLD

CL
D

CL
D

CLDCLD CLD

CLD
CLD

CLD

CLDCLD

CLD
CLD

CLD

CLD
CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD
CLD

CLD

CLD

CLDCLD

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLDCLD

CL
D

CLD

CLDCLD CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CLDCLD

CLD

CLDCLD

CLDCLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD
CLD

CLD
CLD

CLDCLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLDCLDCLD

CLD

CLD
CLD

CLD

CLD
CLD

CLDCLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLDCLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CLDCLD CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CL
D

CLD
CLD
CLD

CL
D

CLD
CLDCLD CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CLD CLD

CLDCLD
CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD
CLDCLD

CLD

CLD CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLDCLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CLD

CL
D

CLD
CLD

CLD CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLDCLDCLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLDCLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD
CLD
CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD CLD

CL
D

CLD

CL
D

CLD CLD
CL

D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CLD
CL

D
CL

D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLDCLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLDCLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD
CLD
CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLDCLD

CLDCLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLDCLD CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLDCLD CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CLDCLD

CLD
CLD

CLD

CLD

CLD
CLDCLD

CL
D

CL
D

CLD

CLD

CLD
CLD

CLD CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLDCLD

CLDCLD

CL
D

CLD

CLD

CL
D

CL
D

CLDCLDCLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLDCLD CLD

CL
D

CLD

CLD

CL
D

CL
D

CLDCLD
CLD

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLDCLD
CLD

CL
D

CLD

CLD

CLD

CLDCLD
CLD

CLDCLD

CL
D

CLD

CLD

CL
D

CLD
CLD CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLDCLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD CLD

CLD

CLD

CLD

CL
D

CLD
CLDCLD

CL
D

CLDCLD

CL
D

CL
D

CL
DCLD

CLD

CLD

CLD
CLDCLD

CLD CLD

CLDCLD

CL
D

CL
D

CL
D

CLD

CL
D

CLDCLD

CLD

CLD

CLD
CL

D
CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLDCLD

CLDCLD

CLD

CLD CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLDCLD

CL
D

CLDCLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLDCLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
DCLD

CLD

CLD

CLDCLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD
CLDCLDCLD

CLD

CLD

CL
D

CL
D

CL
D

CLD CLD

CLD

CL
D

CLD

CLD
CLD
CLD

CL
D

CLDCLD
CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CL
D

CLD

CLD
CLDCLD CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD
CLDCLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CL
D

CLDCLD

CLD

CLD

CLD

CL
D

CLD
CLD
CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD
CLD
CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLDCLD
CLD

CLDCLD

CL
D

CLD

CLD

CL
D

CLD

CLDCLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLDCLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD
CLD
CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLDCLD

CLD
CLD

CLD

CLDCLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CLDCLD

CLD
CLD
CLD

CL
D

CLD

CLD

CLD
CLDCLD

CL
D

CLDCLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CLDCLD

CLDCLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD
CLDCLD

CLDCLD
CLD

CL
D

CLD

CL
D

CLD

CLDCLD

CL
D

CLDCLD CLDCLD CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD
CLD

CLD CLDCLD

ConTEXt Lua
Documents

Hans Hagen

1

preliminary, uncorrected version – March 5, 2013

preliminary, uncorrected version – March 5, 2013

2

preliminary, uncorrected version – March 5, 2013

3

preliminary, uncorrected version – March 5, 2013

Contents

Introduction 5

1 A bit of Lua 7
1.1 The language 7
1.2 Data types 7
1.3 TEX’s data types 10
1.4 Control structures 11
1.5 Conditions 12
1.6 Namespaces 13
1.7 Comment 14

2 Getting started 15
2.1 Some basics 15
2.2 The main command 16
2.3 Spaces and Lines 16
2.4 Direct output 18
2.5 Catcodes 19

3 More on functions 23
3.1 Why we need them 23
3.2 How we can avoid them 24
3.3 Trial typesetting 25

4 A few Details 27
4.1 Variables 27
4.2 Modes 27
4.3 Token lists 28
4.4 Node lists 29

5 Some more examples 33
5.1 Appetizer 33
5.2 A few examples 34
5.3 Styles 37
5.4 A complete example 38
5.5 Interfacing 41
5.6 Using helpers 45

6 Graphics 49
6.1 The regular interface 49
6.2 The Lua interface 53

7 Verbatim 55
7.1 Introduction 55
7.2 Special treatment 55
7.3 Multiple lines 55
7.4 Pretty printing 56

8 Logging 61

4

preliminary, uncorrected version – March 5, 2013

9 Lua Functions 63
9.1 Introduction 63
9.2 Tables 63
9.3 Math 73
9.4 Booleans 73
9.5 Strings 74
9.6 utf 82
9.7 Numbers and bits 86
9.8 lpeg patterns 88
9.9 IO 92
9.10 File 94
9.11 Dir 97
9.12 URL 98
9.13 OS 100
9.14 A few suggestions 103

10 The Lua interface code 105
10.1 Introduction 105
10.2 Characters 105
10.3 Fonts 111
10.4 Nodes 115
10.5 Resolvers 118
10.6 Mathematics (math) 120
10.7 Graphics (grph) 120
10.8 Languages (lang) 121
10.9 MetaPost (mlib) 121
10.10 LuaTEX (luat) 121
10.11 Tracing (trac) 121

11 Callbacks 123
11.1 Introduction 123
11.2 Actions 123
11.3 Tasks 125
11.4 Paragraph and page builders 128
11.5 Some examples 128

12 Backend code 129
12.1 Introduction 129
12.2 Structure 129
12.3 Data types 129
12.4 Managing objects 132
12.5 Resources 132
12.6 Annotations 133
12.7 Tracing 133
12.8 Analyzing 133

13 Summary 135

14 Special commands 139

15 Files 141
15.1 Preprocessing 141

Introduction 5

preliminary, uncorrected version – March 5, 2013

Introduction

Sometimes you hear folks complain about the TEX input language, i.e. the backslashed commands
that determine your output. Of course, when alternatives are being discussed every one has a favourite
programming language. In practice coding a document in each of them triggers similar sentiments
with regards to coding as TEX itself does.

So, just for fun, I added a couple of commands to ConTEXt MkIV that permit coding a document in
Lua. In retrospect it has been surprisingly easy to implement a feature like this using metatables.
Of course it’s a bit slower than using TEX as input language but sometimes the Lua interface is more
readable given the problem at hand.

After a while I decided to use that interface in non-critical core ConTEXt code and in styles (modules)
and solutions for projects. Using the Lua approach is sometimes more convenient, especially if the
code mostly manipulates data. For instance, if you process xml files of database output you can use
the interface that is available at the TEX end, or you can use Lua code to do the work, or you can
use a combination. So, from now on, in ConTEXt you can code your style and document source in (a
mixture of) TEX, xml, MetaPost and in Lua.

In the following chapters I will introduce typesetting in Lua, but as we rely on ConTEXt it is unavoid-
able that some regular ConTEXt code shows up. The fact that you can ignore backslashes does not
mean that you can do without knowledge of the underlying system. I expect that the user is somewhat
familiar with this macro package. Some chapters are follow ups on articles or earlier publications.

Although much of the code is still experimental it is also rather stable. Some helpers might disappear
when the main functions become more clever. This manual is definitely far from complete. If you
find errors, please let me know. If you think that something is missing, you can try to convince me
to add it.

Hans Hagen
Hasselt NL
2009 — 2013

6 Introduction

preliminary, uncorrected version – March 5, 2013

A bit of Lua 7

preliminary, uncorrected version – March 5, 2013

1 A bit of Lua

1.1 The language
Small is beautiful and this is definitely true for the programming language Lua (moon in Portuguese).
We had good reasons for using this language in LuaTEX: simplicity, speed, syntax and size to mention
a few. Of course personal taste also played a role and after using a couple of scripting languages
extensively the switch to Lua was rather pleasant.

As the Lua reference manual is an excellent book there is no reason to discuss the language in great
detail: just buy ‘Programming in Lua’ by the Lua team. Nevertheless I will give a short summary of
the important concepts but consult the book if you want more details.

1.2 Data types
The most basic data type is nil. When we define a variable, we don’t need to give it a value:

local v

Here the variable v can get any value but till that happens it equals nil. There are simple data types
like numbers, booleans and strings. Here are some numbers:

local n = 1 + 2 * 3
local x = 2.3

Numbers are always floats1 and you can use the normal arithmetic operators on them as well as func-
tions defined in the math library. Inside TEX we have only integers, although for instance dimensions
can be specified in points using floats but that’s more syntactic sugar. One reason for using integers
in TEX has been that this was the only way to guarantee portability across platforms. However, we’re
30 years along the road and in Lua the floats are implemented identical across platforms, so we don’t
need to worry about compatibility.

Strings in Lua can be given between quotes or can be so called long strings forced by square brackets.

local s = "Whatever"
local t = s .. ' you want'
local u = t .. [[to know]] .. [[--[about Lua!]--]]

The two periods indicate a concatenation. Strings are hashed, so when you say:

local s = "Whatever"
local t = s
local u = t

only one instance of Whatever is present in memory and this fact makes Lua very efficient with
respect to strings. Strings are constants and therefore when you change variable s, variable t keeps
its value. When you compare strings, in fact you compare pointers, a method that is really fast. This
compensates the time spent on hashing pretty well.

Booleans are normally used to keep a state or the result from an expression.

1 This is true for all versions upto 5.2 but following version can have a more hybrid model.

8 A bit of Lua

preliminary, uncorrected version – March 5, 2013

local b = false
local c = n > 10 and s == "whatever"

The other value is true. There is something that you need to keep in mind when you do testing on
variables that are yet unset.

local b = false
local n

The following applies when b and n are defined this way:

b == false true
n == false false
n == nil true
b == nil false
b == n false
n == nil true

Often a test looks like:

if somevar then
...

else
...

end

In this case we enter the else branch when somevar is either nil or false. It also means that by
looking at the code we cannot beforehand conclude that somevar equals true or something else. If
you want to really distinguish between the two cases you can be more explicit:

if somevar == nil then
...

elseif somevar == false then
...

else
...

end

or

if somevar == true then
...

else
...

end

but such an explicit test is seldom needed.

There are a few more data types: tables and functions. Tables are very important and you can recog-
nize them by the same curly braces that make TEX famous:

local t = { 1, 2, 3 }
local u = { a = 4, b = 9, c = 16 }
local v = { [1] = "a", [3] = "2", [4] = false }

A bit of Lua 9

preliminary, uncorrected version – March 5, 2013

local w = { 1, 2, 3, a = 4, b = 9, c = 16 }

The t is an indexed table and u a hashed table. Because the second slot is empty, table v is partially
indexed (slot 1) and partially hashed (the others). There is a gray area there, for instance, what hap-
pens when you nil a slot in an indexed table? In practice you will not run into problems as you will
either use a hashed table, or an indexed table (with no holes), so table w is not uncommon.

We mentioned that strings are in fact shared (hashed) but that an assignment of a string to a variable
makes that variable behave like a constant. Contrary to that, when you assign a table, and then copy
that variable, both variables can be used to change the table. Take this:

local t = { 1, 2, 3 }
local u = t

We can change the content of the table as follows:

t[1], t[3] = t[3], t[1]

Here we swap two cells. This is an example of a parallel assigment. However, the following does the
same:

t[1], t[3] = u[3], u[1]

After this, both t and u still share the same table. This kind of behaviour is quite natural. Keep in
mind that expressions are evalutaed first, so

t[#t+1], t[#t+1] = 23, 45

Makes no sense, as the values end up in the same slot. There is no gain in speed so using parallel
assignments is mostly a convenience feature.

There are a few specialized data types in Lua, like coroutines (built in), file (when opened), lpeg
(only when this library is linked in or loaded). These are called ‘userdata’ objects and in LuaTEX
we have more userdata objects as we will see in later chapters. Of them nodes are the most notice-
able: they are the core data type of the TEX machinery. Other libraries, like math and bit32 are just
collections of functions operating on numbers.

Functions look like this:

function sum(a,b)
print(a, b, a + b)

end

or this:

function sum(a,b)
return a + b

end

There can be many arguments of all kind of types and there can be multiple return values. A function
is a real type, so you can say:

local f = function(s) print("the value is: " .. s) end

In all these examples we defined variables as local. This is a good practice and avoids clashes. Now
watch the following:

10 A bit of Lua

preliminary, uncorrected version – March 5, 2013

local n = 1

function sum(a,b)
n = n + 1
return a + b

end

function report()
print("number of summations: " .. n)

end

Here the variable n is visible after its definition and accessible for the two global functions. Actually
the variable is visible to all the code following, unless of course we define a new variable with the
same name. We can hide n as follows:

do
local n = 1

sum = function(a,b)
n = n + 1
return a + b

end

report = function()
print("number of summations: " .. n)

end
end

This example also shows another way of defining the function: by assignment.

The do ... end creates a so called closure. There are many places where such closures are created, for
instance in function bodies or branches like if ... then ... else. This means that in the following
snippet, variable b is not seen after the end:

if a > 10 then
local b = a + 10
print(b*b)

end

When you process a blob of Lua code in TEX (using \directlua or \latelua) it happens in a closure
with an implied do ... end. So, local defined variables are really local.

1.3 TEX’s data types
We mentioned numbers. At the TEX end we have counters as well as dimensions. Both are numbers
but dimensions are specified differently

local n = tex.count[0]
local m = tex.dimen.lineheight
local o = tex.sp("10.3pt") -- sp or 'scaled point' is the smallest unit

The unit of dimension is ‘scaled point’ and this is a pretty small unit: 10 points equals to 655360 such
units.

A bit of Lua 11

preliminary, uncorrected version – March 5, 2013

Another accessible data type is tokens. They are automatically converted to strings and vice versa.

tex.toks[0] = "message"
print(tex.toks[0])

Be aware of the fact that the tokens are letters so the following will come out as text and not issue a
message:

tex.toks[0] = "\message{just text}"
print(tex.toks[0])

1.4 Control structures
Loops are not much different from other languages: we have for ... do, while ... do and repeat
... until. We start with the simplest case:

for index=1,10 do
print(index)

end

You can specify a step and go downward as well:

for index=22,2,-2 do
print(index)

end

Indexed tables can be traversed this way:

for index=1,#list do
print(index, list[index])

end

Hashed tables on the other hand are dealt with as follows:

for key, value in next, list do
print(key, value)

end

Here next is a built in function. There is more to say about this mechanism but the average user will
use only this variant. Slightly less efficient is the following, more readable variant:

for key, value in pairs(list) do
print(key, value)

end

and for an indexed table:

for index, value in ipairs(list) do
print(index, value)

end

The function call to pairs(list) returns next, list so there is an (often neglectable) extra over-
head of one function call.

12 A bit of Lua

preliminary, uncorrected version – March 5, 2013

The other two loop variants, while and repeat, are similar.

i = 0
while i < 10 do
i = i + 1
print(i)

end

This can also be written as:

i = 0
repeat
i = i + 1
print(i)

until i = 10

Or:

i = 0
while true do
i = i + 1
print(i)
if i = 10 then
break

end
end

Of course you can use more complex expressions in such constructs.

1.5 Conditions
Conditions have the following form:

if a == b or c > d or e then
...

elseif f == g then
...

else
...

end

Watch the double ==. The complement of this is ~=. Precedence is similar to other languages. In
practice, as strings are hashed. Tests like

if key == "first" then
...

end

and

if n == 1 then
...

end

A bit of Lua 13

preliminary, uncorrected version – March 5, 2013

are equally efficient. There is really no need to use numbers to identify states instead of more verbose
strings.

1.6 Namespaces
Functionality can be grouped in libraries. There are a few default libraries, like string, table, lpeg,
math, io and os and LuaTEX adds some more, like node, tex and texio.

A library is in fact nothing more than a bunch of functionality organized using a table, where the
table provides a namespace as well as place to store public variables. Of course there can be local
(hidden) variables used in defining functions.

do
mylib = { }

local n = 1

function mylib.sum(a,b)
n = n + 1
return a + b

end

function mylib.report()
print("number of summations: " .. n)

end
end

The defined function can be called like:

mylib.report()

You can also create a shortcut, This speeds up the process because there are less lookups then. In the
following code multiple calls take place:

local sum = mylib.sum

for i=1,10 do
for j=1,10 do
print(i, j, sum(i,j))

end
end

mylib.report()

As Lua is pretty fast you should not overestimate the speedup, especially not when a function is called
seldom. There is an important side effect here: in the case of:

print(i, j, sum(i,j))

the meaning of sum is frozen. But in the case of

print(i, j, mylib.sum(i,j))

14 A bit of Lua

preliminary, uncorrected version – March 5, 2013

The current meaning is taken, that is: each time the interpreter will access mylib and get the current
meaning of sum. And there can be a good reason for this, for instance when the meaning is adapted
to different situations.

In ConTEXt we have quite some code organized this way. Although much is exposed (if only because
it is used all over the place) you should be careful in using functions (and data) that are still exper-
imental. There are a couple of general libraries and some extend the core Lua libraries. You might
want to take a look at the files in the distribution that start with l-, like l-table.lua. These files
are preloaded.2 For instance, if you want to inspect a table, you can say:

local t = { "aap", "noot", "mies" }
table.print(t)

You can get an overview of what is implemented by running the following command:

context s-tra-02 --mode=tablet

todo: add nice synonym for this module and also add helpinfo at the to so that we can do context --styles

1.7 Comment
You can add comments to your Lua code. There are basically two methods: one liners and multi line
comments.

local option = "test" -- use this option with care

local method = "unknown" --[[comments can be very long and when entered
this way they and span multiple lines]]

The so called long comments look like long strings preceded by -- and there can be more complex
boundary sequences.

2 In fact, if you write scripts that need their functionality, you can use mtxrun to process the script, as mtxrun has the core
libraries preloaded as well.

Getting started 15

preliminary, uncorrected version – March 5, 2013

2 Getting started

2.1 Some basics
I assume that you have either the so called ConTEXt standalone (formerly known as minimals) in-
stalled or TEXLive. You only need LuaTEX and can forget about installing pdfTEX or XƎTEX, which
saves you some megabytes and hassle. Now, from the users perspective a ConTEXt run goes like:

context yourfile

and by default a file with suffix tex, mkvi or mkvi will be processed. There are however a few other
options:

context yourfile.xml
context yourfile.rlx --forcexml
context yourfile.lua
context yourfile.pqr --forcelua
context yourfile.cld
context yourfile.xyz --forcecld
context yourfile.mp
context yourfile.xyz --forcemp

When processing a Lua file the given file is loaded and just processed. This options will seldom be
used as it is way more efficient to let mtxrun process that file. However, the last two variants are what
we will discuss here. The suffix cld is a shortcut for ConTEXt Lua Document.

A simple cld file looks like this:

context.starttext()
context.chapter("Hello There!")
context.stoptext()

So yes, you need to know the ConTEXt commands in order to use this mechanism. In spite of what
you might expect, the codebase involved in this interface is not that large. If you know ConTEXt, and
if you know how to call commands, you basically can use this Lua method.

The examples that I will give are either (sort of) standalone, i.e. they are dealt with from Lua, or they
are run within this document. Therefore you will see two patterns. If you want to make your own
documentation, then you can use this variant:

\startbuffer
context("See this!")
\stopbuffer

\typebuffer \ctxluabuffer

I use anonymous buffers here but you can also use named ones. The other variant is:

\startluacode
context("See this!")
\stopluacode

16 Getting started

preliminary, uncorrected version – March 5, 2013

This will process the code directly. Of course we could have encoded this document completely in
Lua but that is not much fun for a manual.

2.2 The main command
There are a few rules that you need to be aware of. First of all no syntax checking is done. Second
you need to know what the given commands expects in terms of arguments. Third, the type of your
arguments matters:

nothing : just the command, no arguments
string : an argument with curly braces
array : a list between square backets (sometimes optional)
hash : an assignment list between square brackets
boolean : when true a newline is inserted

: when false, omit braces for the next argument

In the code above you have seen examples of this but here are some more:

context.chapter("Some title")
context.chapter({ "first" }, "Some title")
context.startchapter({ title = "Some title", label = "first" })

This blob of code is equivalent to:

\chapter{Some title}
\chapter[first]{Some title}
\startchapter[title={Some title},label=first]

You can simplify the third line of the Lua code to:

context.startchapter { title = "Some title", label = "first" }

In case you wonder what the distinction is between square brackets and curly braces: the first category
of arguments concerns settings or lists of options or names of instances while the second category
normally concerns some text to be typeset.

Strings are interpreted as TEX input, so:

context.mathematics("\\sqrt{2^3}")

and if you don’t want to escape:

context.mathematics([[\sqrt{2^3}]])

are both correct. As TEX math is a language in its own and a de-facto standard way of inputting math
this is quite natural, even at the Lua end.

2.3 Spaces and Lines
In a regular TEX file, spaces and newline characters are collapsed into one space. At the Lua end the
same happens. Compare the following examples. First we omit spaces:

context("left")
context("middle")

Getting started 17

preliminary, uncorrected version – March 5, 2013

context("right")

leftmiddleright

Next we add spaces:

context("left")
context(" middle ")
context("right")

left middle right

We can also add more spaces:

context("left ")
context(" middle ")
context(" right")

left middle right

In principle all content becomes a stream and after that the TEX parser will do its normal work: col-
lapse spaces unless configured to do otherwise. Now take the following code:

context("before")
context("word 1")
context("word 2")
context("word 3")
context("after")

beforeword 1word 2word 3after

Here we get no spaces between the words at all, which is what we expect. So, how do we get lines
(or paragraphs)?

context("before")
context.startlines()
context("line 1")
context("line 2")
context("line 3")
context.stoplines()
context("after")

before

line 1line 2line 3

after

This does not work out well, as again there are no lines seen at the TEX end. Newline tokens are
injected by passing true to the context command:

context("before")
context.startlines()
context("line 1") context(true)
context("line 2") context(true)

18 Getting started

preliminary, uncorrected version – March 5, 2013

context("line 3") context(true)
context.stoplines()
context("after")

before

line 1
line 2
line 3

after

Don’t confuse this with:

context("before") context.par()
context("line 1") context.par()
context("line 2") context.par()
context("line 3") context.par()
context("after") context.par()

before

line 1

line 2

line 3

after

There we use the regular \par command to finish the current paragraph and normally you will use
that method. In that case, when set, whitespace will be added between paragraphs.

This newline issue is a somewhat unfortunate inheritance of traditional TEX, where \n and \r mean
something different. I’m still not sure if the cld do the right thing as dealing with these tokens also
depends on the intended effect. Catcodes as well as the LuaTEX input parser also play a role. Anyway,
the following also works:

context.startlines()
context("line 1\n")
context("line 2\n")
context("line 3\n")
context.stoplines()

2.4 Direct output
The ConTEXt user interface is rather consistent and the use of special input syntaxes is discouraged.
Therefore, the Lua interface using tables and strings works quite well. However, imagine that you
need to support some weird macro (or a primitive) that does not expect its argument between curly
braces or brackets. The way out is to precede an argument by another one with the value false. We
call this the direct interface. This is demonstrated in the following example.

\unexpanded\def\bla#1{[#1]}

Getting started 19

preliminary, uncorrected version – March 5, 2013

\startluacode
context.bla(false,"***")
context.par()
context.bla("***")
\stopluacode

This results in:

[*]**

[***]

Here, the first call results in three * being passed, and #1 picks up the first token. The second call
to bla gets {***} passed so here #1 gets the triplet. In practice you will seldom need the direct
interface.

In ConTEXt for historical reasons, combinations accept the following syntax:

\startcombination % optional specification, like [2*3]
{\framed{content one}} {caption one}
{\framed{content two}} {caption two}

\stopcombination

You can also say:

\startcombination
\combination {\framed{content one}} {caption one}
\combination {\framed{content two}} {caption two}

\stopcombination

When coded in Lua, we can feed the first variant as follows:

context.startcombination()
context.direct("one","two")
context.direct("one","two")

context.stopcombination()

To give you an idea what this looks like, we render it:

one one
two two

So, the direct function is basically a no-op and results in nothing by itself. Only arguments are
passed. An equivalent but bit more ugly looking is:

context.startcombination()
context(false,"one","two")
context(false,"one","two")

context.stopcombination()

2.5 Catcodes
If you are familiar with the inner working of TEX, you will know that characters can have special
meanings. This meaning is determined by their catcodes.

20 Getting started

preliminary, uncorrected version – March 5, 2013

context("$x=1$")

This gives: 𝑥 = 1 because the dollar tokens trigger inline math mode. If you think that this is annoy-
ing, you can do the following:

context.pushcatcodes("text")
context("$x=1$")
context.popcatcodes()

Now we get: $x=1$. There are several catcode regimes of which only a few make sense in the per-
spective of the cld interface.

ctx, ctxcatcodes, context the normal ConTEXt catcode regime
prt, prtcatcodes, protect the ConTEXt protected regime, used for modules
tex, texcatcodes, plain the traditional (plain) TEX regime
txt, txtcatcodes, text the ConTEXt regime but with less special characters
vrb, vrbcatcodes, verbatim a regime specially meant for verbatim
xml, xmlcatcodes a regime specially meant for xml processing

In the second case you can still get math:

context.pushcatcodes("text")
context.mathematics("x=1")
context.popcatcodes()

When entering a lot of math you can also consider this:

context.startimath()
context("x")
context("=")
context("1")
context.stopimath()

Module writers of course can use unprotect and protect as they do at the TEX end.

As we’ve seen, a function call to context acts like a print, as in:

context("test ")
context.bold("me")
context(" first")

test me first

When more than one argument is given, the first argument is considered a format conforming the
string.format function.

context.startimath()
context("%s = %0.5f",utf.char(0x03C0),math.pi)
context.stopimath()

𝜋 = 3.14159

This means that when you say:

context(a,b,c,d,e,f)

Getting started 21

preliminary, uncorrected version – March 5, 2013

the variables b till f are passed to the format and when the format does not use them, they will not
end up in your output.

context("%s %s %s",1,2,3)
context(1,2,3)

The first line results in the three numbers being typeset, but in the second case only the number 1 is
typeset.

22 Getting started

preliminary, uncorrected version – March 5, 2013

More on functions 23

preliminary, uncorrected version – March 5, 2013

3 More on functions

3.1 Why we need them
In a previous chapter we introduced functions as arguments. At first sight this feature looks strange
but you need to keep in mind that a call to acontext function has no direct consequences. It generates
TEX code that is executed after the current Lua chunk ends and control is passed back to TEX. Take
the following code:

context.framed({
frame = "on",
offset = "5mm",
align = "middle"

},
context.input("knuth")

)

We call the function framed but before the function body is executed, the arguments get evaluated.
This means that input gets processed before framed gets done. As a result there is no second argu-
ment to framed and no content gets passed: an error is reported. This is why we need the indirect
call:

context.framed({
frame = "on",
align = "middle"

},
function() context.input("knuth") end

)

This way we get what we want:

Thus, I came to the conclusion that the designer of a new system must not only be the
implementer and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been

made, because I would never have thought of them or perceived why they were important.
But a system cannot be successful if it is too strongly influenced by a single

person. Once the initial design is complete and fairly robust, the real test begins
as people with many different viewpoints undertake their own experiments.

The function is delayed till the framed command is executed. If your applications use such calls a
lot, you can of course encapsulate this ugliness:

mycommands = mycommands or { }

function mycommands.framed_input(filename)
context.framed({
frame = "on",
align = "middle"

},
function() context.input(filename) end

24 More on functions

preliminary, uncorrected version – March 5, 2013

end

mycommands.framed_input("knuth")

Of course you can nest function calls:

context.placefigure(
"caption",
function()
context.framed({
frame = "on",
align = "middle"

},
function() context.input("knuth") end

)
end

)

Or you can use a more indirect method:

function text()
context.framed({

frame = "on",
align = "middle"

},
function() context.input("knuth") end

)
end

context.placefigure(
"none",
function() text() end

)

You can develop your own style and libraries just like you do with regular Lua code. Browsing the
already written code can give you some ideas.

3.2 How we can avoid them
As many nested functions can obscure the code rather quickly, there is an alternative. In the following
examples we use test:

\def\test#1{[#1]}

context.test("test 1 ",context("test 2a")," test 3")

This gives: test 2a[test 1] test 3. As you can see, the second argument is executed before the encap-
sulating call to test. So, we should have packed it into a function but here is an alternative:

context.test("test 1 ",context.delayed("test 2a")," test 3")

Now we get: [test 1]test 2a test 3. We can also delay functions themselves, look at this:

More on functions 25

preliminary, uncorrected version – March 5, 2013

context.test("test 1 ",context.delayed.test("test 2b")," test 3")

The result is: [test 1][test 2b] test 3. This feature also conveniently permits the use of temporary
variables, as in:

local f = context.delayed.test("test 2c")
context("before ",f," after")

Of course you can limit the amount of keystrokes even more by creating a shortcut:

local delayed = context.delayed

context.test("test 1 ",delayed.test("test 2")," test 3")
context.test("test 4 ",delayed.test("test 5")," test 6")

So, if you want you can produce rather readable code and readability of code is one of the reasons
why Lua was chosen in the first place. This is a good example of why coding in TEX makes sense as
it looks more intuitive:

\test{test 1 \test{test 2} test 3}
\test{test 4 \test{test 5} test 6}

There is also another mechanism available. In the next example the second argument is actually a
string.

local nested = context.nested

context.test("test 8",nested.test("test 9"),"test 10")

There is a pitfall here: a nested context command needs to be flushed explicitly, so in the case of:

context.nested.test("test 9")

a string is created but nothing ends up at the TEX end. Flushing is up to you. Beware: nested only
works with the regular ConTEXt catcode regime.

3.3 Trial typesetting
Some typesetting mechanisms demand a preroll. For instance, when determining the most optimal
way to analyse and therefore typeset a table, it is necessary to typeset the content of cells first. Inside
ConTEXt there is a state tagged ‘trial typesetting’ which signals other mechanisms that for instance
counters should not be incremented more than once.

Normally you don’t need to worry about these issues, but when writing the code that implements
the Lua interface to ConTEXt, it definitely had to be taken into account as we either or not can free
cached (nested) functions.

You can influence this caching to some extend. If you say

function()
context("whatever")

end

the function will be removed from the cache when ConTEXt is not in the trial typesetting state. You
can prevent removal of a function by returning true, as in:

26 More on functions

preliminary, uncorrected version – March 5, 2013

function()
context("whatever")
return true

end

Whenever you run into a situation that you don’t get the outcome that you expect, you can consider
returning true. However, keep in mind that it will take more memory, something that only matters
on big runs. You can force flushing the whole cache by:

context.restart()

An example of an occasion where you need to keep the function available is in repeated content, for
instance in headers and footers.

context.setupheadertexts {
function()
context.pagenumber()
return true

end
}

Of course it is not needed when you use the following method:

context.pagenumber("pagenumber")

Because here ConTEXt itself deals with the content driven by the keyword pagenumber.

A few Details 27

preliminary, uncorrected version – March 5, 2013

4 A few Details

4.1 Variables
Normally it makes most sense to use the English version of ConTEXt. The advantage is that you can
use English keywords, as in:

context.framed({
frame = "on",

},
"some text"

)

If you use the Dutch interface it looks like this:

context.omlijnd({
kader = "aan",

},
"wat tekst"

)

A rather neutral way is:

context.framed({
frame = interfaces.variables.on,

},
"some text"

)

But as said, normally you will use the English user interface so you can forget about these matters.
However, in the ConTEXt core code you will often see the variables being used this way because there
we need to support all user interfaces.

4.2 Modes
Context carries a concept of modes. You can use modes to create conditional sections in your style
(and/or content). You can control modes in your styles or you can set them at the command line or
in job control files. When a mode test has to be done at processing time, then you need constructs
like the following:

context.doifmodeelse("screen",
function()

... -- mode == screen
end,
function()

... -- mode ~= screen
end

)

However, often a mode does not change during a run, and then we can use the following method:

28 A few Details

preliminary, uncorrected version – March 5, 2013

if tex.modes["screen"] then
...

else
...

end

Watch how the modes table lives in the tex namespace. We also have systemmodes. At the TEX end
these are mode names preceded by a *, so the following code is similar:

if tex.modes["*mymode"] then
-- this is the same

elseif tex.systemmodes["mymode"] then
-- test as this

else
-- but not this

end

Inside ConTEXt we also have so called constants, and again these can be consulted at the Lua end:

if tex.constants["someconstant'] then
...

else
...

end

But you will hardly need these and, as they are often not public, their meaning can change, unless of
course they are documented as public.

4.3 Token lists
There is normally no need to mess around with nodes and tokens at the Lua end yourself. However,
if you do, then you might want to flush them as well. Say that at the TEX end we have said:

\toks0 = {Don't get \inframed{framed}!}

Then at the Lua end you can say:

context(tex.toks[0])

and get: Don’t get framed ! In fact, token registers are exposed as strings so here, register zero has
type string and is treated as such.

context("< %s >",tex.toks[0])

This gives: < Don’t get framed ! >. But beware, if you go the reverse way, you don’t get what you
might expect:

tex.toks[0] = [[\framed{oeps}]]

If we now say \the\toks0 we will get \framed{oeps} as all tokens are considered to be letters.

A few Details 29

preliminary, uncorrected version – March 5, 2013

4.4 Node lists
If you’re not deep into TEX you will never feel the need to manipulate node lists yourself, but you
might want to flush boxes. As an example we put something in box zero (one of the scratch boxes).

\setbox0 = \hbox{Don't get \inframed{framed}!}

At the TEX end you can flush this box (\box0) or take a copy (\copy0). At the Lua end you would do:

context.copy()
context.direct(0)

or:

context.copy(false,0)

but this works as well:

context(node.copy_list(tex.box[0]))

So we get: Don’t get framed ! If you do:

context(tex.box[0])

you also need to make sure that the box is freed but let’s not go into those details now.

Here is an example if messing around with node lists that get seen before a paragraph gets broken
into lines, i.e. when hyphenation, font manipulation etc take place. First we define some colors:

\definecolor[mynesting:0][r=.6]
\definecolor[mynesting:1][g=.6]
\definecolor[mynesting:2][r=.6,g=.6]

Next we define a function that colors nodes in such a way that we can see the different processing
stages.

\startluacode
local enabled = false
local count = 0
local setcolor = nodes.tracers.colors.set

function userdata.processmystuff(head)
if enabled then

local color = "mynesting:" .. (count % 3)
-- for n in node.traverse(head) do

for n in node.traverse_id(nodes.nodecodes.glyph,head) do
setcolor(n,color)

end
count = count + 1
return head, true

end
return head, false

end

function userdata.enablemystuff()

30 A few Details

preliminary, uncorrected version – March 5, 2013

enabled = true
end

function userdata.disablemystuff()
enabled = false

end
\stopluacode

We hook this function into the normalizers category of the processor callbacks:

\startluacode
nodes.tasks.appendaction("processors", "normalizers", "userdata.processmystuff")
\stopluacode

We now can enable this mechanism and show an example:

\startbuffer
Node lists are processed \hbox {nested from \hbox{inside} out} which is not
what you might expect. But, \hbox{coloring} does not \hbox {happen} really
nested here, more \hbox {in} \hbox {the} \hbox {order} \hbox {of} \hbox
{processing}.
\stopbuffer

\ctxlua{userdata.enablemystuff()}
\par \getbuffer \par
\ctxlua{userdata.disablemystuff()}

The \par is needed because otherwise the processing is already disabled before the paragraph gets
seen by TEX.

Node lists are processed nested from inside out which is not what you might expect. But, coloring
does not happen really nested here, more in the order of processing.

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

Instead of using an boolean to control the state, we can also do this:

\startluacode
local count = 0
local setcolor = nodes.tracers.colors.set

function userdata.processmystuff(head)
count = count + 1
local color = "mynesting:" .. (count % 3)
for n in node.traverse_id(nodes.nodecodes.glyph,head) do

setcolor(n,color)
end
return head, true

end

nodes.tasks.appendaction("processors", "after", "userdata.processmystuff")

A few Details 31

preliminary, uncorrected version – March 5, 2013

\stopluacode

Disabling now happens with:

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

As you might want to control these things in more details, a simple helper mechanism was made:
markers. The following example code shows the way:

\definemarker[mymarker]

Again we define some colors:

\definecolor[mymarker:1][r=.6]
\definecolor[mymarker:2][g=.6]
\definecolor[mymarker:3][r=.6,g=.6]

The Lua code like similar to the code presented before:

\startluacode
local setcolor = nodes.tracers.colors.setlist
local getmarker = nodes.markers.get
local hlist_code = nodes.codes.hlist
local traverse_id = node.traverse_id

function userdata.processmystuff(head)
for n in traverse_id(hlist_code,head) do

local m = getmarker(n,"mymarker")
if m then

setcolor(n.list,"mymarker:" .. m)
end

end
return head, true

end

nodes.tasks.appendaction("processors", "after", "userdata.processmystuff")
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

This time we disabled the processor (if only because in this document we don’t want the overhead.

\startluacode
nodes.tasks.enableaction("processors", "userdata.processmystuff")
\stopluacode

Node lists are processed \hbox \boxmarker{mymarker}{1} {nested from \hbox{inside}
out} which is not what you might expect. But, \hbox {coloring} does not \hbox
{happen} really nested here, more \hbox {in} \hbox \boxmarker{mymarker}{2} {the}
\hbox {order} \hbox {of} \hbox \boxmarker{mymarker}{3} {processing}.

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")

32 A few Details

preliminary, uncorrected version – March 5, 2013

\stopluacode

The result looks familiar:

Node lists are processed nested from inside out which is not what you might expect. But, coloring
does not happen really nested here, more in the order of processing.

Some more examples 33

preliminary, uncorrected version – March 5, 2013

5 Some more examples

5.1 Appetizer
Before we give some more examples, we will have a look at the way the title page is made. This way
you get an idea what more is coming.

local todimen, random = number.todimen, math.random

context.startTEXpage()

local paperwidth = tex.dimen.paperwidth
local paperheight = tex.dimen.paperheight
local nofsteps = 25
local firstcolor = "darkblue"
local secondcolor = "white"

context.definelayer(
{ "titlepage" }

)

context.setuplayer(
{ "titlepage" },
{

width = todimen(paperwidth),
height = todimen(paperheight),

}
)

context.setlayerframed(
{ "titlepage" },
{ offset = "-5pt" },
{

width = todimen(paperwidth),
height = todimen(paperheight),
background = "color",
backgroundcolor = firstcolor,
backgroundoffset = "10pt",
frame = "off",

},
""

)

local settings = {
frame = "off",
background = "color",
backgroundcolor = secondcolor,
foregroundcolor = firstcolor,
foregroundstyle = "type",

}

34 Some more examples

preliminary, uncorrected version – March 5, 2013

for i=1, nofsteps do
for j=1, nofsteps do

context.setlayerframed(
{ "titlepage" },
{

x = todimen((i-1) * paperwidth /nofsteps),
y = todimen((j-1) * paperheight/nofsteps),
rotation = random(360),

},
settings,
"CLD"

)
end

end

context.tightlayer(
{ "titlepage" }

)

context.stopTEXpage()

return true

This does not look that bad, does it? Of course in pure TEX code it looks mostly the same but loops
and calculations feel a bit more natural in Lua then in TEX. The result is shown in figure 5.1. The
actual cover page was derived from this.

5.2 A few examples
As it makes most sense to use the Lua interface for generated text, here is another example with a
loop:

context.startitemize { "a", "packed", "two" }
for i=1,10 do
context.startitem()
context("this is item %i",i)

context.stopitem()
end

context.stopitemize()

a. this is item 1
b. this is item 2
c. this is item 3
d. this is item 4
e. this is item 5
f. this is item 6
g. this is item 7
h. this is item 8
i. this is item 9
j. this is item 10

Some more examples 35

preliminary, uncorrected version – March 5, 2013

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD
CL

D
CL

D

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CL

D
CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD
CLD

CLD
CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD
CLD

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

Figure 5.1 The simplified cover page.

Just as you can mix TEX with xml and MetaPost, you can define bits and pieces of a document in Lua.
Tables are good candidates:

local one = {
align = "middle",
style = "type",

}
local two = {
align = "middle",
style = "type",
background = "color",
backgroundcolor = "darkblue",
foregroundcolor = "white",

}
local random = math.random
context.startlinecorrection { "blank" }
context.bTABLE { framecolor = "darkblue" }
for i=1,10 do
context.bTR()
for i=1,20 do

local r = random(99)
context.bTD(r < 50 and one or two)
context("%#2i",r)

36 Some more examples

preliminary, uncorrected version – March 5, 2013

34 74 52 56 74 47 45 50 58 56 62 79 56 3 5 2 85 18 80 7
55 80 90 55 73 61 89 27 95 32 69 53 67 25 15 9 28 50 43 47
49 65 12 50 71 24 86 78 89 78 57 92 80 56 1 26 13 10 61 95
17 40 75 10 81 4 83 76 36 99 69 61 87 35 71 7 84 93 96 53
55 83 99 79 13 85 31 97 62 92 37 32 2 64 18 99 66 68 9 34
91 43 4 75 49 59 84 41 38 8 73 37 74 88 71 2 71 35 3 36
50 49 25 37 68 70 25 66 12 67 67 77 39 70 6 38 16 24 24 64
30 2 31 8 40 36 62 11 28 15 13 71 9 9 59 28 90 65 1 20
15 42 65 14 78 9 11 63 68 4 88 2 8 53 64 8 49 63 92 73
7 74 37 99 72 92 6 39 93 96 29 36 73 22 35 67 61 31 36 31

Table 5.1 A table generated by Lua.

context.eTD()
end
context.eTR()

end
context.eTABLE()

context.stoplinecorrection()

Here we see a function call to context in the most indented line. The first argument is a format
that makes sure that we get two digits and the random number is substituted into this format. The
result is shown in table 5.1. The line correction is ignored when we use this table as a float, otherwise
it assures proper vertical spacing around the table. Watch how we define the tables one and two
beforehand. This saves 198 redundant table constructions.

Not all code will look as simple as this. Consider the following:

context.placefigure(
"caption",
function() context.externalfigure({ "cow.pdf" }) end

)

Here we pass an argument wrapped in a function. If we would not do that, the external figure would
end up wrong, as arguments to functions are evaluated before the function that gets them (we already
showed some alternative approaches in previous chapters). A function argument is treated as special
and in this case the external figure ends up right. Here is another example:

context.placefigure("Two cows!",function()
context.bTABLE()
context.bTR()
context.bTD()
context.externalfigure(

{ "cow.pdf" },
{ width = "3cm", height = "3cm" }

)
context.eTD()
context.bTD { align = "{lohi,middle}" }

Some more examples 37

preliminary, uncorrected version – March 5, 2013

context("and")
context.eTD()
context.bTD()
context.externalfigure(

{ "cow.pdf" },
{ width = "4cm", height = "3cm" }

)
context.eTD()

context.eTR()
context.eTABLE()

end)

In this case the figure is not an argument so it gets flushed sequentially with the rest.

and

Figure 5.2 Two cows!

5.3 Styles
Say that you want to typeset a word in a bold font. You can do that this way:

context("This is ")
context.bold("important")
context("!")

Now imagine that you want this important word to be in red too. As we have a nested command, we
end up with a nested call:

context("This is ")
context.bold(function() context.color({ "red" }, "important") end)
context("!")

or

context("This is ")
context.bold(context.delayed.color({ "red" }, "important"))
context("!")

In that case it’s good to know that there is a command that combines both features:

context("This is ")
context.style({ style = "bold", color = "red" }, "important")
context("!")

But that is still not convenient when we have to do that often. So, you can wrap the style switch in a
function.

38 Some more examples

preliminary, uncorrected version – March 5, 2013

local function mycommands.important(str)
context.style({ style = "bold", color = "red" }, str)

end

context("This is ")
mycommands.important("important")
context(", and ")
mycommands.important("this")
context(" too !")

Or you can setup a named style:

context.setupstyle({ "important" }, { style = "bold", color = "red" })

context("This is ")
context.style({ "important" }, "important")
context(", and ")
context.style({ "important" }, "this")
context(" too !")

Or even define one:

context.definestyle({ "important" }, { style = "bold", color = "red" })

context("This is ")
context.important("important")
context(", and ")
context.important("this")
context(" too !")

This last solution is especially handy for more complex cases:

context.definestyle({ "important" }, { style = "bold", color = "red" })

context("This is ")
context.startimportant()
context.inframed("important")
context.stopimportant()
context(", and ")
context.important("this")
context(" too !")

This is important , and this too !

5.4 A complete example
One day my 6 year old niece Lorien was at the office and wanted to know what I was doing. As I
knew she was practicing arithmetic at school I wrote a quick and dirty script to generate sheets with
exercises. The most impressive part was that the answers were included. It was a rather braindead
bit of Lua, written in a few minutes, but the weeks after I ended up running it a few more times, for
her and her friends, every time a bit more difficult and also using different arithmetic. It was that
script that made me decide to extend the basic cld manual into this more extensive document.

Some more examples 39

preliminary, uncorrected version – March 5, 2013

We generate three columns of exercises. Each exercise is a row in a table. The last argument to the
function determines if answers are shown.

local random = math.random

local function ForLorien(n,maxa,maxb,answers)
context.startcolumns { n = 3 }
context.starttabulate { "|r|c|r|c|r|" }
for i=1,n do
local sign = random(0,1) > 0.5
local a, b = random(1,maxa or 99), random(1,max or maxb or 99)
if b > a and not sign then a, b = b, a end
context.NC()
context(a)
context.NC()
context.mathematics(sign and "+" or "-")
context.NC()
context(b)
context.NC()
context("=")
context.NC()
context(answers and (sign and a+b or a-b))
context.NC()
context.NR()

end
context.stoptabulate()
context.stopcolumns()
context.page()

end

This is a typical example of where it’s more convenient to write the code in Lua that in TEX’s macro
language. As a consequence setting up the page also happens in Lua:

context.setupbodyfont {
"palatino",
"14pt"

}

context.setuplayout {
backspace = "2cm",
topspace = "2cm",
header = "1cm",
footer = "0cm",
height = "middle",
width = "middle",

}

This leave us to generate the document. There is a pitfall here: we need to use the same random
number for the exercises and the answers, so we freeze and defrost it. Functions in the commands
namespace implement functionality that is used at the TEX end but better can be done in Lua than in
TEX macro code. Of course these functions can also be used at the Lua end.

40 Some more examples

preliminary, uncorrected version – March 5, 2013

context.starttext()

local n = 120

commands.freezerandomseed()

ForLorien(n,10,10)
ForLorien(n,20,20)
ForLorien(n,30,30)
ForLorien(n,40,40)
ForLorien(n,50,50)

commands.defrostrandomseed()

ForLorien(n,10,10,true)
ForLorien(n,20,20,true)
ForLorien(n,30,30,true)
ForLorien(n,40,40,true)
ForLorien(n,50,50,true)

context.stoptext()

1

8 − 5 =
4 + 2 =
8 − 2 =
4 + 7 =
5 + 1 =
9 − 8 =
8 + 3 =
6 − 6 =
7 − 4 =
7 − 2 =
7 − 1 =
7 − 4 =
6 − 3 =
5 − 1 =
8 − 2 =
3 + 2 =
7 + 7 =
5 + 8 =

10 − 1 =
10 − 6 =
8 − 2 =
8 + 8 =
6 + 4 =

10 + 7 =
1 + 7 =
7 + 7 =
8 − 2 =
8 − 6 =

10 − 6 =
8 − 1 =
6 + 4 =
3 + 1 =
4 + 6 =

10 + 7 =
1 + 10 =

10 + 3 =
10 − 7 =
7 + 3 =
2 + 9 =
8 − 5 =

10 − 4 =
5 − 1 =

10 + 8 =
9 + 8 =
9 − 3 =
5 − 1 =
6 − 1 =
7 + 7 =
6 − 5 =
7 + 3 =
4 − 2 =
3 + 7 =

10 − 3 =
3 − 2 =
9 − 4 =
8 + 5 =
8 − 6 =
4 + 5 =
6 − 5 =
8 − 1 =
2 + 6 =
4 − 3 =
4 + 1 =
6 − 1 =
1 + 5 =
3 + 5 =

10 + 7 =
4 + 3 =
4 − 2 =
7 + 6 =
7 − 3 =
5 + 2 =
8 − 5 =
6 − 5 =
3 + 10 =
6 − 3 =
6 + 4 =
3 + 4 =
6 + 6 =
5 − 4 =

9 + 10 =
7 − 3 =
5 − 4 =
5 + 4 =
8 + 9 =
5 + 6 =
8 + 4 =
2 − 1 =

10 − 6 =
10 − 3 =
6 + 6 =
1 + 7 =
5 − 3 =
9 + 10 =

10 − 7 =
9 + 6 =

10 − 3 =
10 + 8 =
7 − 1 =
7 + 3 =
9 + 10 =
3 − 2 =
1 + 1 =
5 + 3 =
8 + 4 =

10 − 4 =
5 − 4 =
9 − 1 =
6 + 9 =
6 + 9 =
5 + 2 =
1 + 1 =
1 + 7 =
5 + 9 =
6 − 4 =
4 + 3 =
4 + 8 =
1 + 10 =
5 + 1 =
5 − 1 =

6

8 − 5 = 3
4 + 2 = 6
8 − 2 = 6
4 + 7 = 11
5 + 1 = 6
9 − 8 = 1
8 + 3 = 11
6 − 6 = 0
7 − 4 = 3
7 − 2 = 5
7 − 1 = 6
7 − 4 = 3
6 − 3 = 3
5 − 1 = 4
8 − 2 = 6
3 + 2 = 5
7 + 7 = 14
5 + 8 = 13

10 − 1 = 9
10 − 6 = 4
8 − 2 = 6
8 + 8 = 16
6 + 4 = 10

10 + 7 = 17
1 + 7 = 8
7 + 7 = 14
8 − 2 = 6
8 − 6 = 2

10 − 6 = 4
8 − 1 = 7
6 + 4 = 10
3 + 1 = 4
4 + 6 = 10

10 + 7 = 17
1 + 10 = 11

10 + 3 = 13
10 − 7 = 3
7 + 3 = 10
2 + 9 = 11
8 − 5 = 3

10 − 4 = 6
5 − 1 = 4

10 + 8 = 18
9 + 8 = 17
9 − 3 = 6
5 − 1 = 4
6 − 1 = 5
7 + 7 = 14
6 − 5 = 1
7 + 3 = 10
4 − 2 = 2
3 + 7 = 10

10 − 3 = 7
3 − 2 = 1
9 − 4 = 5
8 + 5 = 13
8 − 6 = 2
4 + 5 = 9
6 − 5 = 1
8 − 1 = 7
2 + 6 = 8
4 − 3 = 1
4 + 1 = 5
6 − 1 = 5
1 + 5 = 6
3 + 5 = 8

10 + 7 = 17
4 + 3 = 7
4 − 2 = 2
7 + 6 = 13
7 − 3 = 4
5 + 2 = 7
8 − 5 = 3
6 − 5 = 1
3 + 10 = 13
6 − 3 = 3
6 + 4 = 10
3 + 4 = 7
6 + 6 = 12
5 − 4 = 1

9 + 10 = 19
7 − 3 = 4
5 − 4 = 1
5 + 4 = 9
8 + 9 = 17
5 + 6 = 11
8 + 4 = 12
2 − 1 = 1

10 − 6 = 4
10 − 3 = 7
6 + 6 = 12
1 + 7 = 8
5 − 3 = 2
9 + 10 = 19

10 − 7 = 3
9 + 6 = 15

10 − 3 = 7
10 + 8 = 18
7 − 1 = 6
7 + 3 = 10
9 + 10 = 19
3 − 2 = 1
1 + 1 = 2
5 + 3 = 8
8 + 4 = 12

10 − 4 = 6
5 − 4 = 1
9 − 1 = 8
6 + 9 = 15
6 + 9 = 15
5 + 2 = 7
1 + 1 = 2
1 + 7 = 8
5 + 9 = 14
6 − 4 = 2
4 + 3 = 7
4 + 8 = 12
1 + 10 = 11
5 + 1 = 6
5 − 1 = 4

exercises answers

Figure 5.3 Lorien’s challenge.

A few pages of the result are shown in figure 5.3. In the ConTEXt distribution a more advanced version
can be found in s-edu-01.cld as I was also asked to generate multiplication and table exercises. In

Some more examples 41

preliminary, uncorrected version – March 5, 2013

the process I had to make sure that there were no duplicates on a page as she complained that was
not good. There a set of sheets is generated with:

moduledata.educational.arithematic.generate {
name = "Bram Otten",
fontsize = "12pt",
columns = 2,
run = {
{ method = "bin_add_and_subtract", maxa = 8, maxb = 8 },
{ method = "bin_add_and_subtract", maxa = 16, maxb = 16 },
{ method = "bin_add_and_subtract", maxa = 32, maxb = 32 },
{ method = "bin_add_and_subtract", maxa = 64, maxb = 64 },
{ method = "bin_add_and_subtract", maxa = 128, maxb = 128 },

},
}

5.5 Interfacing
The fact that we can define functionality using Lua code does not mean that we should abandon the
TEX interface. As an example of this we use a relatively simple module for typesetting morse code.3
First we create a proper namespace:

moduledata.morse = moduledata.morse or { }
local morse = moduledata.morse

We will use a few helpers and create shortcuts for them. The first helper loops over each utf character
in a string. The other two helpers map a character onto an uppercase (because morse only deals with
uppercase) or onto an similar shaped character (because morse only has a limited character set).

local utfcharacters = string.utfcharacters
local ucchars, shchars = characters.ucchars, characters.shchars

The morse codes are stored in a table.

local codes = {

["A"] = "·—", ["B"] = "—···",
["C"] = "—·—·", ["D"] = "—··",
["E"] = "·", ["F"] = "··—·",
["G"] = "——·", ["H"] = "····",
["I"] = "··", ["J"] = "·———",
["K"] = "—·—", ["L"] = "·—··",
["M"] = "——", ["N"] = "—·",
["O"] = "———", ["P"] = "·——·",
["Q"] = "——·—", ["R"] = "·—·",
["S"] = "···", ["T"] = "—",
["U"] = "··—", ["V"] = "···—",
["W"] = "·——", ["X"] = "—··—",
["Y"] = "—·——", ["Z"] = "——··",

3 The real module is a bit larger and can format verbose morse.

42 Some more examples

preliminary, uncorrected version – March 5, 2013

["0"] = "—————", ["1"] = "·————",
["2"] = "··———", ["3"] = "···——",
["4"] = "····—", ["5"] = "·····",
["6"] = "—····", ["7"] = "——···",
["8"] = "———··", ["9"] = "————·",

["."] = "·—·—·—", [","] = "——··——",
[":"] = "———···", [";"] = "—·—·—",
["?"] = "··——··", ["!"] = "—·—·——",
["-"] = "—····—", ["/"] = "—··—· ",
["("] = "—·——·", [")"] = "—·——·—",
["="] = "—···—", ["@"] = "·——·—·",
["'"] = "·————·", ['"'] = "·—··—·",

["À"] = "·——·—",
["Å"] = "·——·—",
["Ä"] = "·—·—",
["Æ"] = "·—·—",
["Ç"] = "—·—··",
["É"] = "··—··",
["È"] = "·—··—",
["Ñ"] = "——·——",
["Ö"] = "———·",
["Ø"] = "———·",
["Ü"] = "··——",
["ß"] = "··· ···",

}

morse.codes = codes

As you can see, there are a few non ascii characters supported as well. There will never be full Unicode
support simply because morse is sort of obsolete. Also, in order to support Unicode one could as well
use the bits of utf characters, although . . . memorizing the whole Unicode table is not much fun.

We associate a metatable index function with this mapping. That way we can not only conveniently
deal with the casing, but also provide a fallback based on the shape. Once found, we store the repre-
sentation so that only one lookup is needed per character.

local function resolvemorse(t,k)
if k then

local u = ucchars[k]
local v = rawget(t,u) or rawget(t,shchars[u]) or false
t[k] = v
return v

else
return false

end
end

setmetatable(codes, { __index = resolvemorse })

Some more examples 43

preliminary, uncorrected version – March 5, 2013

Next comes some rendering code. As we can best do rendering at the TEX end we just use macros.

local MorseBetweenWords = context.MorseBetweenWords
local MorseBetweenCharacters = context.MorseBetweenCharacters
local MorseLong = context.MorseLong
local MorseShort = context.MorseShort
local MorseSpace = context.MorseSpace
local MorseUnknown = context.MorseUnknown

The main function is not that complex. We need to keep track of spaces and newlines. We have a
nested loop because a fallback to shape can result in multiple characters.

function morse.tomorse(str)
local inmorse = false
for s in utfcharacters(str) do

local m = codes[s]
if m then

if inmorse then
MorseBetweenWords()

else
inmorse = true

end
local done = false
for m in utfcharacters(m) do

if done then
MorseBetweenCharacters()

else
done = true

end
if m == "·" then

MorseShort()
elseif m == "—" then

MorseLong()
elseif m == " " then

MorseBetweenCharacters()
end

end
inmorse = true

elseif s == "\n" or s == " " then
MorseSpace()
inmorse = false

else
if inmorse then

MorseBetweenWords()
else

inmorse = true
end
MorseUnknown(s)

end
end

end

44 Some more examples

preliminary, uncorrected version – March 5, 2013

We use this function in two additional functions. One typesets a file, the other a table of available
codes.

function morse.filetomorse(name,verbose)
morse.tomorse(resolvers.loadtexfile(name),verbose)

end

function morse.showtable()
context.starttabulate { "|l|l|" }
for k, v in table.sortedpairs(codes) do

context.NC() context(k)
context.NC() morse.tomorse(v,true)
context.NC() context.NR()

end
context.stoptabulate()

end

We’re done with the Lua code that we can either put in an external file or put in the module file. The
TEX file has two parts. The typesetting macros that we use at the Lua end are defined first. These can
be overloaded.

\def\MorseShort
{\dontleavehmode
\vrule

width \MorseWidth
height \MorseHeight
depth \zeropoint

\relax}

\def\MorseLong
{\dontleavehmode
\vrule

width 3\dimexpr\MorseWidth
height \MorseHeight
depth \zeropoint

\relax}

\def\MorseBetweenCharacters
{\kern\MorseWidth}

\def\MorseBetweenWords
{\hskip3\dimexpr\MorseWidth\relax}

\def\MorseSpace
{\hskip7\dimexpr\MorseWidth\relax}

\def\MorseUnknown#1
{[\detokenize{#1}]}

The dimensions are stored in macros as well. Of course we could provide a proper setup command,
but it hardly makes sense.

Some more examples 45

preliminary, uncorrected version – March 5, 2013

\def\MorseWidth {0.4em}
\def\MorseHeight{0.2em}

Finally we have arrived at the macros that interface to the Lua functions.

\def\MorseString#1{\ctxlua{moduledata.morse.tomorse(\!!bs#1\!!es)}}
\def\MorseFile #1{\ctxlua{moduledata.morse.filetomorse("#1")}}
\def\MorseTable {\ctxlua{moduledata.morse.showtable()}}

A string is converted to morse with the first command.

\Morse{A more advanced solution would be to convert a node list. That
way we can deal with weird input.}

This shows up as:

Reduction and uppercasing is demonstrated in the next example:

\MorseString{ÀÁÂÃÄÅàáâãäå}

This gives:

5.6 Using helpers
The next example shows a bit of lpeg. On top of the standard functionality a few additional functions
are provided. Let’s start with a pure TEX example:

\defineframed
[colored]
[foregroundcolor=red,
foregroundstyle=\underbar,
offset=.1ex,
location=low]

\processisolatedwords {\input ward \relax} \colored

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is like the
effect of an old - age patient who smokes many packs of cigarettes per day — and we humans
are the cigarettes.

46 Some more examples

preliminary, uncorrected version – March 5, 2013

Because this processor macro operates at the TEX end it has some limitations. The content is collected
in a very narrow box and from that a regular paragraph is constructed. It is for this reason that no
color is applied: the snippets that end up in the box are already typeset.

An alternative is to delegate the task to Lua:

\startluacode
local function process(data)

local words = lpeg.split(lpeg.patterns.spacer,data or "")

for i=1,#words do
if i == 1 then

context.dontleavehmode()
else

context.space()
end
context.colored(words[i])

end

end

process(io.loaddata(resolvers.findfile("ward.tex")))
\stopluacode

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact.
It would be happening whether humans had ever evolved or not. But our presence is like the
effect of an old-age patient who smokes many packs of cigarettes per day — and we humans
are the cigarettes.

The function splits the loaded data into a table with individual words. We use a splitter that splits
on spacing tokens. The special case for i = 1 makes sure that we end up in horizontal mode (read:
properly start a paragraph). This time we do get color because the typesetting is done directly. Here
is an alternative implementation:

local done = false

local function reset()
done = false
return true

end

local function apply(s)
if done then
context.space()

else
done = true
context.dontleavehmode()

end
context.colored(s)

end

Some more examples 47

preliminary, uncorrected version – March 5, 2013

local splitter = lpeg.P(reset)
* lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)
lpeg.match(splitter,data)

end

This version is more efficient as it does not create an intermediate table. The next one is comaprable:

local function apply(s)
context.colored("%s ",s)

end

local splitter lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)
context.dontleavevmode()
lpeg.match(splitter,data)
context.removeunwantedspaces()

end

48 Some more examples

preliminary, uncorrected version – March 5, 2013

Graphics 49

preliminary, uncorrected version – March 5, 2013

6 Graphics

6.1 The regular interface
If you are familiar with ConTEXt, which by now probably is the case, you will have noticed that it
integrates the MetaPost graphic subsystem. Drawing a graphic is not that complex:

context.startMPcode()
context [[
draw
fullcircle scaled 1cm
withpen pencircle scaled 1mm
withcolor .5white
dashed dashpattern (on 2mm off 2mm) ;

]]
context.stopMPcode()

We get a gray dashed circle rendered with an one millimeter thick line:

So, we just use the regular commands and pass the drawing code as strings. Although MetaPost is
a rather normal language and therefore offers loops and conditions and the lot, you might want to
use Lua for anything else than the drawing commands. Of course this is much less efficient, but it
could be that you don’t care about speed. The next example demonstrates the interface for building
graphics piecewise.

context.resetMPdrawing()

context.startMPdrawing()
context([[fill fullcircle scaled 5cm withcolor (0,0,.5) ;]])
context.stopMPdrawing()

context.MPdrawing("pickup pencircle scaled .5mm ;")
context.MPdrawing("drawoptions(withcolor white) ;")

for i=0,50,5 do
context.startMPdrawing()
context("draw fullcircle scaled %smm ;",i)
context.stopMPdrawing()

end

for i=0,50,5 do
context.MPdrawing("draw fullsquare scaled " .. i .. "mm ;")

end

context.MPdrawingdonetrue()

context.getMPdrawing()

50 Graphics

preliminary, uncorrected version – March 5, 2013

This gives:

I the first loop we can use the format options associated with the simple context call. This will not
work in the second case. Even worse, passing more than one argument will definitely give a faulty
graphic definition. This is why we have a special interface for MetaFun. The code above can also be
written as:

local metafun = context.metafun

metafun.start()

metafun("fill fullcircle scaled 5cm withcolor %s ;",
metafun.color("darkblue"))

metafun("pickup pencircle scaled .5mm ;")
metafun("drawoptions(withcolor white) ;")

for i=0,50,5 do
metafun("draw fullcircle scaled %smm ;",i)

end

for i=0,50,5 do
metafun("draw fullsquare scaled %smm ;",i)

end

metafun.stop()

Watch the call to color, this will pass definitions at the TEX end to MetaPost. Of course you really
need to ask yourself “Do I want to use MetaPost this way?”. Using Lua loops instead of MetaPost
ones makes much more sense in the following case:

local metafun = context.metafun

function metafun.barchart(t)
metafun.start()
local t = t.data
for i=1,#t do
metafun("draw unitsquare xyscaled(%s,%s) shifted (%s,0);",
10, t[i]*10, i*10)

end
metafun.stop()

Graphics 51

preliminary, uncorrected version – March 5, 2013

end

local one = { 1, 4, 6, 2, 3, }
local two = { 8, 1, 3, 5, 9, }

context.startcombination()
context.combination(metafun.delayed.barchart { data = one }, "one")
context.combination(metafun.delayed.barchart { data = two }, "two")

context.stopcombination()

We get two barcharts alongside:

one two

local template = [[
path p, q ; color c[] ;
c1 := \MPcolor{darkblue} ;
c2 := \MPcolor{darkred} ;
p := fullcircle scaled 50 ;
l := length p ;
n := %s ;
q := subpath (0,%s/n*l) of p ;
draw q withcolor c2 withpen pencircle scaled 1 ;
fill fullcircle scaled 5 shifted point length q of q withcolor c1 ;
setbounds currentpicture to unitsquare shifted (-0.5,-0.5) scaled 60 ;
draw boundingbox currentpicture withcolor c1 ;
currentpicture := currentpicture xsized(1cm) ;

]]

local function steps(n)
for i=0,n do
context.metafun.start()
context.metafun(template,n,i)

context.metafun.stop()
if i < n then

context.quad()
end

end
end

context.hbox(function() steps(10) end)

52 Graphics

preliminary, uncorrected version – March 5, 2013

Using a template is quite convenient but at some point you can loose track of the replacement values.
Also, adding an extra value can force you to adapt the following ones which enlarges the change for
making an error. An alternative is to use the template mechanism. Although this mechanism was
originally made for other purposes, you can use it for whatever you like.

local template = [[
path p ; p := fullcircle scaled 4cm ;
draw p withpen pencircle scaled .5mm withcolor red ;
freedotlabel ("%lefttop%", point 1 of p,origin) ;
freedotlabel ("%righttop%", point 3 of p,origin) ;
freedotlabel ("%leftbottom%", point 5 of p,origin) ;
freedotlabel ("%rightbottom%",point 7 of p,origin) ;

]]

local variables = {
lefttop = "one",
righttop = "two",
leftbottom = "three",
rightbottom = "four" ,

}

context.metafun.start()
context.metafun(utilities.templates.replace(template,variables))

context.metafun.stop()

Here we use named placeholders and pass a table with associated values to the replacement function.
Apart from convenience it’s also more readable. And the overhead is rather minimal.

onetwo

three four

To some extent we fool ourselves with this kind of Luafication of MetaPost code. Of course we can
make a nice MetaPost library and put the code in a macro instead. In that sense, doing this in ConTEXt
directly often gives better and more efficient code.

Of course you can use all relevant commands in the Lua interface, like:

context.startMPpage()
context("draw origin")
for i=0,100,10 do
context("..{down}(%d,0)",i)

end
context(" withcolor \\MPcolor{darkred} ;")

context.stopMPpage()

to get a graphic that has its own page. Don’t use the metafun namespace here, as it will not work
here. This drawing looks like:

Graphics 53

preliminary, uncorrected version – March 5, 2013

6.2 The Lua interface
Messing around with graphics is normally not needed and if you do it, you’d better know what you’re
doing. For TEX a graphic is just a black box: a rectangle with dimensions. You specify a graphic, in a
format that the backend can deal with, either or not apply some scaling and from then on a reference
to that graphic, normally wrapped in a normal TEX box, enters the typesetting machinery. Because
the backend, the part that is responsible for translating typeset content onto a viewable or printable
format like pdf, is built into LuaTEX, at some point the real image has to be injected and the backend
can only handle a few image formats: png, jpg, jbig and pdf.

In ConTEXt some more image formats are supported but in practice this boils down to converting the
image to a format that the backend can handle. Such a conversion depends on an external programs
and in order not to redo the conversion each run ConTEXt keeps track of the need to redo it.

Some converters are built in, for example one that deals with gif images. This is normally not a
preferred format, but it happens that we have to deal with it in cases where organizations use that
format (if only because they use the web). Here is how this works at the Lua end:

figures.converters.gif = {
pdf = function(oldname,newname)
os.execute(string.format("gm convert %s %s",oldname,newname))

end
}

We use gm (Graphic Magic) for the conversion and pass the old and new names. Given this definition
at the TEX end we can say:

\externalfigure[whatever.gif][width=4cm]

Here is a another one:

figures.converters.bmp = {
pdf = function(oldname,newname)

os.execute(string.format("gm convert %s %s",oldname,newname))
end

}

In both examples we convert to pdf because including this filetype is quite fast. But you can also go
to other formats:

figures.converters.png = {
png = function(oldname,newname,resolution)
local command = string.format('gm convert -depth 1 "%s" "%s"',oldname,newname)
logs.report(string.format("running command %s",command))
os.execute(command)

end
}

Instead of directly defining such a table, you can better do this:

figures.converters.png = figures.converters.png or { }

54 Graphics

preliminary, uncorrected version – March 5, 2013

figures.converters.png.png = function(oldname,newname,resolution)
local command = string.format('gm convert -depth 1 "%s" "%s"',oldname,newname)
logs.report(string.format("running command %s",command))
os.execute(command)

end

Here we check if a table exists and if not we extend the table. Such converters work out of the box if
you specify the suffix, but you can also opt for a simple:

\externalfigure[whatever][width=4cm]

In this case ConTEXt will check for all known supported formats, which is not that efficient when no
graphic can be found. In order to let for instance files with suffix bmp can be included you have to
register it as follows. The second argument is the target.

figures.registersuffix("bmp","bmp")

At some point more of the graphic inclusion helpers will be opened up for general use but for now
this is what you have available.

Verbatim 55

preliminary, uncorrected version – March 5, 2013

7 Verbatim

7.1 Introduction
If you are familiar with traditional TEX, you know that some characters have special meanings. For
instance a $ starts and ends inline math mode:

$e=mc^2$

If we want to typeset math from the Lua end, we can say:

context.mathematics("e=mc^2")

This is in fact:

\mathematics{e=mc^2}

However, if we want to typeset a dollar and use the ctxcatcodes regime, we need to explicitly access
that character using \char or use a command that expands into the character with catcode other.

One step further is that we typeset all characters as they are and this is called verbatim. In that mode
all characters are tokens without any special meaning.

7.2 Special treatment
The formula in the introduction can be typeset verbatim as follows:

context.verbatim("$e=mc^2$")

This gives:

$e=mc^2$

You can also do things like this:

context.verbatim.bold("$e=mc^2$")

Which gives:

$e=mc^2$

So, within the verbatim namespace, each command gets its arguments verbatim.

context.verbatim.inframed({ offset = "0pt" }, "$e=mc^2$")

Here we get: $e=mc^2$. So, settings and alike are processed as if the user had used a regular
context.inframed but the content comes out verbose.

If you wonder why verbatim is needed as we also have the type function (macro) the answer is that
it is faster, easier to key in, and sometimes the only way to get the desired result.

7.3 Multiple lines
Currently we have to deal with linebreaks in a special way. This is due to the way TEX deals with
linebreaks. In fact, when we print something to TEX, the text after a \n is simply ignored.

56 Verbatim

preliminary, uncorrected version – March 5, 2013

For this reason we have a few helpers. If you want to put something in a buffer, you cannot use the
regular buffer functions unless you make sure that they are not overwritten while you’re still at the
Lua end.

context.tobuffer("temp",str)
context.getbuffer("temp")

Another helper is the following. It splits the string into lines and feeds them piecewise using the
context function and in the process adds a space at the end of the line (as this is what TEX normally
does.

context.tolines(str)

Catcodes can get in the way when you pipe something to TEX that itself changes the catcodes. This
happens for instance when you write buffers that themselves have buffers or have code that changes
the line endings as with startlines. In that case you need to feed back the content as if it were a
file. This is done with:

context.viafile(str)

The string can contain newlines. The string is written to a virtual file that is input. Currently names
looks like virtual://virtualfile.1 but future versions might have a different name part, so best
use the variable instead. After all, you don’t know the current number in advance anyway.

7.4 Pretty printing
In ConTEXt MkII there have always been pretty printing options. We needed it for manuals and it
was also handy to print sources in the same colors as the editor uses. Most of those pretty printers
work in a line-by-line basis, but some are more complex, especially when comments or strings can
span multiple lines.

When the first versions of LuaTEX showed up, rewriting the MkII code to use Lua was a nice exercise
and the code was not that bad, but when lpeg showed up, I put it on the agenda to reimplement them
again.

We only ship a few pretty printers. Users normally have their own preferences and it’s not easy to
make general purpose pretty printers. This is why the new framework is a bit more flexible and
permits users to kick in their own code.

Pretty printing involves more than coloring some characters or words:

• spaces should honoured and can be visualized
• newlines and empty lins need to be honoured as well
• optionally lines have to be numbered but
• wrapped around lines should not be numbered

It’s not much fun to deal with these matters each time that you write a pretty printer. This is why we
can start with an existing one like the default pretty printer. We show several variants of doing the
same. We start with a simple clone of the default parser.4

4 In the meantime the lexer of the SciTE editor that I used also provides a mechanism for using lpeg based lexers. Although
in the pretty printing code we need a more liberal one I might backport the lexers I wrote for editing TEX, MetaPost, Lua,
cld, xml and pdf as a variant for the ones we use in MkIV now. That way we get similar colorschemes which might be handy
sometimes.

Verbatim 57

preliminary, uncorrected version – March 5, 2013

local P, V = lpeg.P, lpeg.V

local grammar = visualizers.newgrammar("default", {
pattern = V("default:pattern"),
visualizer = V("pattern")^1

})

local parser = P(grammar)

visualizers.register("test-0", { parser = parser })

We distinguish between grammars (tables with rules), parsers (a grammar turned into an lpeg ex-
pression), and handlers (collections of functions that can be applied. All three are registered under
a name and the verbatim commands can refer to that name.

\starttyping[option=test-0,color=]
Test 123,
test 456 and
test 789!
\stoptyping

Nothing special happens here. We just get straightforward verbatim.

Test 123,
test 456 and
test 789!

Next we are going to color digits. We collect as many as possible in a row, so that we minimize the
calls to the colorizer.

local patterns, P, V = lpeg.patterns, lpeg.P, lpeg.V

local function colorize(s)
context.color{"darkred"}
visualizers.writeargument(s)

end

local grammar = visualizers.newgrammar("default", {
digit = patterns.digit^1 / colorize,
pattern = V("digit") + V("default:pattern"),
visualizer = V("pattern")^1

})

local parser = P(grammar)

visualizers.register("test-1", { parser = parser })

Watch how we define a new rule for the digits and overload the pattern rule. We can refer to the
default rule by using a prefix. This is needed when we define a rule with the same name.

\starttyping[option=test-1,color=]
Test 123,
test 456 and

58 Verbatim

preliminary, uncorrected version – March 5, 2013

test 789!
\stoptyping

This time the digits get colored.

Test 123,
test 456 and
test 789!

In a similar way we can colorize letters. As with the previous example, we use ConTEXt commands
at the Lua end.

\starttyping[option=test-2,color=]
Test 123,
test 456 and
test 789!
\stoptyping

Again we get some coloring.

Test 123,
test 456 and
test 789!

It will be clear that the amount of rules and functions is larger when we use a more complex parser.
It is for this reason that we can group functions in handlers. We can also make a pretty printer
configurable by defining handlers at the TEX end.

\definestartstop
[MyDigit]
[style=bold,color=darkred]

\definestartstop
[MyLowercase]
[style=bold,color=darkgreen]

\definestartstop
[MyUppercase]
[style=bold,color=darkblue]

The Lua code now looks different. Watch out: we need an indirect call to for instance MyDigit be-
cause a second argument can be passed: the settings for this environment and you don’t want that
get passed to MyDigit and friends.

\starttyping[option=test-3,color=]
Test 123,
test 456 and
test 789!
\stoptyping

We get digits, upper- and lowercase characters colored:

Test 123,
test 456 and

Verbatim 59

preliminary, uncorrected version – March 5, 2013

test 789!

You can also use parsers that don’t use lpeg:

local function parser(s)
visualizers.write("["..s.."]")

end

visualizers.register("test-4", { parser = parser })

\starttyping[option=test-4,space=on,color=darkred]
Test 123,
test 456 and
test 789!
\stoptyping

The function visualizer.write takes care of spaces and newlines.

[Test␣123,
test␣456␣and
test␣789!]

We have a few more helpers:

visualizers.write interprets the argument and applies methods
visualizers.writenewline goes to the next line (similar to \par
visualizers.writeemptyline inserts an empty line (similer to \blank
visualizers.writespace inserts a (visible) space
visualizers.writedefault writes the argument verbatim without interpretation

These mechanism have quite some overhead in terms of function calls. In the worst case each token
needs a (nested) call. However, doing all this at the TEX end also comes at a price. So, in practice this
approach is more flexible but without too large a penalty.

In all these examples we typeset the text verbose: what is keyed in normally comes out (either or not
with colors), so spaces stay spaces and linebreaks are kept.

local function parser(s)
local s = string.gsub(s,"show","demonstrate")
local s = string.gsub(s,"'re"," are")
context(s)

end

visualizers.register("test-5", { parser = parser })

We can apply this visualizer as follows:

\starttyping[option=test-5,color=darkred,style=]
This is just some text to show what we can do with this mechanism. In
spite of what you might think we're not bound to verbose text.
\stoptyping

This time the text gets properly aligned:

This is just some text to demonstrate what we can do with this mechanism. In

60 Verbatim

preliminary, uncorrected version – March 5, 2013

spite of what you might think we are not bound to verbose text.

It often makes sense to use a buffer:

\startbuffer[demo]
This is just some text to show what we can do with this mechanism. In
spite of what you might think we're not bound to verbose text.
\stopbuffer

Instead of processing the buffer in verbatim mode you can then process it directly:

\setuptyping[file][option=test-5,color=darkred,style=]
\processbuffer[demo]

Which gives:

This is just some text to demonstrate what we can do with this mechanism. In spite of what you might
think we are not bound to verbose text.

In this case, the space is a normal space and not the fixed verbatim space, which looks better.

Logging 61

preliminary, uncorrected version – March 5, 2013

8 Logging

Logging and localized messages have always been rather standardized in ConTEXt, so upgrading the
related mechanism had been quite doable. In MkIV for a while we had two systems in parallel: the
old one, mostly targeted at messages at the TEX end, and a new one used at the Lua end. But when
more and more hybrid code showed up, integrating both systems made sense.

Most logging concerns tracing and can be turned on and off on demand. This kind of control is now
possible for all messages. Given that the right interfaces are used, you can turn off all messages:

context --silent

This was already possible in MkII, but there TEX’s own messages still were visible. More important
is that we have control:

context --silent=structure*,resolve*,font*

This will disable all reporting for these three categories. It is also possible to only disable messages
to the console:

context --noconsole

In ConTEXt you can use directives:

\enabledirectives[logs.blocked=structure*,resolve*,font*]
\enabledirectives[logs.target=file]

As all logging is under Lua control and because this (and other) kind of control has to kick in early
in the initialization the code might look somewhat tricky. Users won’t notice this because they only
deal with the formal interface. Here we will only discuss the Lua interfaces.

Messages related to tracing are done as follows:

local report_whatever = logs.reporter("modules","whatever")

report_whatever("not found: %s","this or that")

The first line defined a logger in the category modules. You can give a second argument as well, the
subcategory. Both will be shown as part of the message, of which an example is given in the second
line.

These messages are shown directly, that is, when the function is called. However, when you generate
TEX code, as we discuss in this document, you need to make sure that the message is synchronized
with that code. This can be done with a messenger instead of a reporter.

local report_numbers = logs.reporter("numbers","check")
local status_numbers = logs.messenger("numbers","check")

status_numbers("number 1: %s, number 2: %s",123,456)
report_numbers("number 1: %s, number 2: %s",456,123)

Both reporters and messages are localized when the pattern given as first argument can be found in
the patterns subtable of the interface messages. Categories and subcategories are also translated,
but these are looked up in the translations subtable. So in the case of

62 Logging

preliminary, uncorrected version – March 5, 2013

report_whatever("found: %s",filename)
report_whatever("not found: %s",filename)

you should not be surprised if it gets translated. Of course the category and subcategory provide
some contextual information.

Lua Functions 63

preliminary, uncorrected version – March 5, 2013

9 Lua Functions

9.1 Introduction
When you run ConTEXt you have some libraries preloaded. If you look into the Lua files you will
find more than is discussed here, but keep in mind that what is not documented, might be gone or
done different one day. Some extensions live in the same namespace as those provided by stock Lua
and LuaTEX, others have their own. There are many more functions and the more obscure (or never
being used) ones will go away.

The Lua code in ConTEXt is organized in quite some modules. Those with names like l-*.lua are
rather generic and are automatically available when you use mtxrun to run a Lua file. These are
discusses in this chapter. A few more modules have generic properties, like some in the categories
util-*.lua, trac-*.lua, luat-*.lua, data-*.lua and lxml-*.lua. They contain more special-
ized functions and are discussed elsewhere.

Before we move on the the real code, let’s introduce a handy helper:

inspect(somevar)

Whenever you feel the need to see what value a variable has you can insert this function to get some
insight. It knows how to deal with several data types.

9.2 Tables

[lua] concat

These functions come with Lua itself and are discussed in detail in the Lua reference manual so we
stick to some examples. The concat function stitches table entries in an indexed table into one string,
with an optional separator in between. If can also handle a slice of the table

local str = table.concat(t)
local str = table.concat(t,separator)
local str = table.concat(t,separator,first)
local str = table.concat(t,separator,first,last)

Only strings and numbers can be concatenated.

table.concat({"a","b","c","d","e"})

abcde

table.concat({"a","b","c","d","e"},"+")

a+b+c+d+e

table.concat({"a","b","c","d","e"},"+",2,3)

b+c

64 Lua Functions

preliminary, uncorrected version – March 5, 2013

[lua] insert remove

You can use insert and remove for adding or replacing entries in an indexed table.

table.insert(t,value,position)
value = table.remove(t,position)

The position is optional and defaults to the last entry in the table. For instance a stack is built this
way:

table.insert(stack,"top")
local top = table.remove(stack)

Beware, the insert function returns nothing. You can provide an additional position:

table.insert(list,"injected in slot 2",2)
local thiswastwo = table.remove(list,2)

[lua] unpack

You can access entries in an indexed table as follows:

local a, b, c = t[1], t[2], t[3]

but this does the same:

local a, b, c = table.unpack(t)

This is less efficient but there are situations where unpack comes in handy.

[lua] sort

Sorting is done with sort, a function that does not return a value but operates on the given table.

table.sort(t)
table.sort(t,comparefunction)

The compare function has to return a consistent equivalent of true or false. For sorting more
complex data structures there is a specialized sort module available.

t={"a","b","c"} table.sort(t)

t={
"a",
"b",
"c",
}

t={"a","b","c"} table.sort(t,function(x,y) return x > y end)

t={
"c",
"b",
"a",
}

Lua Functions 65

preliminary, uncorrected version – March 5, 2013

t={"a","b","c"} table.sort(t,function(x,y) return x < y end)

t={
"a",
"b",
"c",
}

sorted

The built-in sort function does not return a value but sometimes it can be if the (sorted) table is
returned. This is why we have:

local a = table.sorted(b)

keys sortedkeys sortedhashkeys sortedhash

The keys function returns an indexed list of keys. The order is undefined as it depends on how the
table was constructed. A sorted list is provided by sortedkeys. This function is rather liberal with
respect to the keys. If the keys are strings you can use the faster alternative sortedhashkeys.

local s = table.keys (t)
local s = table.sortedkeys (t)
local s = table.sortedhashkeys (t)

Because a sorted list is often processed there is also an iterator:

for key, value in table.sortedhash(t) do
print(key,value)

end

There is also a synonym sortedpairs which sometimes looks more natural when used alongside
the pairs and ipairs iterators.

table.keys({ [1] = 2, c = 3, [true] = 1 })

t={
1,
"c",
true,
}

table.sortedkeys({ [1] = 2, c = 3, [true] = 1 })

t={
1,
"c",
true,
}

table.sortedhashkeys({ a = 2, c = 3, b = 1 })

t={

66 Lua Functions

preliminary, uncorrected version – March 5, 2013

"a",
"b",
"c",
}

serialize print tohandle tofile

The serialize function converts a table into a verbose representation. The print function does the
same but prints the result to the console which is handy for tracing. The tofile function writes the
table to a file, using reasonable chunks so that less memory is used. The fourth variant tohandle
takes a handle so that you can do whatever you like with the result.

table.serialize (root, name, reduce, noquotes, hexify)
table.print (root, name, reduce, noquotes, hexify)
table.tofile (filename, root, name, reduce, noquotes, hexify)
table.tohandle (handle, root, name, reduce, noquotes, hexify)

The serialization can be controlled in several ways. Often only the first two options makes sense:

table.serialize({ a = 2 })

t={
["a"]=2,
}

table.serialize({ a = 2 }, "name")

name={
["a"]=2,
}

table.serialize({ a = 2 }, true)

return {
["a"]=2,
}

table.serialize({ a = 2 }, false)

{
["a"]=2,
}

table.serialize({ a = 2 }, "return")

return {
["a"]=2,
}

table.serialize({ a = 2 }, 12)

[12]={
["a"]=2,
}

Lua Functions 67

preliminary, uncorrected version – March 5, 2013

table.serialize({ a = 2, [3] = "b", [true] = "6" }, nil, true)

t={
[3]="b",
["a"]=2,
[true]="6",
}

table.serialize({ a = 2, [3] = "b", [true] = "6" }, nil, true, true)

t={
[3]="b",
["a"]=2,
[true]="6",
}

table.serialize({ a = 2, [3] = "b", [true] = "6" }, nil, true, true, true)

t={
[3]="b",
["a"]=2,
[true]="6",
}

In ConTEXt there is also a tocontext function that typesets the table verbose. This is handy for
manuals and tracing.

identical are_equal

These two function compare two tables that have a similar structure. The identical variant operates
on a hash while are_equal assumes an indexed table.

local b = table.identical (one, two)
local b = table.are_equal (one, two)

table.identical({ a = { x = 2 } }, { a = { x = 3 } })

false

table.identical({ a = { x = 2 } }, { a = { x = 2 } })

true

table.are_equal({ a = { x = 2 } }, { a = { x = 3 } })

true

table.are_equal({ a = { x = 2 } }, { a = { x = 2 } })

true

table.identical({ "one", "two" }, { "one", "two" })

true

68 Lua Functions

preliminary, uncorrected version – March 5, 2013

table.identical({ "one", "two" }, { "two", "one" })

false

table.are_equal({ "one", "two" }, { "one", "two" })

true

table.are_equal({ "one", "two" }, { "two", "one" })

false

tohash fromhash swapped swaphash reversed reverse mirrored

We use tohash quite a lot in ConTEXt. It converts a list into a hash so that we can easily check if (a
string) is in a given set. The fromhash function does the opposite: it creates a list of keys from a
hashed table where each value that is not false or nil is present.

local hashed = table.tohash (indexed)
local indexed = table.fromhash(hashed)

The function swapped turns keys into values vise versa while the reversed and reverse reverses
the values in an indexed table. The last one reverses the table itself (in-place).

local swapped = table.swapped (indexedtable)
local reversed = table.reversed (indexedtable)
local reverse = table.reverse (indexedtable)
local mirrored = table.mirrored (hashedtable)

table.tohash({ "a", "b", "c" })

t={
["a"]=true,
["b"]=true,
["c"]=true,
}

table.fromhash({ a = true, b = false, c = true })

t={
"c",
"a",
}

table.swapped({ "a", "b", "c" })

t={
["a"]=1,
["b"]=2,
["c"]=3,
}

table.reversed({ "a", "b", "c" })

t={

Lua Functions 69

preliminary, uncorrected version – March 5, 2013

"c",
"b",
"a",
}

table.reverse({ 1, 2, 3, 4 })

t={
4,
3,
2,
1,
}

table.mirrored({ a = "x", b = "y", c = "z" })

t={
["a"]="x",
["b"]="y",
["c"]="z",
["x"]="a",
["y"]="b",
["z"]="c",
}

append prepend

These two functions operate on a pair of indexed tables. The first table gets appended or prepended
by the second. The first table is returned as well.

table.append (one, two)
table.prepend(one, two)

The functions are similar to loops using insert.

table.append({ "a", "b", "c" }, { "d", "e" })

t={
"a",
"b",
"c",
"d",
"e",
}

table.prepend({ "a", "b", "c" }, { "d", "e" })

t={
"d",
"e",
"a",
"b",
"c",

70 Lua Functions

preliminary, uncorrected version – March 5, 2013

}

merge merged imerge imerged

You can merge multiple hashes with merge and indexed tables with imerge. The first table is the
target and is returned.

table.merge (one, two, ...)
table.imerge (one, two, ...)

The variants ending with a d merge the given list of tables and return the result leaving the first
argument untouched.

local merged = table.merged (one, two, ...)
local merged = table.imerged (one, two, ...)

table.merge({ a = 1, b = 2, c = 3 }, { d = 1 }, { a = 0 })

t={
["a"]=0,
["b"]=2,
["c"]=3,
["d"]=1,
}

table.imerge({ "a", "b", "c" }, { "d", "e" }, { "f", "g" })

t={
"a",
"b",
"c",
"d",
"e",
"f",
"g",
}

copy fastcopy

When copying a table we need to make a real and deep copy. The copy function is an adapted version
from the Lua wiki. The fastopy is faster because it does not check for circular references and does
not share tables when possible. In practice using the fast variant is okay.

local copy = table.copy (t)
local copy = table.fastcopy(t)

flattened

A nested table can be unnested using flattened. Normally you will only use this function if the
content is somewhat predictable. Often using one of the merge functions does a similar job.

local flattened = table.flatten(t)

Lua Functions 71

preliminary, uncorrected version – March 5, 2013

table.flattened({ a = 1, b = 2, { c = 3 }, d = 4})

t={
["a"]=1,
["b"]=2,
["c"]=3,
["d"]=4,
}

table.flattened({ 1, 2, { 3, { 4 } }, 5})

t={
1,
2,
3,
4,
5,
}

table.flattened({ 1, 2, { 3, { 4 } }, 5}, 1)

t={
1,
2,
3,
{ 4 },
5,
}

table.flattened({ a = 1, b = 2, { c = 3 }, d = 4})

t={
["a"]=1,
["b"]=2,
["c"]=3,
["d"]=4,
}

table.flattened({ 1, 2, { 3, { c = 4 } }, 5})

t={
1,
2,
3,
5,
["c"]=4,
}

table.flattened({ 1, 2, { 3, { c = 4 } }, 5}, 1)

t={
1,
2,

72 Lua Functions

preliminary, uncorrected version – March 5, 2013

3,
{
["c"]=4,
},
5,
}

loweredkeys

The name says it all: this function returns a new table with the keys being lower case. This is handy
in cases where the keys have a change to be inconsistent, as can be the case when users input keys
and values in less controlled ways.

local normalized = table.loweredkeys { a = "a", A = "b", b = "c" }

table.loweredkeys({ a = 1, b = 2, C = 3})

t={
["a"]=1,
["b"]=2,
["c"]=3,
}

contains

This function works with indexed tables. Watch out, when you look for a match, the number 1 is not
the same as string "1". The function returns the index or false.

if table.contains(t, 5) then ... else ... end
if table.contains(t,"5") then ... else ... end

table.contains({ "a", 2, true, "1"}, 1)

false

table.contains({ "a", 2, true, "1"}, "1")

4

unique

When a table (can) contain duplicate entries you can get rid of them by using the unique helper:

local t = table.unique { 1, 2, 3, 4, 3, 2, 5, 6 }

table.unique({ "a", "b", "c", "a", "d" })

t={
"a",
"b",
"c",
"d",
}

Lua Functions 73

preliminary, uncorrected version – March 5, 2013

count

The name speaks for itself: this function counts the number of entries in the given table. For an
indexed table #t is faster.

local n = table.count(t)

table.count({ 1, 2, [4] = 4, a = "a" })

4

sequenced

Normally, when you trace a table, printing the serialized version is quite convenient. However, when
it concerns a simple table, a more compact variant is:

print(table.sequenced(t, separator))

table.sequenced({ 1, 2, 3, 4})

1=1 | 2=2 | 3=3 | 4=4

table.sequenced({ 1, 2, [4] = 4, a = "a" }, ", ")

1=1, 2=2, 4=4, a=a

9.3 Math
In addition to the built-in math function we provide: round, odd, even, div, mod, sind, cosd and
tand.

At the TEX end we have a helper luaexpr that you can use to do calculations:

14.49159265359 = 14.49159265359

Both calls return the same result, but the first one is normally faster than the context command
which has quite some overhead.

14.49159265359 = 14.49159265359

The \luaexpr command can also better deal with for instance conditions, where it returns true or
false, while \cldcontext would interpret the boolean value as a special signal.

9.4 Booleans

tonumber

This function returns the number one or zero. You will seldom need this function.

local state = boolean.tonumber(str)

boolean.tonumber(true)

1

74 Lua Functions

preliminary, uncorrected version – March 5, 2013

toboolean

When dealing with configuration files or tables a bit flexibility in setting a state makes sense, if only
because in some cases it’s better to say yes than true.

local b = toboolean(str)
local b = toboolean(str,tolerant)

When the second argument is true, the strings true, yes, on, 1, t and the number 1 all turn into
true. Otherwise only true is honoured. This function is also defined in the global namespace.

string.toboolean("true")

true

string.toboolean("yes")

false

string.toboolean("yes",true)

true

is_boolean

This function is somewhat similar to the previous one. It interprets the strings true, yes, on and t as
true and false, no, off and f as false. Otherwise nil is returned, unless a default value is given,
in which case that is returned.

if is_boolean(str) then ... end
if is_boolean(str,default) then ... end

string.is_boolean("true")

true

string.is_boolean("off")

false

string.is_boolean("crap",true)

true

9.5 Strings
Lua strings are simply sequences of bytes. Of course in some places special treatment takes place.
For instance \n expands to one or more characters representing a newline, depending on the operat-
ing system, but normally, as long as you manipulate strings in the perspective of LuaTEX, you don’t
need to worry about such issues too much. As LuaTEX is a utf-8 engine, strings normally are in that
encoding but again, it does not matter much as Lua is quite agnostic about the content of strings: it
does not care about three characters reflecting one Unicode character or not. This means that when
you use for instance the functions discussed here, or use libraries like lpeg behave as you expect.

Versions later than 0.75 are likely to have some basic Unicode support on board but we can easily
adapt to that. At least till LuaTEX version 0.75 we provided the slunicode library but users cannot

Lua Functions 75

preliminary, uncorrected version – March 5, 2013

assume that that will be present for ever. If you want to mess around with utf string, use the utf
library instead as that is the one we provide in MkIV. It presents the stable interface to whatever Lua
itself provides and/or what LuaTEX offers and/or what is there because MkIV implements it.

[lua] byte char

As long as we’re dealing with ascii characters we can use these two functions to go from numbers to
characters and vise versa.

string.byte("luatex")

108

string.byte("luatex",1,3)

108 117 97

string.byte("luatex",-3,-1)

116 101 120

string.char(65)

A

string.char(65,66,67)

ABC

[lua] sub

You cannot directly access a character in a string but you can take any slice you want using sub. You
need to provide a start position and negative values will count backwards from the end.

local slice = string.sub(str,first,last)

string.sub("abcdef",2)

bcdef

string.sub("abcdef",2,3)

bc

string.sub("abcdef",-3,-2)

de

[lua] gsub

There are two ways of analyzing the content of a string. The more modern and flexible approach is to
use lpeg. The other one uses some functions in the string namespace that accept so called patterns
for matching. While lpeg is more powerfull than regular expressions, the pattern matching is less
powerfull but sometimes faster and also easier to specify. In many cases it can do the job quite well.

local new, count = string.gsub(old,pattern,replacement)

76 Lua Functions

preliminary, uncorrected version – March 5, 2013

The replacement can be a function. Often you don’t want the number of matches, and the way to
avoid this is either to store the result in a variable:

local new = string.gsub(old,"lua","LUA")
print(new)

or to use parentheses to signal the interpreter that only one value is return.

print((string.gsub(old,"lua","LUA"))

Patterns can be more complex so you’d better read the Lua manual if you want to know more about
them.

string.gsub("abcdef","b","B")

aBcdef

string.gsub("abcdef","[bc]",string.upper)

aBCdef

An optional fourth argument specifies how often the replacement has to happen

string.gsub("textextextex","tex","abc")

abcabcabcabc

string.gsub("textextextex","tex","abc",1)

abctextextex

string.gsub("textextextex","tex","abc",2)

abcabctextex

[lua] find

The find function returns the first and last position of the match:

local first, last = find(str,pattern)

If you’re only interested if there is a match at all, it’s enough to know that there is a first position. No
match returns nil. So,

if find("luatex","tex") then ... end

works out okay. You can pass an extra argument to find that indicates the start position. So you can
use this function to loop over all matches: just start again at the end of the last match.

A fourth optional argument is a boolean that signals not to interpret the pattern but use it as-is.

string.find("abc.def","c% .d",1,false)

3

string.find("abc.def","c% .d",1,true)

nil

Lua Functions 77

preliminary, uncorrected version – March 5, 2013

string.find("abc% .def","c% .d",1,false)

nil

string.find("abc% .def","c% .d",1,true)

3

[lua] match gmatch

With match you can split of bits and pieces of a string. The parenthesis indicate the captures.

local a, b, c, ... = string.match(str,pattern)

The gmatch function is used to loop over a string, for instance the following code prints the elements
in a comma separated list, ignoring spaces after commas.

for s in string.gmatch(str,"([^,%s])+") do
print(s)

end

A more detailed description can be found in the Lua reference manual, so we only mention the special
directives. Characters are grouped in classes:

%a letters
%l lowercase letters
%u uppercase letters
%d digits
%w letters and digits
%c control characters
%p punctuation
%x hexadecimal characters
%s space related characters

You can create sets too:

[%l%d] lowercase letters and digits
[^%d%p] all characters except digits and punctuation
[p-z] all characters in the range p upto z
[pqr] all characters p, q and r

There are some characters with special meanings:

^ the beginning of a string
$ end of a string
. any character
* zero or more of the preceding specifier, greedy
- zero or more of the preceding specifier, least possible
+ one or more of the preceding specifier
? zero or one of the preceding specifier
() encapsulate capture
%b capture all between the following two characters

78 Lua Functions

preliminary, uncorrected version – March 5, 2013

You can use whatever you like to be matched:

pqr the sequence pqr
my name is (%w) the word following my name is

If you want to specify such a token as it is, then you can precede it with a percent sign, so to get a
percent, you need two in a row.

string.match("before:after","^(.-):")

before

string.match("before:after","^([^:])")

b

string.match("before:after","bef(.*)ter")

ore:af

string.match("abcdef","[b-e]+")

bcde

string.match("abcdef","[b-e]*")

string.match("abcdef","b-e+")

e

string.match("abcdef","b-e*")

Such patterns should not be confused with regular expressions, although to some extent they can do
the same. If you really want to do complex matches, you should look into lpeg.

[lua] lower upper

These two function spreak for themselves.

string.lower("LOW")

low

string.upper("upper")

UPPER

[lua] format

The format function takes a template as first argument and one or more additional arguments de-
pending on the format. The template is similar to the one used in c but it has some extensions.

local s = format(format, str, ...)

Lua Functions 79

preliminary, uncorrected version – March 5, 2013

The following table gives an overview of the possible format directives. The s is the most proba-
bly candidate and can handle numbers well as strings. Watch how the minus sign influences the
alignment.5

integer %i 12345 12345
integer %d 12345 12345
unsigned %u -12345 12345
character %c 123 Y
hexadecimal %x 123 7b

%X 123 7B
octal %o 12345 30071

string %s abc abcd
%-8s 123 123
%8s 123 123

float %0.2f 12.345 12.35
exponential %0.2e 12.345 1.23e+001

%0.2E 12.345 1.23E+001
autofloat %0.2g 12.345 12

%0.2G 12.345 12

string.format("U+% 05X",2010)

U+007DA

The format function discussed before is the built-in. As an alternative ConTEXt provides an addi-
tional formatter that has some extensions. Interesting is that that one is often more efficient, although
there are cases where the speed is comparable. In addition to the regular format function we have
the following extra formatting keys:

utf character %c 322 ł

signed number %I 1234 +1234
rounded number %r 1234.56 1235

unicode value 0x %v ł 0x00142
%V ł 0x00142

unicode value U+ %u ł u+00142
%U ł U+00142

points %p 1234567 18.838pt
basepoints %b 1234567 18.76762bp

table concat %t {1,2,3} 123
%*t {1,2,3} 1*2*3

boolean %l "a" == "b" 0bp

strip

This function removes any leading and trailing whitespace characters.

local s = string.strip(str)

5 There can be differences between platforms although so far we haven’t run into problems. Also, Lua 5.2 does a bit more
checking on correct arguments.

80 Lua Functions

preliminary, uncorrected version – March 5, 2013

string.strip(" lua + tex = luatex ")

lua + tex = luatex

split splitlines checkedsplit

The line splitter is a special case of the generic splitter. The split function can get a string as well an
lpeg pattern. The checkedsplit function removes empty substrings.

local t = string.split (str, pattern)
local t = string.split (str, lpeg)
local t = string.checkedsplit (str, lpeg)
local t = string.splitlines (str)

string.split("a, b,c, d", ",")

t={
"a",
" b",
"c",
" d",
}

string.split("p.q,r", lpeg.S(",."))

t={
"p",
"q",
"r",
}

string.checkedsplit(";one;;two", ";")

t={
"one",
"two",
}

string.splitlines("lua\ntex nic")

t={
"lua",
"tex nic",
}

quoted unquoted

You will hardly need these functions. The quoted function can normally be avoided using the format
pattern %q. The unquoted function removes single or double quotes but only when the string starts
and ends with the same quote.

local q = string.quoted (str)
local u = string.unquoted(str)

Lua Functions 81

preliminary, uncorrected version – March 5, 2013

string.quoted([[test]])

"test"

string.quoted([[test"test]])

"test\"test"

string.unquoted([["test]])

"test

string.unquoted([["t\"est"]])

t\"est

string.unquoted([["t\"est"x]])

t\"est

string.unquoted("\'test\'")

test

count

The function count returns the number of times that a given pattern occurs. Beware: if you want to
deal with utf strings, you need the variant that sits in the lpeg namespace.

local n = count(str,pattern)

string.count("test me", "e")

2

limit

This function can be handy when you need to print messages that can be rather long. By default,
three periods are appended when the string is chopped.

print(limit(str,max,sentinel)

string.limit("too long", 6)

too...

string.limit("too long", 6, " (etc)")

(etc)

is_empty

A string considered empty by this function when its length is zero or when it only contains spaces.

if is_empty(str) then ... end

82 Lua Functions

preliminary, uncorrected version – March 5, 2013

string.is_empty("")

true

string.is_empty(" ")

true

string.is_empty(" ? ")

false

escapedpattern topattern

These two functions are rather specialized. They come in handy when you need to escape a pattern,
i.e. prefix characters with a special meaning by a %.

local e = escapedpattern(str, simple)
local p = topattern (str, lowercase, strict)

The simple variant does less escaping (only -.?* and is for instance used in wildcard patterns when
globbing directories. The topattern function always does the simple escape. A strict pattern gets
anchored to the beginning and end. If you want to see what these functions do you can best look at
their implementation.

9.6 utf
We used to have the slunicode library available but as most of it is not used and because it has a
somewhat fuzzy state, we will no longer rely on it. In fact we only used a few functions in the utf
namespace so as ConTEXt user you’d better stick to what is presented here. You don’t have to worry
how they are implemented. Depending on the version of LuaTEX it can be that a library, a native
function, or lpegis used.

char byte

As utf is a multibyte encoding the term char in fact refers to a Lua string of one upto four 8-bit char-
acters.

local b = utf.byte("å")
local c = utf.char(0xE5)

The number of places in ConTEXt where do such conversion is not that large: it happens mostly in
tracing messages.

logs.report("panic","the character U+%05X is used",utf.byte("æ"))

utf.byte("æ")

230

utf.char(0xE6)

æ

Lua Functions 83

preliminary, uncorrected version – March 5, 2013

sub

If you need to take a slice of an utf encoded string the sub function can come in handy. This function
takes a string and a range defined by two numbers. Negative numbers count from the end of the
string.

utf.sub("123456àáâãäå",1,7)

123456à

utf.sub("123456àáâãäå",0,7)

123456à

utf.sub("123456àáâãäå",0,9)

123456àáâ

utf.sub("123456àáâãäå",4)

456àáâãäå

utf.sub("123456àáâãäå",0)

123456àáâãäå

utf.sub("123456àáâãäå",0,0)

utf.sub("123456àáâãäå",4,4)

4

utf.sub("123456àáâãäå",4,0)

utf.sub("123456àáâãäå",-3,0)

utf.sub("123456àáâãäå",0,-3)

123456àáâã

utf.sub("123456àáâãäå",-5,-3)

áâã

utf.sub("123456àáâãäå",-3)

ãäå

len

There are probably not that many people that can instantly see how many bytes the string in the
following example takes:

84 Lua Functions

preliminary, uncorrected version – March 5, 2013

local l = utf.len("ÀÁÂÃÄÅàáâãäå")

Programming languages use ascii mostly so there each characters takes one byte. In cjk scripts how-
ever, you end up with much longer sequences. If you ever did some typesetting of such scripts you
have noticed that the number of characters on a page is less than in the case of a Latin script. As in-
formation is coded in less characters, effectively the source of a Latin or cjk document will not differ
that much.

utf.len("ÒÓÔÕÖòóôõö")

10

values characters

There are two iterators that deal with utf. In LuaTEX these are extensions to the string library but
for consistency we’ve move them to the utf namespace.

The following function loops over the utf characters in a string and returns the Unicode number in u:

for u in utf.values(str) do
... -- u is a number

end

The next one returns a string c that has one or more characters as utf characters can have upto 4 bytes.

for c in utf.characters(str) do
... -- c is a string

end

ustring xstring tocodes

These functions are mostly useful for logging where we want to see the Unicode number.

utf.ustring(0xE6)

U+000E6

utf.ustring("ù")

U+000F9

utf.xstring(0xE6)

0x000E6

utf.xstring("à")

0x000E0

utf.tocodes("ùúü")

0x00F9 0x00FA 0x00FC

utf.tocodes("àáä","")

0x00E00x00E10x00E4

Lua Functions 85

preliminary, uncorrected version – March 5, 2013

utf.tocodes("òóö","+")

0x00F2+0x00F3+0x00F6

split splitlines totable

The split function splits a sequence of utf characters into a table which one character per slot. The
splitlines does the same but each slot has a line instead. The totable function is similar to split,
but the later strips an optionally present utf bom.

utf.split("òóö")

table: 147C6B38

count

This function counts the number of times that a given substring occurs in a string. The patterns can
be a string or an lpeg pattern.

utf.count("òóöòóöòóö","ö")

3

utf.count("äáàa",lpeg.P("á") + lpeg.P("à"))

2

remapper replacer substituter

With remapper you can create a remapping function that remaps a given string using a (hash) table.

local remap = utf.remapper { a = 'd', b = "c", c = "b", d = "a" }

print(remap("abcd 1234 abcd"))

A remapper checks each character against the given mapping table. Its cousin replacer is more
efficient and skips non matches. The substituter function only does a quick check first and avoids
building a string with no replacements. That one is much faster when you expect not that many
replacements.

The replacer and substituter functions take table as argument and an indexed as well as hashed
one are acceptable. In fact you can even do things like this:

local rep = utf.replacer { [lpeg.patterns.digit] = "!" }

is_valid

This function returns false if the argument is no valid utf string. As LuaTEX is pretty strict with respect
to the input, this function is only useful when dealing with external files.

function checkfile(filename)
local data = io.loaddata(filename)
if data and data ~= "" and not utf.is_valid(data) then

86 Lua Functions

preliminary, uncorrected version – March 5, 2013

logs.report("error","file %q contains invalid utf",filename)
end

end

9.7 Numbers and bits
In the number namespace we collect some helpers that deal with numbers as well as bits. Starting
with Lua 5.2 a library bit32 is but the language itself doesn’t provide for them via operators: the
library uses functions to manipulate numbers upto 232. For advanced bit manipulations you should
use the bit32 library, otherwise it’s best to stick to the functions described here.

hasbit setbit clearbit

As bitsets are numbers you will also use numbers to qualify them. So, if you want to set bits 1, 4 and
8, you can to that using the following specification:

local b = 1 + 4 + 8 -- 0x1 + 0x4 + 0x8
local b = 13 -- or 0xC

However, changing one bit by adding a number to an existing doesn’t work out that well if that
number already has that bit set. Instead we use:

local b = number.setbit(b,0x4)

In a similar fashion you can turn of a bit:

local b = number.clearbit(b,0x4)

Testing for a bit(set) is done as follows:

local okay = number.hasbit(b,0x4)

bit

Where the previously mentioned helpers work with numbers representing one or more bits, it is
sometimes handy to work with positions. The bit function returns the associated number value.

number.bit(5)

16

tobitstring

There is no format option to go from number to bits in terms of zeros and ones so we provide a helper:
tobitsting.

number.tobitstring(2013)

0000011111011101

number.tobitstring(2013,3)

000000000000011111011101

Lua Functions 87

preliminary, uncorrected version – March 5, 2013

number.tobitstring(2013,1)

11011101

bits

If you ever want to convert a bitset into a table containing the set bits you can use this function.

number.bits(11)

t={
4,
2,
1,
}

toset

A string or number can be split into digits with toset. Beware, this function does not return a
function but multiple numbers

local a, b, c, d = number.toset("1001")

The returned values are either numbers or nil when an valid digit is seen.

number.toset(100101)

1 0 0 1 0 1

number.toset("100101")

1 0 0 1 0 1

number.toset("21546")

2 1 5 4 6

valid

This function can be used to check or convert a number, for instance in user interfaces.

number.valid(12)

12

number.valid("34")

34

number.valid("ab",56)

56

88 Lua Functions

preliminary, uncorrected version – March 5, 2013

9.8 lpeg patterns
For LuaTEX and ConTEXt MkIV the lpeg library came at the right moment as we can use it in lots
of places. An in-depth discussion makes no sense as it’s easier to look into l-lpeg.lua, so we stick
to an overview.6 Most functions return an lpeg object that can be used in a match. In time critical
situations it’s more efficient to use the match on a predefined pattern that to create the pattern new
each time. Patterns are cached so there is no penalty in predefining a pattern. So, in the following
example, the splitter that splits at the asterisk will only be created once.

local splitter_1 = lpeg.splitat("*")
local splitter_2 = lpeg.splitat("*")

local n, m = lpeg.match(splitter_1,"2*4")
local n, m = lpeg.match(splitter_2,"2*4")

[lua] match print P R S V C Cc Cs ...

The match function does the real work. Its first argument is a lpeg object that is created using the
functions with the short uppercase names.

local P, R, C, Ct = lpeg.P, lpeg.R, lpeg.C, lpeg.Ct

local pattern = Ct((P("[") * C(R("az")^0) * P(']') + P(1))^0)

local words = lpeg.match(pattern,"a [first] and [second] word")

In this example the words between square brackets are collected in a table. There are lots of examples
of lpeg in the ConTEXt code base.

anywhere

local p = anywhere(pattern)

lpeg.match(lpeg.Ct((lpeg.anywhere("->")/"!")^0), "oeps->what->more")

t={
"!",
"!",
}

splitter splitat firstofsplit secondofsplit

The splitter function returns a pattern where each match gets an action applied. The action can
be a function, table or string.

local p = splitter(pattern, action)

The splitat function returns a pattern that will return the split off parts. Unless the second argu-
ment is true the splitter keeps splitting

local p = splitat(separator,single)

6 If you search the web for lua lpeg you will end up at the official documentation and tutorial.

Lua Functions 89

preliminary, uncorrected version – March 5, 2013

When you need to split off a prefix (for instance in a label) you can use:

local p = firstofsplit(separator)
local p = secondofsplit(separator)

The first function returns the original when there is no match but the second function returns nil
instead.

lpeg.match(lpeg.Ct(lpeg.splitat("->",false)), "oeps->what->more")

t={
"oeps",
"what",
"more",
}

lpeg.match(lpeg.Ct(lpeg.splitat("->",false)), "oeps")

t={
"oeps",
}

lpeg.match(lpeg.Ct(lpeg.splitat("->",true)), "oeps->what->more")

t={
"oeps",
"what->more",
}

lpeg.match(lpeg.Ct(lpeg.splitat("->",true)), "oeps")

t={
"oeps",
}

lpeg.match(lpeg.firstofsplit(":"), "before:after")

before

lpeg.match(lpeg.firstofsplit(":"), "whatever")

whatever

lpeg.match(lpeg.secondofsplit(":"), "before:after")

after

lpeg.match(lpeg.secondofsplit(":"), "whatever")

nil

split checkedsplit

The next two functions have counterparts in the string namespace. They return a table with the
split parts. The second function omits empty parts.

90 Lua Functions

preliminary, uncorrected version – March 5, 2013

local t = split (separator,str)
local t = checkedsplit(separator,str)

lpeg.split(",","a,b,c")

t={
"a",
"b",
"c",
}

lpeg.split(",",",a,,b,c,")

t={
"",
"a",
"",
"b",
"c",
"",
}

lpeg.checkedsplit(",",",a,,b,c,")

t={
"a",
"b",
"c",
}

stripper keeper replacer

These three functions return patterns that manipulate a string. The replacer gets a mapping table
passed.

local p = stripper(str or pattern)
local p = keeper (str or pattern)
local p = replacer(mapping)

lpeg.match(lpeg.stripper(lpeg.R("az")), "[-a-b-c-d-]")

[-----]

lpeg.match(lpeg.stripper("ab"), "[-a-b-c-d-]")

[---c-d-]

lpeg.match(lpeg.keeper(lpeg.R("az")), "[-a-b-c-d-]")

abcd

lpeg.match(lpeg.keeper("ab"), "[-a-b-c-d-]")

ab

Lua Functions 91

preliminary, uncorrected version – March 5, 2013

lpeg.match(lpeg.replacer{{"a","p"},{"b","q"}}, "[-a-b-c-d-]")

[-p-q-c-d-]

balancer

One of the nice things about lpeg is that it can handle all kind of balanced input. So, a function is
provided that returns a balancer pattern:

local p = balancer(left,right)

lpeg.match(lpeg.Ct((lpeg.C(lpeg.balancer("{","}"))+1)^0),"{a} {b{c}}")

t={
"{a}",
"{b{c}}",
}

lpeg.match(lpeg.Ct((lpeg.C(lpeg.balancer("((","]"))+1)^0),"((a] ((b((c]]")

t={
"((a]",
"((b((c]]",
}

counter

The counter function returns a function that returns the length of a given string. The count function
differs from its counterpart living in the stringnamespace in that it deals with utf and accepts strings
as well as patterns.

local fnc = counter(lpeg.P("á") + lpeg.P("à"))
local len = fnc("äáàa")

UP US UR

In order to make working with utf-8 input somewhat more convenient a few helpers are provided.

local p = lpeg.UP(utfstring)
local p = lpeg.US(utfstring)
local p = lpeg.UR(utfpair)
local p = lpeg.UR(first,last)

utf.count("äáàa",lpeg.UP("áà"))

1

utf.count("äáàa",lpeg.US("àá"))

2

utf.count("äáàa",lpeg.UR("aá"))

4

92 Lua Functions

preliminary, uncorrected version – March 5, 2013

utf.count("äáàa",lpeg.UR("àá"))

2

utf.count("äáàa",lpeg.UR(0x0000,0xFFFF))

4

patterns

The following patterns are available in the patterns table in the lpeg namespace:

HEX alwaysmatched anything argument balanced beginline beginofstring cardinal
cfloat chartonumber cnumber collapser colon comma commaspacer containseol content
context cunsigned digit dimenpair doublequoted dquote emptyline endofstring eol
equal escaped float hex hexadecimal integer letter linesplitter longtostring
lowercase nested nestedbraces nestedparents newline nodquote nonspacer nonwhitespace
nosquote number oct octal paragraphs period propername qualified quoted rootbased
semicolon sentences sign singlequoted somecontent space spaceortab spacer splitthousands
sqlescape squote stripper stripzeros tab textline toentities tolower toshape
toupper underscore undouble unquoted unsigned unsingle unspacer uppercase url
urlescaper urlsplitter urlunescaped urlunescaper utf8 utf8byte utf8char utf8character
utf8four utf8one utf8three utf8two utfbom utflinesplitter utfoffset utftohigh
utftolow utftype validatedutf validdimen validutf8 validutf8char whitespace words
xml

There will probably be more of them in the future.

9.9 IO
The io library is extended with a couple of functions as well and variables but first we mention a few
predefined functions.

[lua] open popen...

The IO library deals with in- and output from the console and files.

local f = io.open(filename)

When the call succeeds f is a file object. You close this file with:

f:close()

Reading from a file is done with f:read(...) and writing to a file with f:write(...). In order to
write to a file, when opening a second argument has to be given, often wb for writing (binary) data.
Although there are more efficient ways, you can use the f:lines() iterator to process a file line by
line.

You can open a process with io.popen but dealing with this one depends a bit on the operating
system.

Lua Functions 93

preliminary, uncorrected version – March 5, 2013

fileseparator pathseparator

The value of the following two strings depends on the operating system that is used.

io.fileseparator
io.pathseparator

io.fileseparator

\

io.pathseparator

;

loaddata savedata

These two functions save you some programming. The first function loads a whole file in a string. By
default the file is loaded in binary mode, but when the second argument is true, some interpretation
takes place (for instance line endings). In practice the second argument can best be left alone.

io.loaddata(filename,textmode)

Saving the data is done with:

io.savedata(filename,str)
io.savedata(filename,tab,joiner)

When a table is given, you can optionally specify a string that ends up between the elements that
make the table.

exists size noflines

These three function don’t need much comment.

io.exists(filename)
io.size(filename)
io.noflines(fileobject)
io.noflines(filename)

characters bytes readnumber readstring

When I wrote the icc profile loader, I needed a few helpers for reading strings of a certain length and
numbers of a given width. Both accept five values of n: -4, -2, 1, 2 and 4 where the negative values
swap the characters or bytes.

io.characters(f,n) --
io.bytes(f,n)

The function readnumber accepts five sizes: 1, 2, 4, 8, 12. The string function handles any size and
strings zero bytes from the string.

io.readnumber(f,size)
io.readstring(f,size)

94 Lua Functions

preliminary, uncorrected version – March 5, 2013

Optionally you can give the position where the reading has to start:

io.readnumber(f,position,size)
io.readstring(f,position,size)

ask

In practice you will probably make your own variant of the following function, but at least a template
is there:

io.ask(question,default,options)

For example:

local answer = io.ask("choice", "two", { "one", "two" })

9.10 File
The file library is one of the larger core libraries that comes with ConTEXt.

dirname basename extname nameonly

We start with a few filename manipulators.

local path = file.dirname(name,default)
local base = file.basename(name)
local suffix = file.extname(name,default) -- or file.suffix
local name = file.nameonly(name)

file.dirname("/data/temp/whatever.cld")

/data/temp

file.dirname("c:/data/temp/whatever.cld")

c:/data/temp

file.basename("/data/temp/whatever.cld")

whatever.cld

file.extname("c:/data/temp/whatever.cld")

cld

file.nameonly("/data/temp/whatever.cld")

whatever

addsuffix replacesuffix

These functions are used quite often:

local filename = file.addsuffix(filename, suffix, criterium)

Lua Functions 95

preliminary, uncorrected version – March 5, 2013

local filename = file.replacesuffix(filename, suffix)

The first one adds a suffix unless one is present. When criterium is true no checking is done and
the suffix is always appended. The second function replaces the current suffix or add one when there
is none.

file.addsuffix("whatever","cld")

whatever.cld

file.addsuffix("whatever.tex","cld")

whatever.tex

file.addsuffix("whatever.tex","cld",true)

whatever.tex.cld

file.replacesuffix("whatever","cld")

whatever.cld

file.replacesuffix("whatever.tex","cld")

whatever.cld

is_writable is_readable

These two test the nature of a file:

file.is_writable(name)
file.is_readable(name)

splitname join collapsepath

Instead of splitting off individual components you can get them all in one go:

local drive, path, base, suffix = file.splitname(name)

The drive variable is empty on operating systems other than MS Windows. Such components are
joined with the function:

file.join(...)

The given snippets are joined using the / as this is rather platform independent. Some checking takes
place in order to make sure that nu funny paths result from this. There is also collapsepath that
does some cleanup on a path with relative components, like ...

file.splitname("a:/b/c/d.e")

a:/b/c/ d e

file.join("a","b","c.d")

a/b/c.d

96 Lua Functions

preliminary, uncorrected version – March 5, 2013

file.collapsepath("a/b/../c.d")

a/c.d

file.collapsepath("a/b/../c.d",true)

t:/manuals/cld-mkiv/a/c.d

splitpath joinpath

By default splitting a execution path specification is done using the operating system dependant
separator, but you can force one as well:

file.splitpath(str,separator)

The reverse operation is done with:

file.joinpath(tab,separator)

Beware: in the following examples the separator is system dependent so the outcome depends on
the platform you run on.

file.splitpath("a:b:c")

t={
"a:b:c",
}

file.splitpath("a;b;c")

t={
"a",
"b",
"c",
}

file.joinpath({"a","b","c"})

a;b;c

robustname

In workflows filenames with special characters can be a pain so the following function replaces char-
acters other than letters, digits, periods, slashes and hyphens by hyphens.

file.robustname(str,strict)

file.robustname("We don't like this!")

We-don-t-like-this-

file.robustname("We don't like this!",true)

We-don-t-like-this

Lua Functions 97

preliminary, uncorrected version – March 5, 2013

readdata writedata

These two functions are duplicates of functions with the same name in the io library.

copy

There is not much to comment on this one:

file.copy(oldname,newname)

is_qualified_path is_rootbased_path

A qualified path has at least one directory component while a rootbased path is anchored to the root
of a filesystem or drive.

file.is_qualified_path(filename)
file.is_rootbased_path(filename)

file.is_qualified_path("a")

false

file.is_qualified_path("a/b")

true

file.is_rootbased_path("a/b")

false

file.is_rootbased_path("/a/b")

true

9.11 Dir
The dir library uses functions of the lfs library that is linked into LuaTEX.

current

This returns the current directory:

dir.current()

glob globpattern globfiles

The glob function collects files with names that match a given pattern. The pattern can have wild-
cards: * (oen of more characters), ? (one character) or ** (one or more directories). You can pass the
function a string or a table with strings. Optionally a second argument can be passed, a table that the
results are appended to.

local files = dir.glob(pattern,target)
local files = dir.glob({pattern,...},target)

98 Lua Functions

preliminary, uncorrected version – March 5, 2013

The target is optional and often you end up with simple calls like:

local files = dir.glob("*.tex")

There is a more extensive version where you start at a path, and applies an action to each file that
matches the pattern. You can either or not force recursion.

dir.globpattern(path,patt,recurse,action)

The globfiles function collects matches in a table that is returned at the end. You can pass an
existing table as last argument. The first argument is the starting path, the second arguments controls
analyzing directories and the third argument has to be a function that gets a name passed and is
supposed to return true or false. This function determines what gets collected.

dir.globfiles(path,recurse,func,files)

makedirs

With makedirs you can create the given directory. If more than one name is given they are concati-
nated.

dir.makedirs(name,...)

expandname

This function tries to resolve the given path, including relative paths.

dir.expandname(str)

dir.expandname(".")

t:/manuals/cld-mkiv

9.12 URL

split hashed construct

This is a specialized library. You can split an url into its components. An url is constructed like this:

foo://example.com:2010/alpha/beta?gamma=delta#epsilon

scheme foo://
authority example.com:2010
path /alpha/beta
query gamma=delta
fragment epsilon

A string is split into a hash table with these keys using the following function:

url.hashed(str)

or in strings with:

Lua Functions 99

preliminary, uncorrected version – March 5, 2013

url.split(str)

The hash variant is more tolerant than the split. In the hash there is also a key original that holds
the original url and and the boolean noscheme indicates if there is a scheme at all.

The reverse operation is done with:

url.construct(hash)

url.hashed("foo://example.com:2010/alpha/beta?gamma=delta#epsilon")

t={
["authority"]="example.com:2010",
["filename"]="example.com:2010/alpha/beta",
["fragment"]="epsilon",
["noscheme"]=false,
["original"]="foo://example.com:2010/alpha/beta?gamma=delta#epsilon",
["path"]="alpha/beta",
["queries"]={
["gamma"]="delta",
},
["query"]="gamma=delta",
["scheme"]="foo",
}

url.hashed("alpha/beta")

t={
["authority"]="",
["filename"]="alpha/beta",
["fragment"]="",
["noscheme"]=true,
["original"]="alpha/beta",
["path"]="alpha/beta",
["query"]="",
["scheme"]="file",
}

url.split("foo://example.com:2010/alpha/beta?gamma=delta#epsilon")

t={
"foo",
"example.com:2010",
"alpha/beta",
"gamma=delta",
"epsilon",
}

url.split("alpha/beta")

t={
"",
"",

100 Lua Functions

preliminary, uncorrected version – March 5, 2013

"",
"",
"",
}

hasscheme addscheme filename query

There are a couple of helpers and their names speaks for themselves:

url.hasscheme(str)
url.addscheme(str,scheme)
url.filename(filename)
url.query(str)

url.hasscheme("http://www.pragma-ade.com/cow.png")

http

url.hasscheme("www.pragma-ade.com/cow.png")

false

url.addscheme("www.pragma-ade.com/cow.png","http://")

http://:///www.pragma-ade.com/cow.png

url.addscheme("www.pragma-ade.com/cow.png")

file:///www.pragma-ade.com/cow.png

url.filename("http://www.pragma-ade.com/cow.png")

http://www.pragma-ade.com/cow.png

url.query("a=b&c=d")

t={
["a"]="b",
["c"]="d",
}

9.13 OS

[lua luatex] env setenv getenv

In ConTEXt normally you will use the resolver functions to deal with the environment and files. How-
ever, a more low level interface is still available. You can query and set environment variables with
two functions. In addition there is the env table as interface to the environment. This threesome
replaces the built in functions.

os.setenv(key,value)
os.getenv(key)
os.env[key]

Lua Functions 101

preliminary, uncorrected version – March 5, 2013

[lua] execute

There are several functions for running programs. One comes directly from Lua, the otheres come
with LuaTEX. All of them are are overloaded in ConTEXt in order to get more control.

os.execute(...)

[luatex] spawn exec

Two other runners are:

os.spawn(...)
os.exec (...)

The exec variant will transfer control from the current process to the new one and not return to the
current job. There is a more detailed explanation in the LuaTEX manual.

resultof launch

The following function runs the command and returns the result as string. Multiple lines are com-
bined.

os.resultof(command)

The next one launches a file assuming that the operating system knows what application to use.

os.launch(str)

type name platform libsuffix binsuffix

There are a couple of strings that reflect the current machinery: type returns either windows or
unix. The variable name is more detailed: windows, msdos, linux, macosx, etc. If you also want the
architecture you can consult platform.

local t = os.type
local n = os.name
local p = os.platform

These three variables as well as the next two are used internally and normally they are not needed in
your applications as most functions that matter are aware of what platform specific things they have
to deal with.

local s = os.libsuffix
local b = os.binsuffix

These are string, not functions.

os.type

windows

os.name

windows

102 Lua Functions

preliminary, uncorrected version – March 5, 2013

os.platform

mswin

os.libsuffix

dll

os.binsuffix

exe

[lua] time

The built in time function returns a number. The accuracy is implementation dependent and not that
large.

os.time()

1362506735

[luatex] times gettimeofday

Although Lua has a built in type os.time function, we normally will use the one provided by LuaTEX
as it is more precise:

os.gettimeofday()

There is also a more extensive variant:

os.times()

This one is platform dependent and returns a table with utime (use time), stime (system time),
cutime (children user time), and cstime (children system time).

os.gettimeofday()

1362506735.0853

os.times()

t={
["cstime"]=0,
["cutime"]=0,
["stime"]=0,
["utime"]=1362506735.0973,
}

runtime

More interesting is:

os.runtime()

which returns the time spent in the application so far.

Lua Functions 103

preliminary, uncorrected version – March 5, 2013

os.runtime()

74.669835090637

Sometimes you need to add the timezone to a verbose time and the following function does that for
you.

os.timezone(delta)

os.timezone()

1

os.timezone(1)

+01:00

os.timezone(-1)

+01:00

uuid

A version 4 UUID can be generated with:

os.uuid()

The generator is good enough for our purpose.

os.uuid()

60e5cb65-4e89-9be7-d8b3-dced96795a89

9.14 A few suggestions
You can wrap all kind of functionality in functions but sometimes it makes no sense to add the over-
head of a call as the same can be done with hardly any code.

If you want a slice of a table, you can copy the range needed to a new table. A simple version with
no bounds checking is:

local new = { } for i=a,b do new[#new+1] = old[i] end

Another, much faster, variant is the following.

local new = { unpack(old,a,b) }

You can use this variant for slices that are not extremely large. The function table.sub is an equiv-
alent:

local new = table.sub(old,a,b)

An indexed table is empty when its size equals zero:

if #indexed == 0 then ... else ... end

104 Lua Functions

preliminary, uncorrected version – March 5, 2013

Sometimes this is better:

if indexed and #indexed == 0 then ... else ... end

So how do we test if a hashed table is empty? We can use the next function as in:

if hashed and next(indexed) then ... else ... end

Say that we have the following table:

local t = { a=1, b=2, c=3 }

The call next(t) returns the first key and value:

local k, v = next(t) -- "a", 1

The second argument to next can be a key in which case the following key and value in the hash
table is returned. The result is not predictable as a hash is unordered. The generic for loop uses this
to loop over a hashed table:

for k, v in next, t do
...

end

Anyway, when next(t) returns zero you can be sure that the table is empty. This is how you can
test for exactly one entry:

if t and not next(t,next(t)) then ... else ... end

Here it starts making sense to wrap it into a function.

function table.has_one_entry(t)
t and not next(t,next(t))

end

On the other hand, this is not that usefull, unless you can spent the runtime on it:

function table.is_empty(t)
return not t or not next(t)

end

The Lua interface code 105

preliminary, uncorrected version – March 5, 2013

10 The Lua interface code

10.1 Introduction
There is a lot of Lua code in MkIV. Much is not exposed and a lot of what is exposed is not meant to
be used directly at the Lua end. But there is also functionality and data that can be accessed without
side effects.

In the following sections a subset of the built in functionality is discussed. There are often more func-
tions alongside those presented but they might change or disappear. So, if you use undocumented
features, be sure to tag them somehow in your source code so that you can check them out when
there is an update. Best would be to have more functionality defined local so that it is sort of hidden
but that would be unpractical as for instance functions are often used in other modules and or have
to be available at the TEX end.

It might be tempting to add your own functions to namespaces created by ConTEXt or maybe overload
some existing ones. Don’t do this. First of all, there is no guarantee that your code will not interfere,
nor that it overloads future functionality. Just use your own namespace. Also, future versions of
ConTEXt might have a couple of protection mechanisms built in. Without doubt the following sections
will be extended as soon as interfaces become more stable.

10.2 Characters
There are quite some data tables defined but the largest is the character database. You can consult this
table any time you want but you’re not supposed to add or change its content if only because changes
will be overwritten when you update ConTEXt. Future versions may carry more information. The
table can be accessed using an unicode number. A relative simple entry looks as follows:

characters.data[0x00C1]

{
["adobename"]="Aacute",
["category"]="lu",
["contextname"]="Aacute",
["description"]="LATIN CAPITAL LETTER A WITH ACUTE",
["direction"]="l",
["lccode"]=225,
["linebreak"]="al",
["shcode"]=65,
["specials"]={ "char", 65, 769 },
["unicodeslot"]=193,
}

Much of this is rather common information but some of it is specific for use with ConTEXt. Some
characters have even more information, for instance those that deal with mathematics:

characters.data[0x2190]

{
["adobename"]="arrowleft",
["category"]="sm",

106 The Lua interface code

preliminary, uncorrected version – March 5, 2013

["cjkwd"]="a",
["description"]="LEFTWARDS ARROW",
["direction"]="on",
["linebreak"]="ai",
["mathextensible"]="l",
["mathfiller"]="leftarrowfill",
["mathspec"]={
{
["class"]="relation",
["name"]="leftarrow",

},
{
["class"]="relation",
["name"]="gets",

},
{
["class"]="under",
["name"]="underleftarrow",

},
{
["class"]="over",
["name"]="overleftarrow",

},
},
["mathstretch"]="h",
["unicodeslot"]=8592,
}

Not all characters have a real entry. For instance most cjk characters are virtual and share the same
data:

characters.data[0x3456]

{
["unicodeslot"]=13398,
}

You can also access the table using utf characters:

characters.data["ä"]

{
["adobename"]="adieresis",
["category"]="ll",
["contextname"]="adiaeresis",
["description"]="LATIN SMALL LETTER A WITH DIAERESIS",
["direction"]="l",
["linebreak"]="al",
["shcode"]=97,
["specials"]={ "char", 97, 776 },
["uccode"]=196,
["unicodeslot"]=228,

The Lua interface code 107

preliminary, uncorrected version – March 5, 2013

}

A more verbose string access is also supported:

characters.data["U+0070"]

{
["adobename"]="p",
["category"]="ll",
["cjkwd"]="na",
["description"]="LATIN SMALL LETTER P",
["direction"]="l",
["linebreak"]="al",
["mathclass"]="variable",
["uccode"]=80,
["unicodeslot"]=112,
}

Another (less usefull) table contains information about ranges in this character table. You can access
this table using rather verbose names, or you can use collapsed lowercase variants.

characters.blocks["CJK Compatibility Ideographs"]

{
["description"]="CJK Compatibility Ideographs",
["first"]=63744,
["last"]=64255,
["otf"]="hang",
}

characters.blocks["hebrew"]

{
["description"]="Hebrew",
["first"]=1424,
["last"]=1535,
["otf"]="hebr",
}

characters.blocks["combiningdiacriticalmarks"]

{
["description"]="Combining Diacritical Marks",
["first"]=768,
["last"]=879,
}

Some fields can be accessed using functions. This can be handy when you need that information for
tracing purposes or overviews. There is some overhead in the function call, but you get some extra
testing for free. You can use characters as well as numbers as index.

characters.contextname("ä")

adiaeresis

108 The Lua interface code

preliminary, uncorrected version – March 5, 2013

characters.adobename(228)

adieresis

characters.description("ä")

LATIN SMALL LETTER A WITH DIAERESIS

The category is normally a two character tag, but you can also ask for a more verbose variant:

characters.category(228)

ll

characters.category(228,true)

Letter Lowercase

The more verbose category tags are available in a table:

characters.categorytags["lu"]

Letter Uppercase

There are several fields in a character entry that help us to remap a character. The lccode indicates
the lowercase code point and the uccode to the uppercase code point. The shcode refers to one or
more characters that have a similar shape.

characters.shape ("ä")

97

characters.uccode("ä")

196

characters.lccode("ä")

228

characters.shape (100)

100

characters.uccode(100)

68

characters.lccode(100)

100

You can use these function or access these fields directly in an entry, but we also provide a few virtual
tables that avoid accessing the whole entry. This method is rather efficient.

characters.lccodes["ä"]

228

The Lua interface code 109

preliminary, uncorrected version – March 5, 2013

characters.uccodes["ä"]

196

characters.shcodes["ä"]

97

characters.lcchars["ä"]

ä

characters.ucchars["ä"]

Ä

characters.shchars["ä"]

a

As with other tables, you can use a number instead of an utf character. Watch how we get a table for
multiple shape codes but a string for multiple shape characters.

characters.lcchars[0x00C6]

æ

characters.ucchars[0x00C6]

Æ

characters.shchars[0x00C6]

AE

characters.shcodes[0x00C6]

{
65,
69,
}

These codes are used when we manipulate strings. Although there are upper and lower functions
in the string namespace, the following ones are the real ones to be used in critical situations.

characters.lower("ÀÁÂÃÄÅàáâãäå")

àáâãäåàáâãäå

characters.upper("ÀÁÂÃÄÅàáâãäå")

ÀÁÂÃÄÅÀÁÂÃÄÅ

characters.shaped("ÀÁÂÃÄÅàáâãäå")

AAAAAAaaaaaa

A rather special one is the following:

110 The Lua interface code

preliminary, uncorrected version – March 5, 2013

characters.lettered("Only 123 letters + count!")

Onlyletterscount

With the second argument is true, spaces are kept and collapsed. Leading and trailing spaces are
stripped.

characters.lettered("Only 123 letters + count!",true)

Only letters count

Access to tables can happen by number or by string, although there are some limitations when it
gets too confusing. Take for instance the number 8 and string "8": if we would interpret the string
as number we could never access the entry for the character eight. However, using more verbose
hexadecimal strings works okay. The remappers are also available as functions:

characters.tonumber("a")

97

characters.fromnumber(100)

d

characters.fromnumber(0x0100)

Ā

characters.fromnumber("0x0100")

Ā

characters.fromnumber("U+0100")

Ā

In addition to the already mentioned category information you can also use a more direct table ap-
proach:

characters.categories["ä"]

ll

characters.categories[100]

ll

In a similar fashion you can test if a given character is in a specific category. This can save a lot of
tests.

characters.is_character[characters.categories[67]]

true

characters.is_character[67]

nil

The Lua interface code 111

preliminary, uncorrected version – March 5, 2013

characters.is_character[characters.data[67].category]

true

characters.is_letter[characters.data[67].category]

true

characters.is_command[characters.data[67].category]

nil

Another virtual table is the one that provides access to special information, for instance about how a
composed character is made up of components.

characters.specialchars["ä"]

a

characters.specialchars[100]

d

The outcome is often similar to output that uses the shapecode information.

Although not all the code deep down in ConTEXt is meant for use at the user level, it sometimes
can eb tempting to use data and helpers that are available as part of the general housekeeping. The
next table was used when looking into sorting Korean. For practical reasons we limit the table to ten
entries; otherwise we would have ended up with hundreds of pages.

0x0034 가 0x0031 ㄱ 0x0031 ㅏ HANGUL SYLLABLE GA
0x0034 각 0x0031 ㄱ 0x0031 ㅏ 0x0031 ㄱ HANGUL SYLLABLE GAG
0x0034 갂 0x0031 ㄱ 0x0031 ㅏ 0x0031 ㄲ HANGUL SYLLABLE GAGG
0x0034 갃 0x0031 ㄱ 0x0031 ㅏ 0x0031 ㄳ HANGUL SYLLABLE GAGS
0x0034 간 0x0031 ㄱ 0x0031 ㅏ 0x0031 ㄴ HANGUL SYLLABLE GAN
0x0034 갅 0x0031 ㄱ 0x0031 ㅏ 0x0031 ㄵ HANGUL SYLLABLE GANJ
0x0034 갆 0x0031 ㄱ 0x0031 ㅏ 0x0031 ㄶ HANGUL SYLLABLE GANH
0x0034 갇 0x0031 ㄱ 0x0031 ㅏ 0x0031 ㄷ HANGUL SYLLABLE GAD
0x0034 갈 0x0031 ㄱ 0x0031 ㅏ 0x0031 ㄹ HANGUL SYLLABLE GAL
0x0034 갉 0x0031 ㄱ 0x0031 ㅏ 0x0031 ㄺ HANGUL SYLLABLE GALG

10.3 Fonts
There is a lot of code that deals with fonts but most is considered to be a black box. When a font is
defined, its data is collected and turned into a form that TEX likes. We keep most of that data available
at the Lua end so that we can later use it when needed.

A font instance is identified by its id, which is a number where zero is reserved for the so called
nullfont. The current font id can be requested by the following function.

fonts.currentid()

5

112 The Lua interface code

preliminary, uncorrected version – March 5, 2013

The fonts.current() call returns the table with data related to the current id. You can access the
data related to any id as follows:

local tfmdata = fonts.identifiers[number]

Not all entries in the table make sense for the user as some are just meant to drive the font initialization
at the TEX end or the backend. The next table lists the most important ones. Some of the tables are
just shortcuts to en entry in one of the shared subtables.

ascender number the height of a line conforming the font
descender number the depth of a line conforming the font
italicangle number the angle of the italic shapes (if present)
designsize number the design size of the font (if known)
size number the size in scaled points if the font instance
factor number the multiplication factor for unscaled dimensions
hfactor number the horizontal multiplication factor
vfactor number the vertical multiplication factor
extend number the horizontal scaling to be used by the backend
slant number the slanting to be applied by the backend
characters table the scaled character (glyph) information (tfm)
descriptions table the original unscaled glyph information (otf, afm, tfm)
indices table the mapping from unicode slot to glyph index
unicodes table the mapoing from glyph names to unicode
marks table a hash table with glyphs that are marks as entry
parameters table the font parameters as TEX likes them
mathconstants table the OpenType math parameters
mathparameters table a reference to the MathConstants table
shared table a table with information shared between instances
unique table a table with information unique for this instance
unscaled table the unscaled (intermediate) table
goodies table the ConTEXt specific extra font information
fonts table the table with references to other fonts
cidinfo table a table with special information for the backend
filename string the full path of the loaded font
fontname string the font name as specified in the font (limited in size)
fullname string the complete font name as specified in the font
name string the (short) name of the font
psname string the (unique) name of the font as used by the backend
hash string the hash that makes this instance unique
id number the id (number) that TEX will use for this instance
type string an idicator if the font is virtual or real
format string a qualification for this font, e.g. opentype
mode string the ConTEXt processing mode, node or base

The parameters table contains variables that are used by TEX itself. You can use numbers as index
and these are equivalent to the so called \fontdimen variables. More convenient is is to access by
name:

slant the slant per point (seldom used)
space the interword space

The Lua interface code 113

preliminary, uncorrected version – March 5, 2013

spacestretch the interword stretch
spaceshrink the interword shrink
xheight the x-height (not per se the heigth of an x)
quad the so called em-width (often the width of an emdash)
extraspace additional space added in specific situations

The math parameters are rather special and explained in the LuaTEX manual. Quite certainly you
never have to touch these parameters at the Lua end.

En entry in the characters table describes a character if we have entries within the Unicode range.
There can be entries in the private area but these are normally variants of a shape or special math
glyphs.

name the name of the character
index the index in the raw font table
height the scaled height of the character
depth the scaled depth of the character
width the scaled height of the character
tounicode a utf-16 string representing the conversion back to unicode
expansion_factor a multiplication factor for (horizontal) font expansion
left_protruding a multiplication factor for left side protrusion
right_protruding a multiplication factor for right side protrusion
italic the italic correction
next a pointer to the next character in a math size chain
vert_variants a pointer to vertical variants conforming OpenType math
horiz_variants a pointer to horizontal variants conforming OpenType math
top_accent information with regards to math top accents
mathkern a table describing stepwise math kerning (following the shape)
kerns a table with intercharacter kerning dimensions
ligatures a (nested) table describing ligatures that start with this character
commands a table with commands that drive the backend code for a virtual shape

Not all entries are present for each character. Also, in so called nodemode, the ligatures and kerns
tables are empty because in that case they are dealt with at the Lua end and not by TEX.

Say that you run into a glyph node and want to access the data related to that glyph. Given that
variable n points to the node, the most verbose way of doing that is:

local g = fonts.identifiers[n.id].characters[n.char]

Given the speed of LuaTEX this is quite fast. Another method is the following:

local g = fonts.characters[n.id][n.char]

For some applications you might want faster access to critical parameters, like:

local quad = fonts.quads [n.id][n.char]
local xheight = fonts.xheights[n.id][n.char]

but that only makes sense when you don’t access more than one such variable at the same time.

Among the shared tables is the feature specification:

114 The Lua interface code

preliminary, uncorrected version – March 5, 2013

fonts.current().shared.features

{
["analyze"]=true,
["curs"]=true,
["devanagari"]=true,
["extrafeatures"]=true,
["features"]=true,
["kern"]=true,
["liga"]=true,
["mark"]=true,
["mkmk"]=true,
["mode"]="node",
["number"]=3,
["script"]="dflt",
["tlig"]=true,
["trep"]=true,
}

As features are a prominent property of OpenType fonts, there are a few datatables that can be used
to get their meaning.

fonts.handlers.otf.tables.features['liga']

standard ligatures

fonts.handlers.otf.tables.languages['nld']

dutch

fonts.handlers.otf.tables.scripts['arab']

arabic

There is a rather extensive font database built in but discussing its interface does not make much
sense. Most usage happens automatically when you use the name: and spec: methods of defining
fonts and the mtx-fonts script is built on top of it.

table.sortedkeys(fonts.names.data)

{
"cache_uuid",
"cache_version",
"datastate",
"fallbacks",
"families",
"files",
"mappings",
"sorted_fallbacks",
"sorted_families",
"sorted_mappings",
"specifications",
"statistics",
"version",

The Lua interface code 115

preliminary, uncorrected version – March 5, 2013

}

You can load the database (if it’s not yet loaded) with:

names.load(reload,verbose)

When the first argument is true, the database will be rebuild. The second arguments controls ver-
bosity.

Defining a font normally happens at the TEX end but you can also do it in Lua.

local id, fontdata = fonts.definers.define {
lookup = "file", -- use the filename (file spec name)
name = "pagella-regular", -- in this case the filename
size = 10*65535, -- scaled points
global = false, -- define the font globally
cs = "MyFont", -- associate the name \MyFont
method = "featureset", -- featureset or virtual (* or @)
sub = nil, -- no subfont specifier
detail = "whatever", -- the featureset (or whatever method applies)

}

In this case the detail variable defines what featureset has to be applied. You can define such sets
at the Lua end too:

fonts.definers.specifiers.presetcontext (
"whatever",
"default",
{

mode = "node",
dlig = "yes",

}
)

The first argument is the name of the featureset. The second argument can be an empty string or
a reference to an existing featureset that will be taken as starting point. The final argument is the
featureset. This can be a table or a string with a comma separated list of key/value pairs.

10.4 Nodes
Nodes are the building blocks that make a document reality. Nodes are linked into lists and at various
moments in the typesetting process you can manipulate them. Deep down in ConTEXt we use quite
some Lua magic to manipulate lists of nodes. Therefore it is no surprise that we have some tracing
available. Take the following box.

This box contains characters and glue between the words. The box is already constructed. There can
also be kerns between characters, but of course only if the font provides such a feature. Let’s inspect
this box:

nodes.toutf(tex.box[0])

It’s in all those nodes.

116 The Lua interface code

preliminary, uncorrected version – March 5, 2013

nodes.toutf(tex.box[0].list)

It’s in all those nodes.

This tracer returns the text and spacing and recurses into nested lists. The next tracer does not do
this and marks non glyph nodes as [-]:

nodes.listtoutf(tex.box[0])

[-]

nodes.listtoutf(tex.box[0].list)

It’s[-]in[-][-][-]t[-]hose[-]nodes.

A more verbose tracer is the next one. It does show a bit more detailed information about the glyphs
nodes.

nodes.tosequence(tex.box[0])

hlist

nodes.tosequence(tex.box[0].list)

U+0049:I U+0074:t U+2019:’ U+0073:s glue U+0069:i U+006E:n glue hlist glue U+0074:t
kern U+0068:h U+006F:o U+0073:s U+0065:e glue U+006E:n U+006F:o U+0064:d U+0065:e
U+0073:s U+002E:.

The fourth tracer does not show that detail and collapses sequences of similar node types.

nodes.idstostring(tex.box[0])

[hlist]

nodes.idstostring(tex.box[0].list)

[4*glyph] [glue] [2*glyph] [glue] [hlist] [glue] [glyph] [kern] [4*glyph] [glue]
[6*glyph]

The number of nodes in a list is identified with the count function. Nested nodes are counted too.

nodes.count(tex.box[0])

27

nodes.count(tex.box[0].list)

26

There are functions to check node types and node id’s:

local str = node.type(1)
local num = node.id("vlist")

These are basic LuaTEX functions. In addition to those we also provide a few mapping tables. There
are two tables that map node id’s to strings and backwards:

nodes.nodecodes regular nodes, some fo them are sort of private to the engine
nodes.noadcodes math nodes that later on are converted into regular nodes

The Lua interface code 117

preliminary, uncorrected version – March 5, 2013

Nodes can have subtypes. Again we have tables that map the subtype numbers onto meaningfull
names and reverse.

nodes.listcodes subtypes of hlist and vlist nodes
nodes.kerncodes subtypes of kern nodes
nodes.gluecodes subtypes of glue nodes (skips)
nodes.glyphcodes subtypes of glyph nodes, the subtype can change
nodes.mathcodes math specific subtypes
nodes.fillcodes these are not really subtypes but indicate the strength of the filler
nodes.whatsitcodes subtypes of a rather large group of extension nodes

Some of the names of types and subtypes have underscores but you can omit them when you use
these tables. You can use tables like this as follows:

local glyph_code = nodes.nodecodes.glyph
local kern_code = nodes.nodecodes.kern
local glue_code = nodes.nodecodes.glue

for n in nodes.traverse(list) do
local id == n.id
if id == glyph_code then

...
elseif id == kern_code then

...
elseif id == glue_code then

...
else

...
end

end

You only need to use such temporary variables in time critical code. In spite of what you might think,
lists are not that long and given the speed of Lua (and successive optimizations in LuaTEX) looping
over a paragraphs is rather fast.

Nodes are created using node.new. If you study the ConTEXt code you will notice that there are quite
some functions in the nodes.pool namespace, like:

local g = nodes.pool.glyph(fnt,chr)

Of course you need to make sure that the font id is valid and that the referred glyph in in the font.
You can use the allocators but don’t mess with the code in the pool namespace as this might interfere
with its usage all over ConTEXt.

The nodes namespace provides a couple of helpers and some of them are similar to ones provided in
the node namespace. This has practical as well as historic reasons. For instance some were prototypes
functions that were later built in.

local head, current = nodes.before (head, current, new)
local head, current = nodes.after (head, current, new)
local head, current = nodes.delete (head, current)
local head, current = nodes.replace(head, current, new)
local head, current, old = nodes.remove (head, current)

118 The Lua interface code

preliminary, uncorrected version – March 5, 2013

Another category deals with attributes:

nodes.setattribute (head, attribute, value)
nodes.unsetattribute (head, attribute)
nodes.setunsetattribute (head, attribute, value)
nodes.setattributes (head, attribute, value)
nodes.unsetattributes (head, attribute)
nodes.setunsetattributes(head, attribute, value)
nodes.hasattribute (head, attribute, value)

10.5 Resolvers
All io is handled by functions in the resolvers namespace. Most of the code that you find in the
data-*.lua files is of litle relevance for users, especially at the Lua end, so we won’t discuss it here
in great detail.

The resolver code is modelled after the kpse library that itself implements the TEX Directory Structure
in combination with a configuration file. However, we go a bit beyond this structure, for instance in
integrating support for other resources that file systems. We also have our own configuration file.
But important is that we still support a similar logic too so that regular configurations are dealt with.

During a run LuaTEX needs files of a different kind: source files, font files, images, etc. In practice
you will probably only deal with source files. The most fundamental function is findfile. The first
argument is the filename to be found. A second optional argument indicates the file type.

The following table relates so called formats to suffixes and variables in the configuration file.

variable format suffix
AFMFONTS afm afm

adobe font metric
adobe font metrics
bib bib
bst bst

FONTCIDMAPS cid cid cidmap
cid map
cid maps
cid file
cid files

FONTFEATURES fea fea
font feature
font features
font feature file
font feature files

TEXFORMATS fmt fmt
format
tex format

FONTCONFIG_PATH fontconfig
fontconfig file
fontconfig files

ICCPROFILES icc icc
icc profile
icc profiles

The Lua interface code 119

preliminary, uncorrected version – March 5, 2013

CLUAINPUTS lib dll
LUAINPUTS lua lua luc tma tmc
MPMEMS mem mem

metapost format
MPINPUTS mp mp mpvi mpiv mpii
OFMFONTS ofm ofm tfm

omega font metric
omega font metrics

OPENTYPEFONTS otf otf
opentype
opentype font
opentype fonts

OVFFONTS ovf ovf vf
omega virtual font
omega virtual fonts

T1FONTS pfb pfb pfa
type1
type 1
type1 font
type 1 font
type1 fonts
type 1 fonts

TEXINPUTS tex tex mkvi mkiv mkii
TEXMFSCRIPTS texmfscript rb pl py

texmfscripts
script
scripts

TFMFONTS tfm tfm
tex font metric
tex font metrics

TTFONTS ttf ttf ttc dfont
truetype
truetype font
truetype fonts
truetype collection
truetype collections
truetype dictionary
truetype dictionaries

VFFONTS vf vf
virtual font
virtual fonts

There are a couple of more formats but these are not that relevant in the perspective of ConTEXt.

When a lookup takes place, spaces are ignored and formats are normalized to lowercase.

file.strip(resolvers.findfile("context.tex"),"tex/")

file.strip(resolvers.findfile("context.mkiv"),"tex/")

c:/data/develop/context/sources/context.mkiv

120 The Lua interface code

preliminary, uncorrected version – March 5, 2013

file.strip(resolvers.findfile("context"),"tex/")

texmf-context/scripts/context/stubs/unix/context

file.strip(resolvers.findfile("data-res.lua"),"tex/")

c:/data/develop/context/sources/data-res.lua

file.strip(resolvers.findfile("lmsans10-bold"),"tex/")

file.strip(resolvers.findfile("lmsans10-bold.otf"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","otf"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentype"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentypefonts"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentype fonts"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

The plural variant of this function returns one or more matches.

resolvers.findfiles("texmfcnf.lua","cnf")

{
"c:/data/develop/tex-context/tex/texmf-local/web2c/texmfcnf.lua",
}

resolvers.findfiles("context.tex","")

{
}

10.6 Mathematics (math)
todo

10.7 Graphics (grph)
is a separate chapter

The Lua interface code 121

preliminary, uncorrected version – March 5, 2013

10.8 Languages (lang)
todo

10.9 MetaPost (mlib)
todo

10.10 LuaTEX (luat)
todo

10.11 Tracing (trac)
todo

122 The Lua interface code

preliminary, uncorrected version – March 5, 2013

Callbacks 123

preliminary, uncorrected version – March 5, 2013

11 Callbacks

11.1 Introduction
The LuaTEX engine provides the usual basic TEX functionality plus a bit more. It is a deliberate choice
not to extend the core engine too much. Instead all relevant processes can be overloaded by new
functionality written in Lua. In ConTEXt callbacks are wrapped in a protective layer: on the one hand
there is extra functionality (usually interfaced through macros) and on the other hand users can pop
in their own handlers using hooks. Of course a plugged in function has to do the right thing and not
mess up the data structures. In this chapter the layer on top of callbacks is described.

11.2 Actions
Nearly all callbacks in LuaTEX are used in ConTEXt. In the following list the callbacks tagged with
enabled are used and frozen, the ones tagged disabled are blocked and never used, while the ones
tagged undefined are yet unused.

buildpage_filter enabled vertical spacing etc (mvl)
char_exists undefined
define_font enabled definition of fonts (tfmdata preparation)
find_cidmap_file enabled find file using resolver
find_data_file enabled find file using resolver
find_enc_file enabled find file using resolver
find_font_file enabled find file using resolver
find_format_file enabled find file using resolver
find_image_file enabled find file using resolver
find_map_file enabled find file using resolver
find_opentype_file enabled find file using resolver
find_output_file enabled find file using resolver
find_pk_file enabled find file using resolver
find_read_file enabled find file using resolver
find_sfd_file enabled find file using resolver
find_truetype_file enabled find file using resolver
find_type1_file enabled find file using resolver
find_vf_file enabled find file using resolver
find_write_file enabled find file using resolver
finish_pdffile enabled
hpack_filter enabled all kind of horizontal manipulations (before hbox creation)
hyphenate disabled normal hyphenation routine, called elsewhere
kerning disabled normal kerning routine, called elsewhere
ligaturing disabled normal ligaturing routine, called elsewhere
linebreak_filter enabled breaking paragraps into lines
mlist_to_hlist enabled preprocessing math list
open_read_file enabled open file for reading
post_linebreak_filter enabled all kind of horizontal manipulations (after par break)
pre_dump enabled lua related finalizers called before we dump the format
pre_linebreak_filter enabled all kind of horizontal manipulations (before par break)
pre_output_filter undefined
process_input_buffer disabled actions performed when reading data

124 Callbacks

preliminary, uncorrected version – March 5, 2013

process_jobname undefined
process_output_buffer disabled actions performed when writing data
read_cidmap_file undefined read file at once
read_data_file enabled read file at once
read_enc_file enabled read file at once
read_font_file enabled read file at once
read_map_file enabled read file at once
read_opentype_file undefined read file at once
read_pk_file enabled read file at once
read_sfd_file enabled read file at once
read_truetype_file undefined read file at once
read_type1_file undefined read file at once
read_vf_file enabled read file at once
show_error_hook enabled
start_page_number enabled actions performed at the beginning of a shipout
start_run enabled actions performed at the beginning of a run
stop_page_number enabled actions performed at the end of a shipout
stop_run enabled actions performed at the end of a run
token_filter undefined
vpack_filter enabled vertical spacing etc

Eventually all callbacks will be used so don’t rely on undefined callbacks not being protected. Some
callbacks are only set when certain functionality is enabled.

It may sound somewhat harsh but if users kick in their own code, we cannot guarantee ConTEXt’s
behaviour any more and support becomes a pain. If you really need to use a callback yourself, you
should use one of the hooks and make sure that you return the right values.

All callbacks related to file handling, font definition and housekeeping are frozen and cannot be
overloaded. A reason for this are that we need some kind of protection against misuse. Another
reason is that we operate in a well defined environment, the so called TEX directory structure, and we
don’t want to mess with that. And of course, the overloading permits ConTEXt to provide extensions
beyond regular engine functionality.

So as a fact we only open up some of the node list related callbacks and these are grouped as follows:

category callback usage
processors pre_linebreak_filter called just before the paragraph is broken into lines

hpack_filter called just before a horizontal box is constructed
finalizers post_linebreak_filter called just after the paragraph has been broken into

lines
shipouts no callback yet applied to the box (or xform) that is to be shipped out
mvlbuilders buildpage_filter called after some material has been added to the main

vertical list
vboxbuilders vpack_filter called when some material is added to a vertical box
math mlist_to_hlist called just after the math list is created, before it is

turned into an horizontal list

Each category has several subcategories but for users only two make sense: before and after. Say
that you want to hook some tracing into the mvlbuilder. This is how it’s done:

function third.mymodule.myfunction(where)

Callbacks 125

preliminary, uncorrected version – March 5, 2013

nodes.show_simple_list(tex.lists.contrib_head)
end

nodes.tasks.appendaction("processors", "before", "third.mymodule.myfunction")

As you can see, in this case the function gets no head passed (at least not currently). This example
also assumes that you know how to access the right items. The arguments and return values are
given below.7

category arguments return value
processors head, ... head, done
finalizers head, ... head, done
shipouts head head, done
mvlbuilders done
vboxbuilders head, ... head, done
parbuilders head, ... head, done
pagebuilders head, ... head, done
math head, ... head, done

11.3 Tasks
In the previous section we already saw that the actions are in fact tasks and that we can append (and
therefore also prepend) to a list of tasks. The before and after task lists are valid hooks for users
contrary to the other tasks that can make up an action. However, the task builder is generic enough
for users to be used for individual tasks that are plugged into the user hooks.

Of course at some point, too many nested tasks bring a performance penalty with them. At the end
of a run MkIV reports some statistics and timings and these can give you an idea how much time is
spent in Lua.

The following tables list all the registered tasks for the processors actions:

category function
before unset
normalizers typesetters.characters.handler

fonts.collections.process
fonts.checkers.missing
userdata.processmystuff

characters scripts.autofontfeature.handler
typesetters.cleaners.handler
typesetters.directions.handler
typesetters.cases.handler
typesetters.breakpoints.handler
scripts.preprocess

words builders.kernel.hyphenation
languages.words.check

fonts builders.paragraphs.solutions.splitters.split

7 This interface might change a bit in future versions of ConTEXt. Therefore we will not discuss the few more optional argu-
ments that are possible.

126 Callbacks

preliminary, uncorrected version – March 5, 2013

nodes.handlers.characters
nodes.injections.handler
nodes.handlers.protectglyphs
builders.kernel.ligaturing
builders.kernel.kerning
nodes.handlers.stripping

lists typesetters.spacings.handler
typesetters.kerns.handler
typesetters.digits.handler
typesetters.italics.handler
typesetters.paragraphs.handler

after userdata.processmystuff

Some of these do have subtasks and some of these even more, so you can imagine that quite some
action is going on there.

The finalizer tasks are:

category function
before unset
normalizers unset
fonts builders.paragraphs.solutions.splitters.optimize

lists typesetters.margins.localhandler
builders.paragraphs.keeptogether

after unset

Shipouts concern:

category function
before unset
normalizers typesetters.margins.finalhandler

nodes.handlers.cleanuppage
typesetters.alignments.handler
nodes.references.handler
nodes.destinations.handler
nodes.rules.handler
nodes.shifts.handler
structures.tags.handler
nodes.handlers.accessibility
nodes.handlers.backgrounds
nodes.handlers.alignbackgrounds

finishers nodes.visualizers.handler
attributes.colors.handler
attributes.transparencies.handler
attributes.colorintents.handler
attributes.negatives.handler
attributes.effects.handler
attributes.viewerlayers.handler

Callbacks 127

preliminary, uncorrected version – March 5, 2013

after unset

There are not that many mvlbuilder tasks currently:

category function
before unset
normalizers typesetters.margins.globalhandler

streams.collect
nodes.handlers.migrate
builders.vspacing.pagehandler
typesetters.checkers.handler

after unset

The vboxbuilder perform similar tasks:

category function
before unset
normalizers builders.vspacing.vboxhandler

typesetters.checkers.handler

after unset

In the future we expect to have more parbuilder tasks. Here again there are subtasks that depend on
the current typesetting environment, so this is the right spot for language specific treatments.

The following actions are applied just before the list is passed on the the output routine. The return
value is a vlist.

Both the parbuilders and pagebuilder tasks are unofficial and not yet meant for users.

Finally, we have tasks related to the math list:

category function
before unset
normalizers noads.handlers.unscript

noads.handlers.variants
noads.handlers.families
noads.handlers.relocate
noads.handlers.render
noads.handlers.collapse
noads.handlers.resize
noads.handlers.check
noads.handlers.tags
noads.handlers.italics

builders builders.kernel.mlist_to_hlist

after unset

As MkIV is developed in sync with LuaTEX and code changes from experimental to more final and
reverse, you should not be too surprised if the registered function names change.

You can create your own task list with:

128 Callbacks

preliminary, uncorrected version – March 5, 2013

nodes.tasks.new("mytasks",{ "one", "two" })

After that you can register functions. You can append as well as prepend them either or not at a
specific position.

nodes.tasks.appendaction ("mytask","one","bla.alpha")
nodes.tasks.appendaction ("mytask","one","bla.beta")

nodes.tasks.prependaction("mytask","two","bla.gamma")
nodes.tasks.prependaction("mytask","two","bla.delta")

nodes.tasks.appendaction ("mytask","one","bla.whatever","bla.alpha")

Functions can also be removed:

nodes.tasks.removeaction("mytask","one","bla.whatever")

As removal is somewhat drastic, it is also possible to enable and disable functions. From the fact that
with these two functions you don’t specify a category (like one or two) you can conclude that the
function names need to be unique within the task list or else all with the same name within this task
will be disabled.

nodes.tasks.enableaction ("mytask","bla.whatever")
nodes.tasks.disableaction("mytask","bla.whatever")

The same can be done with a complete category:

nodes.tasks.enablegroup ("mytask","one")
nodes.tasks.disablegroup("mytask","one")

There is one function left:

nodes.tasks.actions("mytask",2)

This function returns a function that when called will perform the tasks. In this case the function
takes two extra arguments in addition to head.8

Tasks themselves are implemented on top of sequences but we won’t discuss them here.

11.4 Paragraph and page builders
Building paragraphs and pages is implemented differently and has no user hooks. There is a mech-
anism for plugins but the interface is quite experimental.

11.5 Some examples
todo

8 Specifying this number permits for some optimization but is not really needed

Backend code 129

preliminary, uncorrected version – March 5, 2013

12 Backend code

12.1 Introduction
In ConTEXt we’ve always separated the backend code in so called driver files. This means that in the
code related to typesetting only calls to the api take place, and no backend specific code is to be used.
Currently a pdf backend is supported as well as an xml export.9

Some ConTEXt users like to add their own pdf specific code to their styles or modules. However,
such extensions can interfere with existing code, especially when resources are involved. Therefore
the construction of pdf data structures and resources is rather controlled and has to be done via the
official helper macros.

12.2 Structure
A pdf file is a tree of indirect objects. Each object has a number and the file contains a table (or
multiple tables) that relates these numbers to positions in a file (or position in a compressed object
stream). That way a file can be viewed without reading all data: a viewer only loads what is needed.

1 0 obj <<
/Name (test) /Address 2 0 R

>>
2 0 obj [

(Main Street) (24) (postal code) (MyPlace)
]

For the sake of the discussion we consider strings like (test) also to be objects. In the next table we
list what we can encounter in a pdf file. There can be indirect objects in which case a reference is used
(2 0 R) and direct ones.

It all starts in the document’s root object. From there we access the page tree and resources. Each
page carries its own resource information which makes random access easier. A page has a page
stream and there we find the to be rendered content as a mixture of (Unicode) strings and special
drawing and rendering operators. Here we will not discuss them as they are mostly generated by the
engine itself or dedicated subsystems like the MetaPost converter. There we use literal or \latelua
whatsits to inject code into the current stream.

12.3 Data types
There are several datatypes in pdf and we support all of them one way or the other.

type form meaning
constant /... A symbol (prescribed string).
string (...) A sequence of characters in pdfdoc encoding
unicode <...> A sequence of characters in utf16 encoding
number 3.1415 A number constant.
boolean true/false A boolean constant.

9 This chapter is derived from an article on these matters. You can find nore information in hybrid.pdf.

130 Backend code

preliminary, uncorrected version – March 5, 2013

reference N 0 R A reference to an object
dictionary << ... >> A collection of key value pairs where the value itself is an (indirect) object.
array [...] A list of objects or references to objects.
stream A sequence of bytes either or not packaged with a dictionary that contains

descriptive data.
xform A special kind of object containing an reusable blob of data, for example

an image.

While writing additional backend code, we mostly create dictionaries.

<< /Name (test) /Address 2 0 R >>

In this case the indirect object can look like:

[(Main Street) (24) (postal code) (MyPlace)]

The LuaTEX manual mentions primitives like \pdfobj, \pdfannot, \pdfcatalog, etc. However,
in MkIV no such primitives are used. You can still use many of them but those that push data into
document or page related resources are overloaded to do nothing at all.

In the Lua backend code you will find function calls like:

local d = lpdf.dictionary {
Name = lpdf.string("test"),
Address = lpdf.array {

"Main Street", "24", "postal code", "MyPlace",
}

}

Equaly valid is:

local d = lpdf.dictionary()
d.Name = "test"

Eventually the object will end up in the file using calls like:

local r = lpdf.immediateobject(tostring(d))

or using the wrapper (which permits tracing):

local r = lpdf.flushobject(d)

The object content will be serialized according to the formal specification so the proper << >> etc.
are added. If you want the content instead you can use a function call:

local dict = d()

An example of using references is:

local a = lpdf.array {
"Main Street", "24", "postal code", "MyPlace",

}
local d = lpdf.dictionary {

Name = lpdf.string("test"),
Address = lpdf.reference(a),

Backend code 131

preliminary, uncorrected version – March 5, 2013

}
local r = lpdf.flushobject(d)

We have the following creators. Their arguments are optional.

function optional parameter
lpdf.null
lpdf.number number
lpdf.constant string
lpdf.string string
lpdf.unicode string
lpdf.boolean boolean
lpdf.array indexed table of objects
lpdf.dictionary hash with key/values
lpdf.reference string
lpdf.verbose indexed table of strings

tostring(lpdf.null())

null

tostring(lpdf.number(123))

123

tostring(lpdf.constant("whatever"))

/whatever

tostring(lpdf.string("just a string"))

(just a string)

tostring(lpdf.unicode("just a string"))

<feff006a0075007300740020006100200073007400720069006e0067>

tostring(lpdf.boolean(true))

true

tostring(lpdf.array { 1, lpdf.constant("c"), true, "str" })

[1 /c true (str)]

tostring(lpdf.dictionary { a=1, b=lpdf.constant("c"), d=true, e="str" })

<< /d true /e (str) /b /c /a 1 >>

tostring(lpdf.reference(123))

123 0 R

tostring(lpdf.verbose("whatever"))

whatever

132 Backend code

preliminary, uncorrected version – March 5, 2013

12.4 Managing objects
Flushing objects is done with:

lpdf.flushobject(obj)

Reserving object is or course possible and done with:

local r = lpdf.reserveobject()

Such an object is flushed with:

lpdf.flushobject(r,obj)

We also support named objects:

lpdf.reserveobject("myobject")

lpdf.flushobject("myobject",obj)

A delayed object is created with:

local ref = pdf.delayedobject(data)

The data will be flushed later using the object number that is returned (ref). When you expect that
many object with the same content are used, you can use:

local obj = lpdf.shareobject(data)
local ref = lpdf.shareobjectreference(data)

This one flushes the object and returns the object number. Already defined objects are reused. In
addition to this code driven optimization, some other optimization and reuse takes place but all that
happens without user intervention. Only use this when it’s really needed as it might consume more
memory and needs more processing time.

12.5 Resources
While LuaTEX itself will embed all resources related to regular typesetting, MkIV has to take care of
embedding those related to special tricks, like annotations, spot colors, layers, shades, transparencies,
metadata, etc. Because third party modules (like tikz) also can add resources we provide some macros
that makes sure that no interference takes place:

\pdfbackendsetcatalog {key}{string}
\pdfbackendsetinfo {key}{string}
\pdfbackendsetname {key}{string}

\pdfbackendsetpageattribute {key}{string}
\pdfbackendsetpagesattribute{key}{string}
\pdfbackendsetpageresource {key}{string}

\pdfbackendsetextgstate {key}{pdfdata}
\pdfbackendsetcolorspace {key}{pdfdata}
\pdfbackendsetpattern {key}{pdfdata}
\pdfbackendsetshade {key}{pdfdata}

Backend code 133

preliminary, uncorrected version – March 5, 2013

One is free to use the Lua interface instead, as there one has more possibilities but when code is shared
with other macro packages the macro interface makes more sense. The names of the Lua functions
are similar, like:

lpdf.addtoinfo(key,anything_valid_pdf)

Currently we expose a bit more of the backend code than we like and future versions will have a more
restricted access. The following function will stay public:

lpdf.addtopageresources (key,value)
lpdf.addtopageattributes (key,value)
lpdf.addtopagesattributes(key,value)

lpdf.adddocumentextgstate(key,value)
lpdf.adddocumentcolorspac(key,value)
lpdf.adddocumentpattern (key,value)
lpdf.adddocumentshade (key,value)

lpdf.addtocatalog (key,value)
lpdf.addtoinfo (key,value)
lpdf.addtonames (key,value)

12.6 Annotations
You can use the Lua functions that relate to annotations etc. but normally you will use the regular
ConTEXt user interface. You can look into some of the lpdf-*modules to see how special annotations
can be dealt with.

12.7 Tracing
There are several tracing options built in and some more will be added in due time:

\enabletrackers
[backend.finalizers,
backend.resources,
backend.objects,
backend.detail]

As with all trackers you can also pass them on the command line, for example:

context --trackers=backend.* yourfile

The reference related backend mechanisms have their own trackers. When you write code that gen-
erates pdf, it also helps to look in the pdf file so see if things are done right. In that case you need to
disable compression:

\nopdfcompression

12.8 Analyzing
The epdf library that comes with LuaTEX offers a userdata interface to pdf files. On top of that
ConTEXt provides a more Lua-ish access, using tables. You can open a pdf file with:

134 Backend code

preliminary, uncorrected version – March 5, 2013

local mypdf = lpdf.epdf.load(filename)

When opening is successful, you have access to a couple of tables:

\NC \type{pages} \NC indexed \NC \NR
\NC \type{destinations} \NC hashed \NC \NR
\NC \type{javascripts} \NC hashed \NC \NR
\NC \type{widgets} \NC hashed \NC \NR
\NC \type{embeddedfiles} \NC hashed \NC \NR
\NC \type{layers} \NC indexed \NC \NR

These provide efficient access to some data that otherwise would take a bit of code to deal with.
Another top level table is the for pdf characteristic Catalog. Watch the capitalization: as with other
native pdf data structures, keys are case sensitive and match the standard.

Here is an example of usage:

local MyDocument = lpdf.epdf.load("somefile.pdf")

context.starttext()

local pages = MyDocument.pages
local nofpages = pages.n

context.starttabulate { "|c|c|c|" }

context.NC() context("page")
context.NC() context("width")
context.NC() context("height") context.NR()

for i=1, nofpages do
local page = pages[i]
local bbox = page.CropBox or page.MediaBox
context.NC() context(i)
context.NC() context(bbox[4]-bbox[2])
context.NC() context(bbox[3]-bbox[1]) context.NR()

end

context.stoptabulate()

context.stoptext()

Nice to know 135

preliminary, uncorrected version – March 5, 2013

13 Nice to know

14 Introduction
As we like to abstract interfaces it is no surprise that ConTEXt and therefore it’s Lua libraries come
with all kind of helpers. In this chapter I will explain a few of them. Feel free to remind of adding
more here.

15 Templates
When dealing with data from tables or when order matters it can be handy to abstract the actual data
from the way it is dealt with. For this we provide a template mechanism. The following example
demonstrate its use.

require("util-ran") – needed for this example
local preamble = [[llc]] local template = [[
context.starttabulate preamble for i=1,10 do local row = utilities.templates.replace(template, surname
= utilities.randomizers.surname(5,10), initials = utilities.randomizers.initials(1,3), length = string.format("
) context(row) end context.stoptabulate()

This renders a table with random entries:

O. Ykexymycyk 179.00
A.H. Ejapowos 142.00
I. Ijipunejym 187.00
I.W. Ijawis 155.00
O.Q.E. Cojat 161.00
I. Ijysopivid 188.00
A.Q.U. Iryzipihux 142.00
E.L.O. Woricekip 145.00
Y. Agakox 164.00
U.C.O. Colon 189.00

The nice thing is that when we change the order of the columns, we don’t need to change the table
builder.

local preamble = [[|c|l|l|]]
local template = [[\NC %length% \NC %initials% \NC %surname% \NC \NR]]

The replace function takes a few more arguments. There are also a some more replacement options.

replace("test '%[x]%' test",{ x = [[a 'x' a]] }))
replace("test '%[x]%' test",{ x = true }))
replace("test '%[x]%' test",{ x = [[a 'x' a]], y = "oeps" },'sql'))
replace("test '%[x]%' test",{ x = [[a '%y%' a]], y = "oeps" },'sql',true))
replace([[test %[x]% test]],{ x = [[a "x" a]]}))
replace([[test %(x)% test]],{ x = [[a "x" a]]}))

The first argument is the template and the second one a table with mappings from keys to values. The
third argument can be used to inform the replace mechanism what string escaping has to happen.
The last argument triggers recursive replacement. The above calls result in the following strings:

136 Nice to know

preliminary, uncorrected version – March 5, 2013

test 'a 'x' \127 a' test
test 'true' test
test 'a ''x'' a' test
test 'a ''oeps'' a' test
test a \"x\" \127 a test
test "a \"x\" \127 a" test

These examples demonstrate that by adding a pair of square brackets we get escaped strings. When
using parenthesis the quotes get added automatically. This is somewhat faster in case when Lua is
the target, but in practice it is not that noticeable.

Summary 137

preliminary, uncorrected version – March 5, 2013

15.1 Summary

context("...")

The string is flushed directly.

...

context("format",...)

The first string is a format specification according that is passed to the Lua function format in the
string namespace. Following arguments are passed too.

format("format",...)

context(123,...)

The numbers (and following numbers or strings) are flushed without any formatting.

123... (concatenated)

context(true)

An explicit endlinechar is inserted.

^^M

context(false,...)

Strings and numbers are flushed surrounded by curly braces, an indexed table is flushed as option
list, and a hashed table is flushed as parameter set.

multiple {...} or [...] etc

context(node)

The node(list) is injected at the spot. Keep in mind that you need to do the proper memory manage-
ment yourself.

context.command(value,...)

The value (string or number) is flushed as a curly braced (regular) argument.

\command {value}...

context.command({ value },...)

The table is flushed as value set. This can be an identifier, a list of options, or a directive.

\command [value]...

138 Summary

preliminary, uncorrected version – March 5, 2013

context.command({ key = value },...)

The table is flushed as key/value set.

\command [key={value}]...

context.command(true)

An explicit endlinechar is inserted.

\command ^^M

context.command(node)

The node(list) is injected at the spot. Keep in mind that you need to do the proper memory manage-
ment yourself.

\command {node(list)}

context.command(false,value)

The value is flushed without encapsulating tokens.

\command value

context.command({ value }, { key = value }, value, false, value)

The arguments are flushed accordingly their nature and the order can be any.

\command [value][key={value}]{value}value

context.direct(...)

The arguments are interpreted the same as if direct was a command, but no \direct is injected in
front.

context.delayed(...)

The arguments are interpreted the same as in a context call, but instead of a direct flush, the argu-
ments will be flushed in a next cycle.

context.delayed.command(...)

The arguments are interpreted the same as in a command call, but instead of a direct flush, the com-
mand and arguments will be flushed in a next cycle.

context.nested.command

This command returns the command, including given arguments as a string. No flushing takes place.

Summary 139

preliminary, uncorrected version – March 5, 2013

context.nested

This command returns the arguments as a string and treats them the same as a regular context call.

context.metafun.start(...)

This starts a MetaFun (or MetaPost) graphic.

context.metafun()

This finishes and flushes a MetaFun (or MetaPost) graphic.

context.metafun.stop(...)

The argument is appended to the current graphic data.

context.metafun.stop("format",...)

The argument is appended to the current graphic data but the string formatter is used on following
arguments.

140 Summary

preliminary, uncorrected version – March 5, 2013

Special commands 141

preliminary, uncorrected version – March 5, 2013

15 Special commands

There are a few functions in the context namespace that are no macros at the TEX end.

context.runfile("somefile.cld")

Another useful command is:

context.settracing(true)

There are a few tracing options that you can set at the TEX end:

\enabletrackers[context.files]
\enabletrackers[context.trace]

A few macros have special functions at the Lua end. One of them is \char. The function makes sure
that the characters ends up right. The same is true for \chardef. So, you don’t need to mess around
with \relax or trailing spaces as you would do at the TEX end in order to tell the scanner to stop
looking ahead.

context.char(123)

Other examples of macros that have optimized functions are \par, \bgroup and \egroup.

142 Special commands

preliminary, uncorrected version – March 5, 2013

Files 143

preliminary, uncorrected version – March 5, 2013

16 Files

16.1 Preprocessing
Although this option must be used with care, it is possible to preprocess files before they enter TEX.
The following example shows this.

local function showline(str,filename,linenumber,noflines)
logs.simple("[lc] file: %s, line: %s of %s, length: %s",

file.basename(filename),linenumber,noflines,#str)
end

local function showfile(str,filename)
logs.simple("[fc] file: %s, length: %s",

file.basename(filename),#str)
end

resolvers.installinputlinehandler(showline)
resolvers.installinputfilehandler(showfile)

Preprocessors like this are rather innocent. If you want to manipulate the content you need to be
aware of the fact that modules and such also pass your code, and manipulating them can give unex-
pected side effects. So, the following code will not make ConTEXt happy.

local function foo()
return "bar"

end

resolvers.installinputlinehandler(foo)

But, as we pass the filename, you can base your preprocessing on names.

There can be multiple handlers active at the same time, and although more detailed control is pos-
sible, the current interface does not provide that, simply because having too many handlers active
is asking for trouble anyway. What you can do, is putting your handler in front or after the built in
handlers.

resolvers.installinputlinehandler("before",showline)
resolvers.installinputfilehandler("after", showfile)

Of course you can also preprocess files outside this mechanism, which in most cases might be a better
idea. However, the following example code is quite efficient and robust.

local function MyHandler(str,filename)
if file.suffix(filename) == "veryspecial" then

logs.simple("preprocessing file '%s',filename)
return MyConverter(str)

else
return str

end
end

resolvers.installinputfilehandler("before",MyHandler)

In this case only files that have a suffix .veryspecial will get an extra treatment.

144 Files

preliminary, uncorrected version – March 5, 2013

